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BIJECTIONS FOR ENTRINGER FAMILIES

YOANN GELINEAU, HEESUNG SHIN, AND JIANG ZENG

Abstract. André proved that the number of alternating permutations on {1, 2, ..., n} is
equal to the Euler number En. A refinement of André’s result was given by Entringer, who
proved that counting alternating permutations according to the first element gives rise to Sei-
del’s triangle (En,k) for computing the Euler numbers. In a series of papers, using generating
function method and induction, Poupard gave several further combinatorial interpretations
for En,k both in alternating permutations and increasing trees. Kuznetsov, Pak, and Post-
nikov have given more combinatorial interpretations of En,k in the model of trees. The aim of
this paper is to provide bijections between the different models for En,k as well as some new
interpretations. In particular, we give the first explicit one-to-one correspondence between
Entringer’s alternating permutation model and Poupard’s increasing tree model.
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1. Introduction

The Euler numbers En are defined by the generating function
∑

n≥0

En
xn

n!
= tan(x) + sec(x)

= 1 + x+
x2

2!
+ 2

x3

3!
+ 5

x4

4!
+ 16

x5

5!
+ 61

x6

6!
+ 272

x7

7!
+ 1385

x8

8!
+ · · · .

Let An be the set of alternating permutations of [n] := {1, 2, . . . , n}, that is, the permutations
π = π1π2 . . . πn on [n] satisfying π1 > π2 < π3 > π4 < · · · , in an alternating way. For
example, the alternating permutations of [4] are:

2 1 4 3, 3 2 4 1, 3 1 4 2, 4 2 3 1, 4 1 3 2.

André [And79] proved that En is the cardinality of the set An. A recent survey on alternating
permutations and Euler numbers is given by Stanley [Sta09].

The Entringer numbers[Ent66] were introduced to enumerate the alternating permutations
according to the first term. More precisely, let An,k be the set of permutations π ∈ An such
that π1 = k and En,k the cardinality of An,k. The first values of En,k are given in Table 1.

n \ k 1 2 3 4 5 6 7
1 1
2 0 1
3 0 1 1
4 0 1 2 2
5 0 2 4 5 5
6 0 5 10 14 16 16
7 0 16 32 46 56 61 61

Table 1. The first values of Entringer numbers En,k

Theorem 1.1 (Entringer). The numbers (En,k) ( n ≥ k ≥ 1) satisfy

E1,1 = 1, En,1 = 0 (n ≥ 2), En,k = En,k−1 +En−1,n−k+1. (1)

Iterating the above recurrence, we get En+1,n+1 = En,n+En,n−1+ · · ·+En,1, which is equal
to En by André’s result. Hence the Euler numbers En = En+1,n+1 are the diagonal entries in
Table 1.

If we display the Entringer numbers En,k in a suitable way as follows,

E1,1

E2,1 → E2,2

E3,3 ← E3,2 ← E3,1

E1,1 → E4,2 → E4,3 → E4,4

E5,5 ← E5,4 ← E5,3 ← E5,2 ← E5,1

· · ·

⇐⇒

1
0 → 1

1 ← 1 ← 0
0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0
· · ·

then the recurrence relation (1) leads to Seidel’s scheme [Sei77] for computing Euler numbers,
which was rediscovered later by Kempner [Kem33].

A sequence of sets (Xn,k)1≤k≤n is called an Entringer family if for 1 ≤ k ≤ n, the cardinality
of Xn,k is equal to En,k.
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Let X = {x1, . . . , xn}< be an ordered set such that x1 < · · · < xn. An increasing tree
on X is a spanning tree of the complete graph on X, rooted at x1 and oriented from the
smallest vertex x1, such that the vertices increase along the edges. Let Tn be the set of 0-1-2
increasing trees T on [n], i.e. the increasing trees such that at most two edges go out from
every vertex (see Figure 1).

2
1

3
4

2
1

3
4 2

1

3 4
2
1

4
3 2

1

3
4

Figure 1. The 0-1-2 trees on [4]

Foata and Schützenberger proved in [FS73, §5] that the Euler number En is the cardinality
of Tn. A one-to-one correspondance between An and Tn was soon constructed by Donaghey
[Don75] (see also [Cal05]). However the tree counterpart of Entringer’s result was found only
in 1982 by Poupard [Pou82]. If T is a 0-1-2 increasing tree and if (i, j) is an edge in T , i < j,
we call i the father of j, and j a child of i. If i has no child, we say that i is an endpoint of
T . A path in T is a sequence of vertices (ai) such that ai is a child of ai−1 in T, and the main
path of T is the path (ai)1≤i≤ℓ such that a1 = 1, ai (i = 2 . . . ℓ) is the smallest child of ai−1

and aℓ is an endpoint, denoted by p(T ). Let’s denote by Tn,k the set of trees T ∈ Tn such
that p(T ) = k.

Theorem 1.2 (Poupard). The sequence (Tn,k)1≤k≤n is an Entringer family.

Note that contrary to the case of alternating permutations, it is not easy to interpret
identity (1) in the model of 0-1-2 increasing trees. Indeed, Donaghey’s bijection doesn’t
induce a bijection between An,k and Tn,k and Poupard’s proof in [Pou82] was analytic in
nature. Finding a direct explanation in the model of trees was then raised as an open problem
in [KPP94]. The first aim of this paper is to build a bijection between An,k and Tn,k and
answer the above open problem.

Theorem 1.3. For all n ≥ 1 and k ∈ [n], there is an explicit bijection Ψ : An,k → Tn,k
satisfying

∀π ∈ An,k, π1 = p(Ψ(π)).

Poupard [Pou82, Pou97] gave also other interpretations for Entringer numbers En,k (see
Section 4) in increasing trees and alternating permutations with induction proofs. Our second
aim is to provide simple bijections between the other interpretations of Poupard in alternating
permutations and the original interpretation in An,k. Note that some other interpretations of
Entringer numbers En,k in the model of increasing trees were given in [KPP94]. Recently, two
new interpretations of Euler numbers were given by Martin and Wagner [MW09] in the model
of G-words and R-words. We shall give the corresponding interpretations of the Entringer
number En,k in the later models.

