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We introduce a model that allows for the prediction of the permeability of self-affine rough channels
(one-dimensional fracture) and two-dimensional fractures over a wide range of apertures. In the
lubrication approximation, the permeability shows three different scaling regimes. For fractures with
a large mean aperture or an aperture small enough to the permeability being close to disappearing,
the permeability scales as the cube of the aperture when the zero level of the aperture is set to
coincide with the disappearance of the permeability. Between these two regimes, there is a third
regime where the scaling is due to the self-affine roughness. For rough channels, the exponent is
found to be 3− 1/H where H is the Hurst exponent. For two-dimensional fractures, it is necessary
to introduce a new equivalent aperture bc to make the scaling regime apparent. bc is defined as the
hydraulic aperture of the most restrective barrier crossing the fracture normal to the flow direction.
This regime is characterized by an exponent higher than for the one-dimensional case: it is 2.25 for
H = 0.8 and 2.16 for H = 0.3.

I. INTRODUCTION

In the last decades important research efforts from dif-
ferent communities have been devoted to upscaling the
permeability of fractures. One of the practical issues, for
instance, for long term sequestration or for geotechnical
purposes is to predict the behavior of the permeability
under changing mechanical conditions [1]. To uncover
fundamental physical properties of transport phenomena
in fractures, laboratory tests on rock samples [2, 3] or
on modelled fractures [4] as well as numerical modelling
[5] have been carried out. These studies have reported
non-trivial relations between fracture aperture and the
measured permeability. For large mean distance between
the halves, the permeability is find to scale with the cube
of this distance. In this limit, the fracture can be viewed
as consisting of two parallel flat walls [3]. But, as soon
as the halves are brought closer together, deviations from
this cubic law due to the surface roughness are seen [6, 7].
In the recent years, various theoretical models based on
statistical averages, weak disorder perturbation expan-
sions or mean field approximations have been tested to
evaluate these deviations [8–16]. In spite of much in-
vested work, most of the foregoing developments break
down if contact zones exist in the fracture. When the
fracture halves are brought even closer, all the fluid is
finally forced to pass a single strait — or bottle neck —
connecting the inlet and the outlet. Following the work
of Ambegoakar et al (“AHL”) [17], the permeability of
the entire fracture is then controlled by the permeability
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of the bottle neck [18, 19]. When the fracture is further
opened percolating channels arise. The permeability is
not controlled anymore by the bottle neck since the flow
may bypass this region. In a previous study, we have
extended the bottle neck effect by introducing the con-
cept of critical barrier [20]. In the present paper, we
improve the method by taking into account secondary
bottle necks. Our approach allows us to identify three
regimes: the “AHL” regime (close to percolation), the
cubic law regime for large mean aperture and an inter-
mediate non-linear regime where the permeability is con-
trolled by the successive critical constrictions. In the first
section, Sec. II, we derive an extension of the bottle neck
concept for flow in one-dimensional (1D) rough channels.
In section III, we extend the critical path analysis to two-
dimensional (2D) fractures. We assume an aperture field
which is the free space between a flat and a rough sur-
face of height h(x, y). Hence, the aperture is defined as
h(x, y) + a where a is the aperture measured from the
percolation point, i.e., for a ≤ 0 there is no conducting
channels and the permeability is zero. As soon as a > 0,
there is permeability. Possible contacts between the sur-
faces is also considered and flow is assumed to take place
only in open voids of the fracture where a(x, y) > 0.
Places where the aperture is negative are considered in
contact and their corresponding aperture h(x, y)+a is set
to 0. The fracture aperture is change by moving apart
the mean planes of the two surfaces and its permeability
is then analytically (when the field is 1D) or numerically
computed (for 2D fields) by assuming that the Reynolds
equation holds locally [21].

In the present work, we consider aperture fields with
self-affine correlations, which are known to character-
ize natural fractures [22–24]. Such aperture fields have
a two-point function p2(∆h,∆~r), giving the probability
density to find a height difference ∆h over a distance ∆~r,
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that show the invariance

λHp2(λ
H∆h, λ∆~r) = p2(∆h,∆~r) , (1)

where H is the Hurst or roughness exponent.

