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The aim of the paper is the construction and the analysis of nonlinear and non-separable multi-scale representations for multivariate functions. The proposed multi-scale representation is associated with a non-diagonal dilation matrix M. We show that the smoothness of a function can be characterized by the rate of decay of its multi-scale coefficients. We also study the stability of these representations, a key issue in the designing of adaptive algorithms.

Introduction

A multi-scale representation of an abstract object v (e.g. a function representing the grey level of an image) is defined as Mv := (v 0 , d 0 , d 1 , d 2 , • • • ), where v 0 is the coarsest approximation of v in some sense and d j , with j ≥ 0, are additional detail coefficients representing the fluctuations between two successive levels. Several strategies exist to build such representations: wavelet basis, lifting schemes and also the discrete framework of Harten [START_REF] Harten | Discrete Multiresolution Analysis and Generalized Wavelets[END_REF].

Using a wavelet basis, we compute (v 0 , d 0 , d 1 , d 2 , • • • ) through linear filtering and thus the multi-scale representation corresponds to a change of basis. Although wavelet bases are optimal for one-dimensional functions, this is no longer the case for multivariate objects such as images where the presence of singularities requires special treatments. The approximation property of wavelet bases and their use in image processing are now well understood (see [START_REF] Cohen | Numerical Analysis of Wavelet Method[END_REF] and [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] for details).

Overcoming this "curse of dimensionality" for wavelet basis was in the past decade the subject of active research. We mention here several strategies developed from the wavelets theory: the curvelets transforms [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities[END_REF], the directionlets transforms [START_REF] Do | The contourlet transform: an efficient directional multiresolution image representation[END_REF] and the bandelets transform [START_REF] Lepennec | Sparse Geometrical Image Approximation with Bandelets[END_REF]. Another approach proposed in [START_REF] Mateï | Méthodes multi-échelles non-linéaires-Applications au traitement d'images[END_REF] and studied in [START_REF] Arandiga | Approximation of piecewise smooth images by edge-adapted techniques[END_REF] uses the discrete framework of Harten, which allows a better treatment of singularities and consequently better approximation results.

The applications of all these methods to image processing are numerous: let us mention some of these works in [START_REF] Arandiga | Approximation of piecewise smooth images by edge-adapted techniques[END_REF], [1] and [START_REF] Chan | ENO-Wavelet Transforms for Piecewise Smooth Functions[END_REF]. In [START_REF] Arandiga | Approximation of piecewise smooth images by edge-adapted techniques[END_REF], the extension of univariate methods using tensor product representations is studied.

Although this extension is natural and simple, the results are not optimal. brought about the use of non-diagonal matrix in the multi-scale representation. Extending the results of [START_REF] Mateï | Smoothness Characterization and Stability in Nonlinear Multiscale Framework: Theoretical Results[END_REF], we characterize the smoothness of a function v belonging to some Besov spaces by means of the decay of the detail coefficients of its nonlinear and non-separable multiscale representation (section 4 and 5). We finally study the stability of this multi-scale representation in section 6 (for similar, one-dimensional results see [START_REF] Storozhenko | Jackson's Theorem in the spaces L p (R k ), 0 < p < 1[END_REF] and [START_REF] Mateï | Smoothness Characterization and Stability in Nonlinear Multiscale Framework: Theoretical Results[END_REF]).

Multi-scale Representations on R d

For the reader convenience, we recall the construction of linear multi-scale representations based on multiresolution analysis (MRA). To this end, let M be a d × d dilation matrix. Definition 1. A multiresolution analysis of V is a sequence (V j ) j∈Z of closed subspaces of V satisfying the following properties:

1. The subspaces are embedded: V j ⊂ V j+1 ; 2. f ∈ V j if and only if f (M.) ∈ V j+1 ;

3. ∪ j∈Z V j = V ; 4. ∩ j∈Z V j = {0}; 5. There exists a compactly supported function ϕ ∈ V 0 such that the family {ϕ(• -k)} k∈Z d forms a Riesz basis of V 0 .