The rest of this paper is organized as follows. In Section 2, we introduce an intermediate
model Dn,k and present a bijection ψ between An,k and Dn,k. In Section 3, we describe a
bijection ϕ between Dn,k and Tn,k so that Ψ = ϕ ◦ ψ provides the bijection for Theorem 1.3.
As an application, in Subsection 3.2, we give a direct interpretation of (1) in the model of
increasing trees. In Section 4, we recall the other interpretations of En,k found by Poupard
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and establish simple bijections between these models. In Section 5, we give some new inter-
pretations for En,k, first refining the results of Martin and Wagner [MW09] in their model of
G-words and R-words, and secondly introducing the new model of U-words.

2. The left-to-right coding ψ of alternating permutations

For n ≥ 2, let An be the set consisting of ordered pairs (j, i) (1 ≤ i < j ≤ n), starred
ordered pairs (j, i)∗ (1 ≤ i < j ≤ n), and the element (n)∗ = (n, n)∗:

An = {(j, i), (j, i)∗ , (n)∗ : 1 ≤ i < j ≤ n}.

Definition 2.1. A sequence (∆k) of elements in An is an encoding sequence of [n] if the
following conditions are verified:

(i) if ∆k = (j, i)∗ and ∆k+1 ∈ {(m,n), (m,n)
∗}, then i < m,

(ii) if ∆k = (j, i) and ∆k+1 ∈ {(m,n), (m,n)
∗}, then i = m,

(iii) if ∆k = (j, i)∗, then the integers i and j don’t appear in every ∆ℓ, for ℓ > k,
(iv) if ∆k = (j, i), then the integers ℓ such that i < ℓ < j appear in an element ∆ℓ, for

ℓ > k, with ∆ℓ ∈ {(j, i)
∗ : 1 ≤ i < j ≤ n}.

We denote by Dn the set of encoding sequences of [n], and by Dn,k the subset of Dn consisting
of encoding sequences starting with an element in {(k, i), (k, i)∗ , 1 ≤ i < k − 1}.

For example, the elements in D4 are: ((2, 1)∗, (4, 3)∗), ((3, 2)∗, (4, 1)∗) and

((3, 2), (2, 1)∗ , (4, 3)∗) , ((4, 3), (3, 2)∗ , (4, 1)∗) , ((4, 3), (3, 2), (2, 1)∗ , (4, 3)∗) .

Let π be an alternating permutation on an ordered set I = {a1, a2, . . . , an}< such that
π1 > π2 < π3 > π4 < . . . (that can be interpreted by an element of An). Suppose π1 = ak
and π2 = aj with ak > aj . If we apply successively the elementary transpositions (ak, ak−1),
(ak−1, ak−2), . . . , (aj+2, aj+1) to π:

π(1) = (ak, ak−1) ◦ π,

π(2) = (ak−1, ak−2) ◦ π
(1),

...

π(k−j−1) = (aj+2, aj+1) ◦ π
(k−j−2),

then we obtain a permutation starting with aj+1aj (from left-to-right). Clearly all the per-

mutations π(1), . . . , π(k−j−1) are alternating permutations. Deleting the first two elements in
π(k−j−1), noted as (aj+1, aj)

∗, we get an alternating permutation, say π(k−j), on I \{aj+1, aj}.
So we can apply the same procedure to the resulted permutation, and iterate this algorithm
until we obtain the empty permutation. Clearly the last deletion is (n)∗ if n is odd. In others
words, we can write the algorithm as follows:

(1) Start with ∆(π) = ∅ and I
(2) While Card(A) ≥ 2, do:

(a) While there is no i such that (π1, π2) 6= (ai+1, ai), do:
∆(π)← (∆(π), (ai+1, ai)),
π ← (ai, ai+1) ◦ π.

(b) If there is i such that (π1, π2) = (ai+1, ai), do:
∆(π)← (∆(π), (ai+1, ai)

∗),
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π ← π3π4 . . . πn (eventually π = ∅),
I ← I \ {ai, ai+1}.

(3) If Card(I) = 1 with I = {an}, do:
Dπ ← (∆(π), (an)

∗),
π ← ∅,
I ← ∅.

We call the sequence of the successive operations in the above algorithm the LR-code of π,
which is a sequence ψ(π) = ∆(π) made of

• the transpositions (j, i), 1 ≤ i < j ≤ n,
• the deletions (j, i)∗, 1 ≤ i < j ≤ n (or the deletion (n)∗).

Example 2.2. Let’s take π = 748 5 9 1 6 2 3 ∈ A9,7.

Step π ∆(π)i
0 7 4 8 5 9 1 6 2 3 ∅
1 6 4 8 5 9 1 7 2 3 (7, 6)
2 5 4 8 6 9 1 7 2 3 (6, 5)
3 8 6 9 1 7 2 3 (5, 4)∗

4 7 6 9 1 8 2 3 (8, 7)
5 9 1 8 2 3 (7, 6)∗

6 8 1 9 2 3 (9, 8)
7 3 1 9 2 8 (8, 3)
8 2 1 9 3 8 (3, 2)
9 9 3 8 (2, 1)∗

10 8 3 9 (9, 8)
11 9 (8, 3)∗

12 ∅ (9)∗

Thus, the LR-code of π is

∆(π) = ((7, 6), (6, 5), (5, 4)∗ , (8, 7), (7, 6)∗ , (9, 8), (8, 3), (3, 2), (2, 1)∗ , (9, 8), (8, 3)∗ , (9)∗) .

Theorem 2.3. For all n ≥ 1 and k ∈ [n], the LR-coding mapping ψ is a bijection between
An,k and Dn,k.