II. ONE-DIMENSIONAL SYSTEMS

We start by considering one-dimensional flow. In this
case, the fracture field is assumed invariant in the y
direction and the flow occurs is a rough channel with
local aperture h(x) + a. Flow is totally stopped as
soon as the two surfaces come into contact, leading here
to minx h(x) = 0. The permeability K of this one-
dimensional aperture field is, in the lubrication, limit
given by the integral

L

K
=

∫ xL

x0

dx

k(h(x) + a)3
, (2)

where k is a constant and xL − x0 = L, the length of
the system. When the rough profile is discretized over a
length ∆, so that h(x) → hk, Eq.(2) becomes:

L

K
=

L/∆
∑

0

∆

k(hk + a)3
. (3)

Before considering self-affine correlations in h(x), we
investigate the simpler case when there are no spatial
correlations. This is done in order to introduce the con-
cepts that will be central in the following.

A. Uncorrelated Aperture Fields

When the aperture field has no spatial correlations, we
use order statistics combined with Eq. (2) to determine
the scaling properties of the permeability. The aperture
field is fully characterized by the probability density p(h)

and its cumulative probability is P (h) =
∫ h

0
dh′p(h′). By

taking the advantage that in Eq.(2) the occurrence order
of the apertures do not matter, we may therefore order
the h(x) distribution in ascending order. The ordering
transformation is h(x) → h[ξ] = h(x[ξ]), where h[ξ1] ≤
h[ξ2] if ξ1 ≤ ξ2. We define h[ξ] as the average of h[ξ] over
an ensemble of realizations. From order statistics [25],
we then have that

P
(

h[ξ]
)

=
ξ

L
. (4)

Note that we have — by definition — h[0] = 0 and
〈maxx∈[0,L] h(x)〉 = h[L], where 〈· · · 〉 refers to an en-
semble average.
The average inverse permeability is then given by the

expression

L

K
=

∫ L

0

dξ

k(h[ξ] + a)3
=

∫ L

0

dξ

k(P−1(ξ/L) + a)3
, (5)
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Figure 1: Ordered sequences h[ξ] from an uncorrelated noise
distributed on the interval [0, 1] according to the power law
p(h) ∼ hα−1 with exponent exponent α = 1.25 (solid line)
and 3.33 (dashed line). The data have been averaged over
1000 samples and each sample has length 215. The dotted
lines have slopes 0.8=1/1.25 and 0.3=1/3.33 respectively.

In the situation where the aperture field is distributed
according to a power law, p(h) ∝ hα−1, where α > 0,
bounded above by δ, the cumulative probability is given
by P (h) = (h/δ)α. This leads to :

h[ξ] = P−1(ξ/L) =
δ

L1/α
ξ1/α. (6)

This result is illustrated in Fig. 1 where the ordered
sequence h[ξ] is shown as a function of ξ for α = 1.25
and 3.33 respectively.
The permeability of a power-law distributed aperture

field is then given by the integral

L

K
=

∫ L

0

dξ

k((δ/L1/α)ξ1/α + a)3
. (7)

We show in Fig. 2, the permeability K as a function of
the opening a for α = 1.25 based on lubrication limit
expression Eq. (3) together with the solution of Eq. (7).
As is apparent in Fig. 2, there are three power law

regimes. We identify them in the following. By intro-
ducing the notation

I(y) =
1

yα

∫ yα

0

dξ

(ξ1/α + 1)3
, (8)

Eq. (7) may be written

1

K
=

I ((δ/a))

ka3
. (9)

Depending on the value of the ratio a/δ, I displays two
scaling regimes. In the first limit, when a/δ → ∞, cor-
responding for instance to a widely open fracture or to
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Figure 2: Permeability K averaged over 1000 fields of length
215 with h distributed according to a power law p(h) ∼ hα−1

on the unit interval, where α = 1.25. Solid line and open
circles show respectively the permeability K calculated from
Eqs. (3) and (7) respectively as a function of minimum open-
ing a. The three scaling regimes are delimited by vertical
lines. The dashed line represent a3−α = a1.75.

a fracture with small wall roughness, I(δ/a) tends to 1
and Eq.(9) becomes

K = ka3 . (10)