The function ϕ is called the scaling function. Since V 0 ⊂ V 1 , ϕ satisfies the following equation:

ϕ = k∈Z d g k ϕ(M • -k), with k g k = m := | det(M)|.
(1)

To get the approximation of a given function v at level j, we consider a compactly supported function φ dual to ϕ (i.e. for all k, n ∈

Z d < φ(• - n), ϕ(• -k) >= δ n,k
, where δ n,k denotes the Kronecker symbol and < •, • > the inner product on V ), which also satisfies a scaling equation φ =

n∈Z d : n ∞≤P hn φ(M • -n), with k hk = m. (2) 
The approximation v j of v we consider is then obtained by projection of v on V j as follows:

v j = n∈Z d v j n ϕ(M j • -n). (3) 
where

v j n = v(x)m j φ(M j x -n)dx, n ∈ Z d . (4) 
Multi-scale representations based on specific choice for φ are commonly used in image processing and numerical analysis. We mention two of them: the first one is the point-values case obtained when φ is the Dirac distribution and the second one is the cell average case obtained when φ is the indicator function of some domain on R d . In the theoretical study that follows, we assume that the data are obtained through a projection of a functional v as in [START_REF] Chan | ENO-Wavelet Transforms for Piecewise Smooth Functions[END_REF].

A strategy which allows to build nonlinear multi-scale representations based on such a projection can be done in terms of a very general discrete framework using the concept of inter-scale operators introduced by A. Harten in [START_REF] Harten | Discrete Multiresolution Analysis and Generalized Wavelets[END_REF], which we now recall. Assume that we have two inter-scale discrete operators associated to this sequence: the projection operator P j j-1 and the prediction operator P j-1 j . The projection operator P j j-1 acts from fine to coarse levels, that is, v j-1 = P j j-1 v j . This operator is assumed to be linear.

The prediction operator P j-1 j acts from coarse to fine levels. It computes the 'approximation' vj of v j from the vector (v j-1 k ) k∈Z d which is associated to v j-1 ∈ V j-1 :

vj = P j-1 j v j-1 .
This operator may be nonlinear. Besides, we assume that these operators satisfy the consistency property:

P j j-1 P j-1 j = I, (5) 
i.e., the projection of vj coincides with v j-1 . Having defined the prediction error e j := v jvj , we obtain a redundant representation of vector v j :

v j = vj + e j . (6) 
By the consistency property, one has

P j j-1 e j = P j j-1 v j -P j j-1 vj = v j-1 -v j-1 = 0.
Hence, e j ∈ Ker(P j j-1 ). Using a basis of this kernel , we write the error e j in a non-redundant way and get the detail vector d j-1 . The data v j is thus completely equivalent to the data (v j-1 , d j-1 ). Iterating this process from the initial data v J , we obtain its nonlinear multi-scale representation

Mv J = (v 0 , d 0 , . . . , d J-1 ). (7) 
From here on, we assume the equivalence

e j ℓ p (Z d ) ∼ d j-1 ℓ p (Z d ) . (8) 
Since the details are computed adaptively, the underlying multi-scale representation is nonlinear and no more equivalent to a change of basis. Moreover, the discrete setting used here is not based on the study of scaling equations as for wavelet basis, which implies that the results of wavelet theory cannot be used directly in our analysis. Note also that the projection operator is completely characterized by the function φ. Namely, if we consider the discretization defined by (4) then, in view of (2), we may write the projection operator as follows:

v j-1 k = m -1 n ∞≤P hn v j M k+n = m -1 n-M k ∞≤P hn-Mk v j n := (P j j-1 v j ) k . ( 9 
)
To describe the prediction operator, for every w ∈ ℓ ∞ (Z d ) we consider a linear operator S(w) defined on ℓ ∞ (Z d ) by