Proof. It suffices to show that the sequence ψ(π) verifies the points (i)-(iv) of Definition 2.1.

• When ∆k = (j, i)∗, we have π1 = j and π2 = i. Since π is alternating, we know that
m = π3 > i. The first operation that follows is either a transposition (m,n), or a
deletion (m,n)∗, thus (i) is verified.
• When ∆k = (j, i), we are in the while loop of the algorithm, and π1 becomes i. Either
the loop is not over, and then i is changed with a transposition (i, k), or the loop is
over, and then i is deleted with a deletion (i, k)∗. Thus (ii) is verified.
• When ∆k = (j, i)∗, in the algorithm, i and j are erased from I. Then, they don’t
appear in any operation later, thus (iii) is verified.
• When ∆k = (j, i), we are in the while loop of the algorithm, and i and j must be
consecutive elements in I. Then, the integers ℓ such that i < ℓ < j must have been
erased from I before, thus (iv) is verified.

It results that ψ(π) ∈ Dn. Moreover, ψ(π) starts with (π1, j) or (π1, j)
∗ with j < π1, so

ψ(π) ∈ Dn,k. The processus is clearly invertible so ψ is a bijection between An,k and Dn,k. �
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The previous theorem yields immediately a new interpretation for Entringer numbers.

Corollary 2.4. The sequence (Dn,k)1≤k≤n is an Entringer family.

Remark 2.5. Denote the largest integer less than x by ⌊x⌋ and the number of ordered pairs
(i, j) ∈ {1, . . . , n} such that i + 1 < j and πi > πi+1 < πj < πi by 31-2(π). Then, one can
show that the length of the sequence ψ(π) is equal to

31-2(π) +

⌊
n+ 1

2

⌋

.

Indeed, 31-2(π) corresponds to the number of occurences of terms (j, i), j > i, in ψ(π), and

there are

⌊
n+ 1

2

⌋

occurences of terms (j, i)∗, j > i, in ψ(π). Note that various formulae for

counting 31-2-patterns in alternating permutations are given in [Che08, JV10, SZ10].

Remark 2.6. Let n ≥ 2 and k ≥ 2. An element ∆ ∈ Dn,k begins either with (k, k − 1) or
(k, k − 1)∗.

If ∆1 = (k, k − 1), then, the remaining sequence (∆2,∆3, . . .) is still an encoding sequence
of [n], starting with ∆2 ∈ {(k−1, i), (k−1, i), 1 ≤ i ≤ k−2}. Thus, there are En,k−1 encoding
sequences starting by (k, k − 1).

If ∆1 = (k, k−1)∗, then, the remaining sequence (∆2,∆3, . . .) doesn’t contain the elements
k and k+1 and starts with an element in {(i, j), (i, j)∗ , 1 ≤ j ≤ i−1} with i ≥ k+1. In other
words, this is an encoding sequence of n − 2 elements, starting with an integer i that must
be greater than the k − 2 first elements. Thus, there are En−2,k−1 +En−2,k + · · ·En−2,n−2 =
En−1,n−k+1 encoding sequences starting by (k, k − 1)∗.

Finally, the decomposition according to the nature of the first element of ∆ ∈ Dn,k gives(1).

3. The left-to-right coding of increasing trees

3.1. The bijection ϕ : Dn,k → Tn,k. Starting from an encoding sequence ∆ = (∆i)1≤i≤ℓ ∈
Dn,k, we construct a tree T = ϕ(∆) ∈ Tn,k by reading the sequence ∆ in reverse order, i.e.,
from right to left. More precisely, for m = ℓ, ℓ−1, . . . , 1, we shall construct an increasing tree
Tm corresponding to each sequence (∆m, . . . ,∆ℓ) such that

∆m = (jm, im) or (jm, im)
∗ =⇒ p(Tm) = jm, (2)

and define T = T1 := ϕ(∆). The algorithm goes as follows:

• If the last element of ∆ is a singleton (n)∗, construct the tree Tℓ with only one vertex
n; if the last element of ∆ is a deletion (n, i)∗, construct the increasing tree Tℓ with
only one edge i → n. Clearly (2) is verified. Now, suppose that we have constructed
a tree Tm−1 corresponding to the sequence (∆m−1, . . . ,∆ℓ) with the property (2).
• ∆m = (jm, im)

∗ with jm > im, we add im and jm in the tree Tm−1 to obtain Tm.
Suppose that the main path of Tm−1 is (a1, . . . , apm).
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– If im < a1, add the edges (im, a1) and (im, jm) to the tree Tm−1. Then, the tree
Tm is an increasing tree rooted at im with (im, jm) as the main path.

jm

im

a2

a1

A

B a2

a1

A

B

– If im > a1, by induction hypothesis and property (ii) of encoding sequences, we
see that a1 < m. Hence, there exists k ∈ {1, . . . , pm − 1} such that ak < im <
ak+1. Then, erase the edge (ak, ak+1), create the edges (ak, im), (im, ak+1) and
(im, jm). Clearly, the tree Tm is an increasing tree with (im, jm) as the last edge
of the main path.

jm

imak+1

ak ak

ak+1

A

A

B B

C C

• ∆m = (jm, im) with jm > im, by induction hypothesis and property (iii) of encoding
sequences, we derive that im is at the end of the main path. Then, we transform the
tree Tm−1 according to the two following situations:

– Case A : if im and jm are not siblings in T , just exchange the places of im and
jm in T . The tree remains increasing because Then jm is at the end of the main
path in T .

im

jm

A

B

jm

A

B

im

– Case B : if im and jm are siblings in T , transform T with the following procedure.
If m1 denotes the parent of im and jm in T , erase the edge (m1, jm), create
an edge (im, j)m, then if A and B are the two subtrees starting from jm with
min(A) < min(B) (eventually B is empty), cut the subtree A from jm and add
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it as a direct subtree of m1, cut the subtree B from jm and add it as a direct
subtree of im. The procedure can be illustrated with the following picture:

im

jm
B

m1

A
im

jm

m1

A

B

C C

Theorem 3.1. For all n ≥ 1 and k ∈ [n], the mapping ϕ : Dn,k −→ Tn,k is a bijection.