In this regime, the permeability follows the classical cubic
law. In the other limit, when a/δ → 0, i.e., when the
fracture is closed we deduce from Eq. (7) that the inverse
permeability behaves as

1

K
=

I∞
ka3

(a

δ

)α

∼
1

a3−α
, (11)

where

I∞ =

∫ ∞

0

dξ

(ξ1/α + 1)3
. (12)

When α = 1.25, I∞ ≈ 0.52065. Hence, in this regime,
the permeability shows a non-linear variation with the
fracture aperture with an exponent 3− α.
The relation given by Eq.(11) breaks down for small

enough a when the system is discretized, h(x) → hk.
When discretized, the Eq. (7) reads

L

K
=

L/∆
∑

0

∆

k(W/(L/∆)1/αk1/α + a)3
. (13)

For small enough a, the first term in the sum will domi-
nate and the permeability is then given by

K =
L

∆
ka3 . (14)

This third scaling regime is visible in Fig. 2 for the per-
meability calculated from discretized fields hk, where
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Figure 3: Ordered and averaged sequence h[ξ] based on 1000
self-affine h(x) with Hurst exponents equal to 0.8 and 0.3
respectively. The data consists of 1000 samples of length 215.
The straight lines are ξ0.8 and ξ0.3 respectively.

1 ≤ k ≤ 215. The analytical calculation based on Eq.
(7) (dashed line in Fig. 2) does not exhibit such regime.
In this paragraph, we have demonstrated that for un-

correlated powerlaw distributed aperture field three scal-
ing regimes exists: For small a/δ, K ∼ a3 for intermedi-
ate a/δ, K ∼ a3−α, and for large a/δ, K ∼ a3 again. The
next paragraph extends this feature to self-affine corre-
lated fields.

B. Self-Affine Correlations in the Aperture Field

As the previous case, the zero level of the self affine
field h(x) is adjusted so that minx h(x) = 0. Because
of correlations, the eq. (4) cannot be straightforwardly
used to compute the permeability. Hence, we conjecture
that the averaged ordered sequence of h is given by

h[ξ] = cξH , (15)

where c is a prefactor. We test this conjecture in Fig.
3. For H larger than 0.5, the scaling predicted by (15)
falls onto the numerical observation, for ξ larger than 50
(similarly with the powerlaw distribution, see Fig. 1).
However, for smaller values of H , the deviation becomes
larger, see Fig. 3. For the 1D situation, we shall only
consider a Hurst exponent H > 0.5.
We now combine Eq. (15) with Eq. (5) to calculate the

permeability,

L

K
=

∫ L

0

dξ

k(cξH + a)3
. (16)

We show in Fig. 4 the permeability gotten from calcula-
tion of Eq. (3) and from Eq. (16).
Since Eqs. (16) and (7) are formally identical, the scal-

ing analysis presented in Eqs. (8) to (10) is the same for
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Figure 4: Permeability K, defined in Eq. (3) as a function of
minimum opening a for 1000 self-affine fields h(x) of length
215 with H = 0.8. We also show the integral Eq. (16) as
a function of a. The straight dotted line is the power law
a3−1/H = a1.75, Eq. (17). The inset shows the normalized
permeability K/a3.

the self-affine case as for the power-law distributed and
uncorrelated functions when the exponent α is substi-
tuted for 1/H . Hence, for intermediate minimum aper-
tures, a, we find the scaling

K =
k

I∞
L a3−1/H . (17)

We note that the permeability is in this intermediate
regime proportional to the length L. This is different
from the prediction of Roux et al. [26] giving K ∼ L3H

in the same regime. This calculation was based on the
assumption that K ∼ W 3 where W is the average aper-
ture when the fracture surfaces are close to contact. The
self affinity then gives W ∼ LH and K ∼ L3H follows.
However, Eq. (17) shows that even though the fracture
opening a is large enough so that the minx h(x) region no
longer dominates, W does not enter the expression and
the permeability is proportional to L rather than L3H .
For small enough a, the region around the minimum

aperture dominates and the permeability is given by Eq.
(14). This was noted by noted by Gutfraind and Hansen
[27] in their numerical study based on lattice gas au-
tomata.