(S(w)u) k := l∈Z d a k-M l (w)u l , k ∈ Z d . (10) 
Note that the coefficients a k (w) depend on w. We assume that S is local:

∃K > 0 such that a k-M l (w) = 0 if k -Ml ∞ > K (11) 
and that a k (w) is bounded independently of w:

∃C > 0 such that ∀w ∈ ℓ ∞ (Z d ) ∀k, l ∈ Z d |a k-M l (w)| < C. (12) 
Remark 2.1. From (12) it immediately follows that for any p ≥ 1 the norms S(w) ℓ p (Z d ) are bounded independently of w.

The quasi-linear prediction operator is then defined by

vj = P j-1 j v j-1 = S(v j-1 )v j-1 . ( 13 
)
If for all k, l ∈ Z d and all w ∈ ℓ ∞ (Z d ) we put a k-M l (w) = g k-M l , where g k-M l is defined by the scaling equation (1), we get the so-called linear prediction operator. In the general case, the prediction operator P j-1 j can be viewed as a perturbation of the linear prediction operator due to the consistency property; that is why we will call it a quasi-linear prediction operator. The operator-valued function which associates to any w an operator S(w) is called a quasi-linear prediction rule.

For what follows, we need to introduce the notion of polynomial reproduction for quasi-linear prediction rules. A polynomial q of degree N is defined as a linear combination q(x) = |n|≤N c n x n . Let us denote by Π the linear space of all polynomials, by Π N the linear space of all polynomials of degree N. With this in mind, we have the following definition for polynomial reproduction:

Definition 2.1. We will say that the quasi-linear prediction rule S(w) re-

produces polynomials of degree N if for any w ∈ ℓ ∞ (Z d ) and any u ∈ ℓ ∞ (Z d )
such that u k = p(k) ∀k ∈ Z d for some p ∈ Π N , we have:

(S(w)u) k = p(M -1 k) + q(k),
where deg(q) < deg(p). If q = 0, we say that the quasi-linear prediction rule S exactly reproduces polynomials of degree N.

Note that the property is required for any data w, and not only for w = u.

In the following, we will consider dilation matrices to define inter-scale operators. A dilation matrix is an invertible integer-valued matrix M satisfying lim n→∞ M -n = 0, and m := | det(M)|.

Improvement Brought about Non-separable Representations for

Image Compression

In this section , we illustrate on an example the potential interest of nonseparable representations for image compression. The interested reader may consult [START_REF] Chappelier | Oriented Wavelet for Image Compression and Denoising[END_REF] and [START_REF] Malassiotis | Optimal Biorthogonal Wavelet Decomposition of Wire-Frame Meshes Using Box Splines and its Application to the Hierarchical Coding of 3D Surfaces[END_REF] for further details. The dilation matrix we use here is the quincunx matrix defined by:

M =   -1 1 1 1   ,
whose coset vectors are ε 0 = (0, 0) T and ε 1 = (0, 1) T . We consider an interpolatory multi-scale representation which implies that v j k = v(M -j k) (i.e. φ is the Dirac function). By construction v j M k = v j-1 k , so we only need to predict v(M -j k + ε 1 ) . To do so, we define four polynomials of degree 1 (i.e. a + bx + cy) interpolating v on the following stencils:

V j,1 k = M -j+1 {k, k + e 1 , k + e 2 } V j,2 k = M -j+1 {k, k + e 1 , k + e 1 + e 2 } V j,3 k = M -j+1 {k + e 1 , k + e 2 , k + e 1 + e 2 } V j,4 k = M -j+1 {k, k + e 2 , k + e 1 + e 2 },
which in turn entails the following two predictions for v(M -j k + ε 1 ):

vj,1 M k+ε 1 = 1 2 (v j-1 k + v j-1 k+e 1 +e 2 ) (14) vj,2 M k+ε 1 = 1 2 (v j-1 k+e 1 + v j-1 k+e 2 ). ( 15 
)
We now show that to choose between the two predictions ( 14) and [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] appropriately improves the compression performance on natural images. The cost function we use to make the choice of stencil is as follows:

C j (k) = min(|v j-1 k+e 1 -v j-1 k+e 2 |, |v j-1 k -v j-1 k+e 1 +e 2 |).
When the minimum of C j (k) corresponds to the first (resp. second) argument, the prediction (15) (resp. ( 14)) is used. The motivation for the choice of such a cost function is the following: when an edge intersect the cell Q j-1 k defined by the vertices M -j+1 {k, k + e 1 , k + e 2 , k + e 1 + e 2 }, several cases may happen:

1. either the edge intersects [M -j+1 k, M -j+1 (k + e 1 + e 2 )] and [M -j+1 (k + e 1 ), M -j+1 (k + e 2 )
] in which case no direction is favored.

or the edge intersects [M

-j+1 k, M -j+1 (k + e 1 + e 2 )] or [M -j+1 (k + e 1 ), M -j+1 (k + e 2 )
], in which case the prediction operator favors the direction which is not intersected by the edge (this will lead to a better prediction).

When Q j-1 k
is not intersected by an edge, the gain between choosing one direction or the other is negligible and, in that case, we will apply predictions ( 14) and ( 15) successively. It thus remains to determine when a cell is intersected by an edge. An edge-cell is determined by the following condition:

argmin k ′ =k,k+e 1 +e 2 ,k-e 1 -e 2 |v j-1 k ′ -v j-1 k ′ +e 1 +e 2 | = 1 or argmin k ′ =k,k+e 1 -e 2 ,k-e 1 +e 2 |v j-1 k ′ +e 1 -v j-1 k ′ +e 2 | = 1 (C),
which means the first order differences are locally maximum in the direction of prediction. Then, to encode the representation, we use an adapted version to our context of the EZW (Embedded Zero-tree Wavelet) [START_REF] Shapiro | Embedded Image Coding Using Zerotrees of Wavelet Coefficients[END_REF]. To simplify, consider a N × N image with N = 2 J and J even, then d j (defined in [START_REF] Do | The contourlet transform: an efficient directional multiresolution image representation[END_REF]) is associated to a 2 j × 2 j+1 matrix of coefficients when j is odd and to a 2 j × 2 j matrix of coefficients when j is even. We denote by T j 1 the number of lines of the matrix associated to d j . We display the compression results for the 256 × 256 images of Figure 1 on Figure 2 (A) and (B). We apply nonlinear prediction only on edge-cells detected using (C) and only for the subspaces

(A) (B)
V j such that T j 1 ≥ T 1 .
It means that for instance, if we take T 1 = 64 and N = 256, we only predict nonlinearly the last finest four detail coefficients subspaces. A typical compression result is labeled by NS where NS stands for non-separable.

In any tested cases (i.e. for several T 1 ), using nonlinear predictions leads better compression results than the one based on a diagonal dilation matrix.

These encouraging results motivate a deeper study of nonlinear and nonseparable multi-scale representations which we now carry out. 

Notations and Generalities

We start by introducing some notations that will be used throughout the paper. Let us consider a multi-index µ = (µ 1 , µ 2 , . . . , µ d ) ∈ N d and a vector

x = (x 1 , x 2 , . . . , x d ) ∈ R d . We define |µ| = d i=1 µ i and x µ = d i=1 x i µ i . For two multi-indices m, µ ∈ N d we define   µ m   =   µ 1 m 1   • • •   µ d m d   .
For a fixed integer N ∈ N, we define

q N = #{µ, |µ| = N} (16) 
where #Q stands for the cardinal of the set Q. The space of bounded se-

quences is denoted by ℓ ∞ (Z d ) and u ℓ ∞ (Z d ) is the supremum of {|u k | : k ∈ Z d }.
As usual, let ℓ p (Z d ) be the Banach space of sequences u on Z d such that