Proof. It is sufficient to construct the inverse mapping of ϕ to show that this is a bijection.
Given T an increasing tree on the ordered set {a1, . . . , an} with a1 < · · · < an, such that
p(T ) = ak (that can be interpreted by an element of Tn,k), we construct an encoding sequence
∆ = ϕ−1(T ) of [n] recursively as follows:

Case A. If ak−1 is the father of ak in T , then let m (m > ak) be the other child of ak−1 (m =∞
if ak is the only child of ak−1) and s (s > k) be a sibling of ak−1 (s = ∞ if ak−1 has
no sibling), and j the father of ak−1 in T .

Case A-1. If m < ∞ and m < s, then define ϕ−1(T ) =
(
(ak, ak−1)

∗, ϕ−1(T ′)
)
, where T ′

is the tree obtained from T by deleting the vertices ak−1, ak and their adjacent
edges in T , and adding a new edge between m and j.

T

ak

ak−1

B

m

j

As

T ′

B

m

j

As

C C

Case A-2. In the other cases (m =∞ orm > s), then define ϕ−1(T ) =
(
(ak, ak−1), ϕ

−1(T ′)
)
,

where T ′ is the tree obtained from T by erasing the edges (ak−1, ak), (ak−1,m)
and (j, s) in T , and adding the edges (j, ak), (ak, s), (ak,m). The procedure can
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be illustrated with the following picture:

T

ak

ak−1

Bm

j

As

T ′

ak−1 ak

j

A

m Bs

C C

Case B. If ak−1 is not the father of ak in T , then define ϕ−1(T ) =
(
(ak, ak−1), ϕ

−1(T ′)
)
, where

T ′ is the tree obtained from T by exchanging the labels ak−1 and ak in T .

ak−1

ak

A

B

ak

ak−1

A

B

T T ′

It remains to prove that the obtained sequence ∆ verifies the points (i)-(iv) of Definition 2.1.

• If an element (j, i)∗ appears in ∆, that corresponds to the case A-1, when we delete
the vertices i and j from the tree T . Then the next elements in ∆ don’t contain
neither i nor j since they corresponds to ϕ−1(T ′). Moreover, if we are in the case A-1,
the main path in the tree T ′ contains at least one element m with m > j > i, so the
next element in ∆ must be (m,k) with m > k. Thus (i) and (iii) are verified.
• If an element (j, i) appears in ∆, in both Case A-2 or Case B, the tree T ′ has i as
endpoint of the main path. Then, the next element in ∆ must be (i, k) with i > k.
Moreover, i and j must be consecutive elements in the ordered set of labels in T . Then
the elemnts ℓ such that i < ℓ < j don’t appear in T . Thus (ii) and (iv) are verified.

�

Let Ψ = ϕ◦ψ. Then Ψ : An,k → Tn,k is a bijection satisfying π1 = p(Ψ(π)) for all π ∈ An,k.
Thus Theorem 1.3 is proved.

Example 3.2. Continuing the Example 2.2, we apply Ψ to π by using the known LR-code
of π = 748 5 9 1 6 2 3. The details are given in Figure 2.

3.2. Interpretation of Entringer’s formula (1) in Tn. Following the interpretation of (1)
in Dn (cf Remark 2.6) and the bijection ϕ, we must consider the decomposition of the set Tn,k
either the first step in the construction of ϕ−1 would consist in either removing the elements
k − 1 and k, either transform the tree to obtain another tree of Tn.

For T be an element of Tn,k, we say that the edge (k − 1, k) is removable if k − 1 is the
parent of k and if k − 1 has another child m that is not greater than the sibling of k − 1 (if
such a sibling exists). For a visual representation, a tree T has its edge (k − 1, k) revovable
if it corresponds to the case A-1 in the proof of Theorem 3.1.
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π 9 839 938 21938 31928 81923
π1 9 8 9 2 3 8

∆(π)1 (9)∗ (8, 3)∗ (9, 8) (2, 1)∗ (3, 2) (8, 3)

ϕ ◦ ψ(π)

9 3
98

3
8
9

1

9

32
8

1

93
2 8

1

98
2 3

p(ϕ ◦ ψ(π)) 9 8 9 2 3 8

π 91823 7691823 8691723 548691723 648591723 748591623
π1 9 7 8 5 6 7

∆(π)1 (9, 8) (7, 6)∗ (8, 7) (5, 4)∗ (6, 5) (7, 6)

ϕ ◦ ψ(π)

1

89
2 3

1

6
7

2 3
8
9

1

6
8

2 3
7
9

1
2 3

7
6

8 9
5
4

1
2 3

7

6
8
9

5
4

1
2 3

6

7
8
9

5
4

p(ϕ ◦ ψ(π)) 9 7 8 5 6 7

Figure 2. The construction of the tree Ψ(7 4 8 5 9 1 6 2 3)

If the edge (k − 1, k) is not removable, the tree obtained after the first operation in the
construction of ϕ−1 will be an increasing tree with n elements such that k− 1 is the endpoint
of the main chain. Then, there are exactly En,k−1 trees such that the edge (k − 1, k) is not
removable.

If the edge is removable, the tree obtained with the first operation in the construction of
ϕ−1 will be an increasing tree with n − 2 elements (without the elements k − 1 and k), and
the end of the main path must be an element i greater than the k − 2 first elements. Thus,
there are En−2,k−1 +En−2,k + · · ·En−2,n−2 = En−1,n−k+1 increasing trees such that the edge
(k − 1, k) is removable.

Finally, an interpretation of (1) appears in the model of Tn. The decomposition according
to the removability of the edge (k − 1, k) in T ∈ Tn,k gives (1).