III. TWO DIMENSIONAL APERTURE FIELDS

In going from one to two dimensions, i.e., when the
aperture field is a function of points in a plane (x, y)
rather than only x, the concept of the narrowest constric-
tion needs to be redefined. In one dimension, the nar-
rowest constriction is the point along the fracture where
there is first contact between the two halves. This def-
inition does not work in two dimensions. The point at
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Figure 5: Permeability K/a3 as a function of opening a for
100 self-affine samples of size 1024. For small and large a,
K ∼ a3, but with different prefactors.

which there is first contact will have little influence in
this case, as the flow simply goes around it. And, if the
two halves are brought further into contact, deformation
occurs. In this work, deformations are modelled as fol-
low: First, the top surface h(x, y) is adjusted such that
min(x,y) h(x, y) = 0. The aperture then define, after a
vertical shift u, by u(x, y) = u + h(x, y). There are con-
tacts where u(x, y) < 0. This is taken into account by
defining

n(x, y) = max
(x,y)

(u(x, y), 0). (18)

Hence, by replacing h(x, y) + u by n(x, y) we model in a
simple way the possible overlaps of the walls.
In one dimension, the aperture of the most narrow con-

striction is a. When a approaches zero, the permeability
decreases and reaches zero for a = 0. We wish to define
the aperture in the same way in two dimensions, namely
a is the aperture for which the permeability reaches zero.
When the aperture is close to this value, the permeabil-
ity is controlled by a single strait as argued in a different
context by Ambegaokar et al. [17]. The min-max algo-
rithm of Hansen and Roux [28, 29] is used to identify the
position of this particular point. First, we identify the
minimum height along each pathes connecting the inlet
to the outlet. The highest of the minimum height gives
then the minimal vertical shift for which flow occurs. We
will note a this height. Note, using this method, one
can also localize the percolation point that according to
Ambegaokar et al. [17] should control the permeability.
Figure 5 shows the permeability, computed by solving

the Kirchhoff equations, as function of the aperture a.
The normalization of the permeability by a3 highlights
two plateaus for respectively small and large a. They
correspond to the two cubic regimes already observed in
the one-dimensional case.
In the intermediate regime, however, the normalized

permeability does not show a power law in contrast to
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Figure 6: Permeability K as a function of bc for 100 self-affine
samples with H = 0.8 of size 1024 × 1024. The straight lines
are b2.25c and b3c respectively.

the one-dimensional case, see inset of Fig. 4. This hints
at the aperture a does not correspond to the aperture
defined in the one-dimensional case. We now identify
the proper variable for this. In a recent paper, Talon et
al. [20] replaced the one-dimensional notion of the “most
narrow constriction” by the “most restrictive path” in
two dimensions. If C is one out of all possible paths that
cuts across the sample between the two edges parallel
to the average flow direction, we may assign an “effec-
tive permeability” to it as the integral of n3(x, y) along
C. We then identify the path with the smallest effective
permeability.

bc =
1

L

[

min
C

∫

C

d~ℓ · ~e⊥n
3(~ℓ)

]1/3

, (19)

where ~e⊥ is a unit vector pointing in the direction or-
thogonal to the average flow direction. When a << 1, bc
will essentially be equal to a as the only opening along
the most restrictive path will be the “AHL” strait. How-
ever, for larger values of a, they will no longer coincide.
As a is increased even further, they again approach each
other.

We show in Fig. 6 permeability K as a function of bc
as defined in Eq. (19). There are the small and large bc
regimes where K ∼ b3c . However, now there is also an
intermediate regime where there is power law behavior,

K ∼ b2.25±0.02
c , (20)

for H = 0.8. For surfaces with H = 0.3, we find an
exponent 2.16± 0.02.