4. Poupard’s other Entringer families

4.1. Another interpretation in increasing trees. Let T ′
n,k be the set of trees T ∈ Tn such

that the father of n in T is k − 1. By using recurrence relations Poupard proved that En,k is
also the number of trees in T ′

n,k. A bijection ϕ′ between Tn,k and T ′
n,k was given in [KPP94,

§6] for a more general class of increasing trees that they call geometric.

4.2. Another interpretation in alternating permutations. If π is a permutation of
An,k, define θ(π) as follows :

• if k < n− k + 1 + π2, then θ(π) = (n− k + 1 + π2, n− k + π2, . . . , k + 1, k) ◦ π,
• if k > n− k + 1 + π2, then θ(π) = (n− k + 1 + π2, n− k + 2 + π2, . . . , k − 1, k) ◦ π.

Since π is alternating, π2 < k = π1. If k < n − k + 1 + π2, π2 is unchanged by the cycle
and then σ(π)2 = π2. Thus σ(π)2 < k < n− k + 1 + π2 = σ(π)1 and θ(π) is still alternating.
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If k > n − k + 1 + π2, since k ≤ n, then n − k + 1 + π2 ≥ π2 + 1, so π2 is unchanged by the
cycle, σ(π)1 = n− k + 1 + π2 > π2 = σ(π)2 and θ(π) is still alternating.

Let’s denote by A′
n,k the set of permutations π ∈ An such that π1 − π2 = n+ 1− k.

Theorem 4.1. For all n ≥ 1 and k ∈ [n], the mapping θ is a bijection from An,k to A′
n,k.

Moreover, for every π ∈ An,k, θ(π)2 = π2.

Proof. By construction, θ is clearly inversible. Moreover, if σ ∈ An with σ1− σ2 = n− k+1,

• if k < n− k + 1 + σ2, then θ
−1(σ) = (k, k + 1, . . . , n− k + σ2, n− k + 1 + σ2) ◦ σ,

• if k > n− k + 1+ σ2, then θ
−1(σ) = (k, k − 1, . . . , n− k + 2 + σ2, n− k + 1+ σ2) ◦ σ.

and then θ−1(σ) ∈ An,k. �

With Theorem 4.1, the following interpretation of Poupard, proved in [Pou97] by recurrence
relations, can be recovered.

Corollary 4.2. The sequence (A′
n,k)1≤k≤n is an Entringer family.

Note that A′
n,k ⊂ An. Then, define θ2(π) for π ∈ An. Actually, θ appears to be an

involution on An.
The result can also be generalized with the following observation. For any π ∈ An, define

the complement permutation π with πi = n + 1 − πi for i ∈ [n]. Denote by A∗
n the set of

permutations π such that π ∈ An.

Corollary 4.3. For n ≥ 1, we have
∑

π∈A∗

n

qπ1pπ2−π1 =
∑

π∈A∗

n

pπ1qπ2−π1 .

Proof. The mapping π 7→ θ(π) is a bijection between {π ∈ A∗
n : π1 = k} and {π ∈ A∗

n :
π2−π1 = k}. Thus, the two statistics π1 and π2−π1 are equidistributed on A∗

n. Indeed, with
proof of Theorem 4.1, π 7→ θ(π) is a bijection between {π ∈ A∗

n : π1 = k, π2 − π1 = ℓ} and
{π ∈ A∗

n : π1 = ℓ, π2 − π1 = k}. Thus, there is also a symmetry between both statistics. �

4.3. Interpretations in direct alternating permutations. Let’s introduce the set DAPn
of direct alternating permutations of [n], that is, the permutations π of [n] such that π−1

1 < π−1
n

and
π1 > π2 < π3 > · · · or π1 < π2 > π3 < · · · .

For example, the direct alternating permutations of [4] are

1 4 2 3, 1 3 2 4, 3 1 4 2, 2 3 1 4, 2 1 4 3.

Denote by DAPn,k the set of π ∈ DAPn such that |π1−π2| = n− k+1. The set A′
n,k can

be split in two disjoint subsets A′
n,k,1n which is the set of permutations in A′

n,k ∩DAPn and

A′
n,k,n1 = A

′
n,k \ A

′
n,k,1n. If π ∈ A

′
n,k,1n, define β(π) = π, and if π ∈ A′

n,k,n1, define β(π) = π.

Thus β(π) ∈ DAPn and β(π)1 − β(π)2 = −(n− k + 1).

Theorem 4.4. For all n ≥ 1 and k ∈ [n], the mapping β is a bijection between A′
n,k and

DAPn,k.

With the previous theorem, the interpretation of Poupard, proved in [Pou97] by recurrence
relations, can be recovered.

Corollary 4.5. The sequence (DAPn,k)1≤k≤n is an Entringer family.
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Denote by DAP ′
n,k the set of π ∈ DAPn such that the term immediately before 1 is k, if

k ≤ n− 1, and DAP ′
n,n the set of π ∈ DAPn such that π1 = 1.

We want to construct a bijection ρ between An,k and DAP ′
n,k.

If k = n, it suffices to define for π ∈ An,n, ρ(π) = π. Then, ρ(π) ∈ DAP ′
n,n.

Assume that k ≤ n − 1. The set An,k can be split in two disjoint subsets An,k,1n which
is An,k ∩ DAPn and An,k,n1 := An,k \ An,k,1n. For an ordered set I = {a1, . . . , an} with
a1 < · · · < an, denote by σI the permutation:

σI =

(
a1 a2 · · · an
an an−1 · · · a1

)

Then, for a permutation π = π1 . . . πn on the ordered set I, denote by π the complement
permutation on the set I, that is π := σI ◦ π, and π

R the reverse permutation:

πR := πnπn−1 . . . π1.

Note that when I = [n], the definition of the complement permutation coincides with the one
in the Remark of Subsection 4.2.

Then, for a permutation π ∈ An,k,

• If π ∈ An,k,1n, we can write π = σ1 1σ2. Then, define ρ(π) = σR1 1σ2. Since 1 < π1 >
π2, ρ(π) is still alternating, and the term just before 1 in ρ(π) is π1 = k.
• If π ∈ An,k,n1, we can write π = σ1 nσ2. Then, define ρ(π) = σR1 1σ2. Since 1 < π1 >
π2 and σ2 is alternating, ρ(σ1) is still alternating, and the term just before 1 in ρ(π)
is π1 = k.

Theorem 4.6. For all n ≥ 1 and k ∈ [n], the mapping ρ is a bijection between An,k and
DAP ′

n,k.

Proof. In order to prove that ρ is a bijection, it suffices to describe the inverse of ρ. Let π be
an element in DAPn such that the term immediately before 1 in k. Following the construction
of ρ, we have:

• If π ∈ An,k, write π = τ1 1 τ2. Then, ρ
−1(π) = τR1 1 τ2.

• If π 6∈ An,k, write π = τ1 1 τ2. Then, ρ
−1(π) = τR1 n τ2.

�

With the previous theorem, the following interpretation of Poupard, proved in [Pou97] by
recurrence relations, can be recovered.

Corollary 4.7. The sequence (DAP ′
n,k)1≤k≤n is an Entringer family.

Denote by DAP ′′
n,k the set of π ∈ DAPn such that the term immediately after n is n+1−k,

if k ≤ n− 1, and DAP ′′
n,n the set of π ∈ DAPn such that πn = n.

Denote by ρ′ the mapping defined for π ∈ DAP ′′
n,k by ρ′(π) = πR.

Theorem 4.8. For all n ≥ 1 and k ∈ [n], the mapping ρ′ is a bijection between DAP ′
n,k and

DAP ′′
n,k.

Proof. For k ≤ n − 1, π ∈ DAPn has k just before 1 if and only if ρ′(π) has n + 1 − k just
after n. �

Corollary 4.9. The sequence (DAP ′′
n,k)1≤k≤n is an Entringer family.
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5. New Entringer families

5.1. Interpretations in G-words and R-words. A permutation π of I = {a1, . . . , an}
with a1 < · · · < an is called a G-word if

(i) π1 = an, πn = an−1,
(ii) π2 > πn−1 (if n ≥ 4).

Similarly, a permutation π of I is called an R-word if the previous condition (i) is verified
and if (ii) is replaced by

(ii’) π2 < πn−1 (if n ≥ 4).

A G-word (resp. an R-word) is said to be primitive if for any (i, j) ∈ [n]2, neither the word
πiπi+1 . . . πj nor the word πjπj−1 . . . πi is a G-word (resp. an R-word). Denote respectively by
Gn and Rn the set of primitive G-words on [n] and primitive R-words on [n]. For examples,
the G-words in Gn are:

6 3 4 2 1 5, 6 4 2 3 1 5, 6 2 3 4 1 5, 6 4 3 2 1 5, 6 2 4 3 1 5,

and the R-words in Rn are:

6 2 1 4 3 5, 6 2 3 1 4 5, 6 1 4 2 3 5, 6 3 1 2 4 5, 6 2 4 1 3 5.

These permutations were introduced in [Mar06] with the following problem. Let In be
the ideal of all algebraic relations on the slopes of all lines that can be formed by placing n
points in a plane. Then, under two orders, In is generated by monomials corresponding to
respectively primitive G-words and primitive R-words.

Martin and Wagner proved [MW09] that En is the number of primitive G-words (resp. the
number of primitive R-words) on [n + 2]. Actually, this result can be refined to Entringer
numbers, introducing a statistic on G-words.

Given a primitive G-word or an R-word π, define the route of π the sequence (αi) defined
with the following procedure:

• α1 = π1 = an, α2 = π2 = an−1,
• for k ≥ 2, if αk = i, then

αk+1 = max

[
{j ≤ i, πj < πi, πj, πj+1, . . . , πi−1, πi 6∈ {α1, . . . , αk}}
∪ {j ≤ i, πj > πi, πi, πi+1, . . . , πj−1, πj 6∈ {α1, . . . , αk}}

]

One can represent the route of a G-word or an R-word π as a graph with the vertices
π1, π2, . . . , πn ordered in a line, with only one path starting from n drawn upon the line
and going successively, if it’s possible, to n − 1, n − 2, . . . 1 without crossings (see Figure 3
for an example). Denote Gn,k (resp. Rn,k) the set of primitive G-words π on [n + 2] (resp.
primitive R-words π on [n+ 2]) such that αn+2 = n+ 1− k.

8 2 5 4 6 3 1 7

Figure 3. The route of the G-word π = 82546317
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Theorem 5.1. The sequences (Gn,k)1≤k≤n and (Rn,k)1≤k≤n are Entringer families.

Proof. Use the bijection δ between Gn and Tn present in [MW09]. For π a primitive G-word
on {a1, . . . , an+2 with a1 < · · · < an+2, denote by π′ the word π2 . . . πn+1. If π′ is a word
on {a1, . . . , an}, with a1 < · · · < an and an = π′k for k ∈ {1, . . . , n}, define T = α(π′)
as the tree with root a1, from which two subgraphs go out, that are α(π′1π

′
2 . . . π

′
k−1) and

α(π′k+1π
′
k+2 . . . π

′
n) (eventually one of them of both are empty). The tree δ(π) = α(π′) is a

0-1-2 increasing tree and the application δ is a bijection from Gn to Tn (see [MW09] for further
details).

Moreover, it is easy to see that the labels upon the main path of T = δ(π) are successively
(n+1− a1), (n+1− a2), . . . , (n+1− am), where a1 . . . , am (a1 > · · · > am) are the different
values that appear in the route of π. Thus, the end-point of the main path is k. Then, δ is a
bijection between Gn,k and Tn,k.