In order to understand where this intermediate power
law regime comes from, we generalize the concept of bc.
Assume now that we are no longer looking for the most
restrictive path for the entire sample, but also for other
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Figure 7: Ordered sequences b[ξ] − bc from 1000 samples of
size 1024× 1024 with Hurst exponents H = 0.8 and H = 0.3
respectively. The straight lines are proportional to ξ1.2 and
ξ1.5 respectively.

restricitve paths that start at a position x,

b(x) =
1

L

[

min
C(x)

∫

C

d~ℓ · ~e⊥n(~ℓ)
3

]1/3

, (21)

where C(x) is a path starting at x. In practice we use a
transfer matrix algorithm for this [30]. We have that the
most restrictive path is given by bc = minx b(x).
We may now order the local most restrictive paths,

b(x) → b[ξ]. Fig. 7 shows the ordering statistic of b[ξ]−bc
obtained for self affine surfaces h(x, y). For ξ smaller than
50, b[ξ]− bc is found to follow a power laws characterised
by an exponent β close to 1.5 for H = 0.8 and β = 1.2,
for H = 0.3.
The local most resctrictive path b(x) plays the role of

a+h(x) in the one-dimensional case. Under this assump-
tion, the two-dimensional permeability is given by

L

K
=

∫ L

0

dx

kb3(x)
=

∫ L

0

dx

k((b(x) − bc) + bc)3
(22)

This equation should be compared to Eq. (3) for the one-
dimensional system. bc in the present case plays the role
of a and b(x) − bc plays the role of h(x). Following the
logic that led to Eq. (7), we would expect the exponent of
the power law of the intermediate regime to be 3− 1/β,
hence 2.33 for H = 0.8 and 2.16 for H = 0.3. Clearly, the
assumption that b(x) could replace a+ h(x) in an equiv-
alent system does lead to a reasonable determination of
the exponent.
The three regimes are qualitatively illustrated in Fig. 8

that shows the pressure field for different values of (b−bc).
In figure a, we see the regime for which the permeability
is controlled by a single element — the “AHL” regime,
giving rise to a cube law behavior. Figures b and c show
the crossover regime giving rise to the intermediate power
law in the permeability. The last figure, d, shows the
large-opening regime where again a cube law is found.
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a)

b)

c)

d)

Figure 8: Pressure field in gray levels a self-affine realiza-
tion. The flow is from left to right. Dark regions correspond
to contact zones. From top to bottom: ((b − bc) = 10−4

(“AHL” regime, the arrow indicates the percolation point),
0.5 (cross over regime, the arrows show the two significant
pressure drop corresponding to the two major barriers), 28
(cross over regime) and 97 (cubic law regime).

IV. SUMMARY AND DISCUSSION

We have in this paper discussed permeability of frac-
tures as a function of fracture opening. We identify three
regimes: A first regime where the permeability is com-
pletely controlled by one single local area. This area is
that identified by the “AHL” construction, and is closely
related to the percolation point. In one-dimensional
channels, it corresponds to the narrowest constriction. In
this regime, we find the permeability follows a cube law
with respect to the fracture opening. When the fracture
opening is very large, another cube law regime is found.

The prefactors of the two cube laws are different. Be-
tween these two regimes, there is an intermediate regime
where non-trivial scaling is found. In one-dimensional
systems, this scaling can be derived thanks to order
statistics for uncorrelated power law aperture distribu-
tion. In case of self-affine aperture field, despite long
range correlations the order statistics also follows a power
law as for the uncorrelated aperture field. Consequently,
the three scaling regimes are observed for self affine frac-
tures, with an intermediate exponent of 3− 1/H .

However, in two dimensions, ordering the permeabil-
ity distribution modify the effective permeability, order-
ing statistics is thus no longer applicable in this form.
We improved the approach proposed in a previous work
[20] where we intoduced the concept of most restrictive
path. We used the same concept to modelized the frac-
ture as a sequence of transverse barriers put in series.
An hydraulic aperture is then estimated for each barri-
ers. The problem reduce then to a one-dimensional one,
where ordering is allowed. We have then shown that the
order of each most restrictives barrier displays a power
law trend. This model allows us to interpret three ob-
served scaling regimes as function of the equivalent aper-
ture bc of the worst most restrictive path. However, con-
trary to the one-dimensional case, the scaling law could
not be predicted from the roughness of the fracture wall.
The obtained exponent in 2D is higher than for the 1D
chanel. This indicates that the deviation to the cubic law
is less important in 2D system. This can be understood
from the by-pass effect and the localization of the flow.
Yet, our approach introduce a new scale bc which allows
to continuously describe the crossover from the “AHL”
regime to the “cubic law” one. To our knowledge none
of the previous methods describe such a behavior.
In future work, other permeability distributions will be
considered to generalize our model. A three dimensional
extension will also be investigated.
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