For example, one can construct the tree that corresponds with the G-word π = 82546317
with this construction :

8 2 5 4 6 3 1 7

⇒

6

5

4 2 1

3

1

2

3 5 6

4⇒

The analogue result for the R-word can be proved using the same method with the bijection
δ′ between Rn and Tn present in [MW09]. �

5.2. Interpretations in U-words.

Definition 5.2. A U-word of length n is a sequence u = (ui)1≤i≤n such that u1 = 1 and
∀i ∈ {2, . . . , n}, ui + ui−1 ≤ i. We denote by Un the set of U-words of length n.

For example, the U-words of length 4 are:

1 1 1 1, 1 1 1 2, 1 1 1 3, 1 1 2 1, 1 1 2 2.

Denote by Un,k the set of U-words (ui) ∈ Un such that un = n+ 1− k.

Theorem 5.3. The sequence (Un,k)1≤k≤n is an Entringer family.

Proof. For any finite set X, let #X denotes its cardinality. For π ∈ An,k, let γ(π) = wR,
where w = w1 . . . wn is the word defined by

wi =

{
#{j ≥ πi, j 6∈ {π1, π2, . . . , πi−1}}, if i is odd,
#{j ≤ πi, j 6∈ {π1, π2, . . . , πi−1}}, if i is even.

For example, if π = 635 1 7 2 4 ∈ A7,6, then the word w is computed as follows:

• {j ≥ 6} = {6, 7}, so w1 = 2,
• {j ≤ 3, j 6= 6} = {1, 2, 3}, so w2 = 3,
• {j ≥ 5, j 6∈ {3, 6}} = {5, 7}, so w3 = 2,
• {j ≤ 1, j 6∈ {3, 5, 6}} = {1}, so w4 = 1,
• {j ≥ 7, j 6∈ {1, 3, 5, 6}} = {7}, so w5 = 1,
• {j ≤ 2, j 6∈ {1, 3, 5, 6, 7}} = {2}, so w6 = 1,
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• {j ≥ 4, j 6∈ {1, 2, 3, 5, 6, 7}} = {4}, so w7 = 1,

Then, w = 232 1 1 1 1 and γ(π) = 1 1 1 1 2 3 2.
We show that the mapping γ is a bijection between An,k and Un,k. Following the construc-

tion, γ(π)n = w1 = n + 1 − π1 = n + 1 − k. Moreover, when γ(π)i = wn+1−i is written,
n − i elements have been read in π before ; thus the number of elements counted by γ(π)i
must be less than i. Moreover, the numbers counted by γ(π)i−1 and γ(π)i are in the n − i
elements that have not been read in π and are two disjoint sets since π is alternating. Thus
γ(π)i + γ(π)i−1 must be less than i. Finally, γ(π) ∈ Un,k.

Conversely, if u ∈ Un,k, the permutation π = γ−1(u) ∈ An,k can be found back with:

• π1 = n+ 1− un
• ∀n ≥ 1, π2i is the un−2i+1-st smallest element in [n] \ {π1, . . . , π2i−1}.
• ∀n ≥ 1, π2i+1 is the un−2i-st greatest element in [n] \ {π1, . . . , π2i}.

�

Denote by U ′
n,k the set of U-words (ui) ∈ Un such that un+1 + un = k.

Theorem 5.4. The sequence (U ′
n,k)1≤k≤n is an Entringer family.

Proof. There are two possibilities to prove the previous result.
The mapping γ also induces a bijection between A′

n,k and U ′
n,k. For π ∈ A

′
n,k, there exists

j ∈ [n] such that π ∈ An,j, so we can define v = γ(π) ∈ Un,j ⊂ Un. It suffices to show that
v ∈ U ′

n,k. In the construction of γ(π), vn is the number of elements that are greater than
π1, and vn−1 is the number of elements that are less than π2. Then vn = n + 1 − π1 and
vn−1 = π2, and vn−1 + vn = n+ 1− (π1 − π2) = k since π ∈ A′

n,k.

Actually, it is easy to construct a bijection α : Un,k −→ U
′
n,k. For u = (u1, . . . , un) ∈ Un,k,

let α(u) = (u1, u2, . . . , un−1, n + 1 − un−1 − un). Since u ∈ Un,k, un − un−1 ≤ n + 1, so we
have α(u) ∈ Un. Moreover, the last element α(u)n = n+1− un−1− (n+1− k) = k−un−1 =
k − α(u)n−1, so α(u) ∈ U

′
n,k. The mapping α is then clearly a bijection between Un,k and

U ′
n,k.

�

6. Concluding remarks

6.1. List of bijections for Entringer families. In what follows, we list all the twelve
interpretations for Entringer families along with the bijections dicussed in this paper:

(1) the permutation π ∈ An,k such that π1 = k,
(2) the encoding sequence ∆ ∈ Dn,k, obtained by ∆ = ψ(π), where ψ is the bijection

described in Section 2, then k is the first element read in ∆,
(3) the 0-1-2 increasing tree T ∈ Tn,k, obtained by T = ϕ(∆), where ϕ is the bijection

described in Section 3, then k is the end-point of the main path of T ,
(4) the 0-1-2 increasing tree T ′ ∈ T ′

n,k, obtained by T ′ = ϕ′(T ), where ϕ′ is the bijection

described in [KPP94, §6], then k − 1 is the father of n in T ′,
(5) the alternating permutation σ ∈ A′

n,k, obtained by σ = θ(π), where θ is the bijection
described in Subsection 4.2, then k = n+ 1− σ1 + σ2,

(6) the direct alternating permutation σ′ ∈ DAPn,k, obtained by σ′ = β(σ), where β is
the bijection described in Subsection 4.3, then k = n+ 1− |σ1 − σ2|,
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(7) the direct alternating permutation τ1 ∈ DAP
′
n,k, obtained by τ1 = ρ(π), where ρ is

the bijection described in Subsection 4.3, then k is the term immediately before 1 (or
n if τ1 starts with 1),

(8) the direct alternating permutation τ2 ∈ DAP
′′
n,k, obtained by τ2 = ρ′(τ2), where ρ

′ is
the bijection described in Subsection 4.3, then n+1−k is the term immediately after
n (or 1 if τ2 ends with n),

(9) the G-word π′ ∈ Gn,k, obtained by π′ = δ−1(T ), where δ is the bijection described in
Subsection 5.1, then n+ 1− k is the end of the route of π′,

(10) the R-word π′′ ∈ Rn,k, obtained by π′′ = (δ′)−1(T ), where δ′ is the bijection described
in Subsection 5.1, then n+ 1− k is the end of the route of π′,

(11) the sequence u ∈ Un,k, obtained by u = γ(π), where γ is the bijection described in
Subsection 5.2, then n+ 1− k is the last element of u,

(12) the sequence v ∈ U ′
n,k, obtained by v = γ(σ) = α(u), where α and γ are the bijections

described in Subsection 5.2, then k is the sum of the two last elements of v.

We summarize the bijections of this paper in the diagram of Figure 4, where at the left we
gather all the models in alternating permutations, and at the right we gather the models in
the increasing trees.

U ′
n,k

	

Un,k
α

oo Gn,k

δ

��

A′
n,k

β

��

γ

OO

An,k
ψ

''PPPPPPPPPPPPPP

θ
oo

γ

OO

ρ

��

Ψ
// Tn,k

ϕ′

// T ′
n,k

DAPn,k DAP ′
n,k

ρ′

��

Dn,k

ϕ

88ppppppppppppp

Rn,k

δ′

OO

DAP ′′
n,k

Figure 4. The bijections mentioned in the paper

6.2. Illustration for n = 4. In Figure 5, we summarize twelve interpretations for E4,k,
k ∈ {2, 3, 4}. In every column, the corresponding elements are described via the different
bijections mentioned in the paper. Moreover, in the table, boxes point out the statistic
k = π1 if π ∈ An,k and the corresponding statistics in the other models.

6.3. An open problem. Consider the so-called reduced tangent numbers tn = E2n+1/2
n.

Poupard [Pou89] proved that tn is the number of 0-2 increasing trees (i.e. the trees in Tn
such that every vertex has 0 or 2 children). However, it seems that there is no interpretation
à la André for tn in alternating permutations. Furthermore, let tn,k denote the number of
0-2 increasing trees such that the end-point of the main path is k, then the sequence (tn,k) is
obviously a refinement of tn as Entringer numbers for Euler numbers.

Let sn (resp. sn,k) be the number of split-pair arrangements of [n], that are arrangements
σ of the multi-set {0, 0, 1, 1, 2, 2, . . . , n, n} such that σ(1) = n (resp. σ(1) = σ(k + 1) = n)
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k 2 3 4

(1) π ∈ A4,k 2 1 4 3 3 2 4 1 3 1 4 2 4 2 3 1 4 1 3 2

(2) ∆ ∈ D4,k

( 2 , 1)∗

(4, 3)∗

( 3 , 2)∗

(4, 1)∗

( 3 , 2)

(2, 1)∗

(4, 3)∗

( 4 , 3)

(3, 2)∗

(4, 1)∗

( 4 , 3)

(3, 2)

(2, 1)∗

(4, 3)∗

(3) T ∈ T4,k 2
1

3
4

2
1

3 4
2
1

3
4 2

1

3
4

2
1

4
3

(4) T ′ ∈ T ′

4,k 2
1

3
4 2

1

3 4
2
1

4
3 2

1

3
4

2
1

3
4

(5) σ ∈ A′
4,k 4 1

︸︷︷︸

3

3 2 4 2
︸︷︷︸

2

3 1 3 1
︸︷︷︸

2

4 2 3 2
︸︷︷︸

1

4 1 2 1
︸︷︷︸

1

4 3

(6) σ′ ∈ DAP4,k 1 4
︸︷︷︸

3

2 3 1 3
︸︷︷︸

2

2 4 3 1
︸︷︷︸

2

4 2 2 3
︸︷︷︸

1

1 4 2 1
︸︷︷︸

1

4 3

(7) τ1 ∈ DAP
′
4,k 2 1 4 3 2 3 1 4 3 1 4 2 (4) 1 3 2 4 (4) 1 4 2 3

(8) τ2 ∈ DAP
′′
4,k 2 1 4 3 1 4 2 3 3 1 4 2 1 3 2 4 (1) 2 3 2 4 (1)

(9) π′ ∈ G4,k 6 3 4 2 1 5 6 4 2 3 1 5 6 2 3 4 1 5 6 4 3 2 1 5 6 2 4 3 1 5

(10) π′′ ∈ R4,k 6 2 1 4 3 5 6 2 3 1 4 5 6 1 4 2 3 5 6 3 1 2 4 5 6 2 4 1 3 5

(11) u ∈ U4,k 1 1 1 3 1 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1

(12) v ∈ U ′
4,k 1 1 1 1

︸︷︷︸

2

1 1 2 1
︸︷︷︸

3

1 1 1 2
︸︷︷︸

3

1 1 2 2
︸︷︷︸

4

1 1 1 3
︸︷︷︸

4

Figure 5. Twelve interpretations for E4,k, 1 ≤ k ≤ 4

and, between the two occurrences of i in σ (0 ≤ i ≤ n− 1), the number i+1 appears exactly
once.

Recently, Graham and Zang [GZ08] proved that for 1 ≤ k ≤ n, sn,k = tn,k. In particular,
sn = tn. There is no bijective proof between Poupard’s model and Graham and Zang’s model.
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(Jiang Zeng) Université de Lyon; Université Lyon 1; Institut Camille Jordan; UMR 5208 du

CNRS; 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

E-mail address: gelineau@math.univ-lyon1.fr