u ℓ p (Z d ) < ∞, where u ℓ p (Z d ) := k∈Z d |u k | p 1 p for 1 ≤ p < ∞.
We denote by L p (R d ),the space of all measurable functions v such that

v L p (R d ) < ∞, where v L p (R d ) := R d |v(x)| p dx 1 p for 1 ≤ p < ∞, v L ∞ (R d ) := ess sup x∈R d |v(x)|.
Throughout the paper, the symbol • ∞ is the sup norm in Z d when applied either to a vector or a matrix. Let us recall that, for a function v, the finite difference of order N ∈ N, in the direction h ∈ R d is defined by:

∇ N h v(x) := N k=0 (-1) k   N k   v(x + kh).
and the mixed finite difference of order n = (n 1 , . . . , n d ) ∈ N d in the direction

h = (h 1 , . . . , h d ) ∈ R d by: ∇ n h v(x) := ∇ n 1 h 1 e 1 • . . . • ∇ n d h d e d v(x) = max(n 1 ,...,n d ) k 1 ,...,k d =0 (-1) |n|   n k   v(x + k • h),
where k

• h := d i=1
k i h i is the usual inner product while (e 1 , . . . , e d ) is the canonical basis on Z d . For any invertible matrix B we put

∇ n B v(x) := ∇ n 1 Be 1 • . . . • ∇ n d Be d v(x).
Similarly, we define

D µ v(x) = D µ 1 1 • • • D µ d d v(x)
, where D j is the differential operator with respect to the jth coordinate of the canonical basis. For a sequence (u p ) p∈Z d and a multi-index n, we will use the mixed finite differences of order n defined by the formulae

∇ n u : = ∇ n 1 e 1 ∇ n 2 e 2 • . . . • ∇ n d e d u,
where ∇ n i e i is defined recursively by

∇ n i e i u k = ∇ n i -1 e i u k+e i -∇ n i -1 e i u k .
Then, we put for n ∈ N:

∆ N u : = {∇ n u, |n| = N, n ∈ N d }.
We end this section with the following remark on notations: for two positive quantities A and B depending on a set of parameters, the relation A < ∼ B implies the existence of a positive constant C, independent of the parameters,

such that A ≤ CB. Also A ∼ B means A < ∼ B and B < ∼ A.

Besov Spaces

Let us recall the definition of Besov spaces. Let p, q ≥ 1, s be a positive real number and N be any integer such that N > s. The Besov space

B s p,q (R d ) consists of those functions v ∈ L p (R d ) satisfying (2 js ω N (v, 2 -j ) L p ) j≥0 ∈ ℓ q (Z d ),
where ω N (v, t) L p is the modulus of smoothness of v of order N ∈ N \ {0} in

L p (R d ): ω N (v, t) L p = sup h∈R d h 2 ≤t ∇ N h v L p (R d ) , t ≥ 0,
where . 2 is the Euclidean norm. The norm in B s p,q (R d ) is then given by

v B s p,q (R d ) := v L p (R d ) + (2 js ω N (v, 2 -j ) L p ) j≥0 ℓ q (Z d ) .
Let us now introduce a new modulus of smoothness ωN that uses mixed finite differences of order N:

ωN (v, t) L p = sup n∈N d |n|=N sup h∈R d h 2 ≤t ∇ n h v L p (R d ) , t > 0.
It is easy to see that for any [START_REF] Storozhenko | Jackson's Theorem in the spaces L p (R k ), 0 < p < 1[END_REF]. It implies that:

v in L p (R d ), ∇ N h v L p (R d ) < ∼ |n|=N ∇ n h v L p (R d ) , thus ω N (v, t) L p < ∼ ωN (v, t) L p . The inverse inequality ωN (v, t) L p < ∼ ω N (v, t) L p immediately follows from Lemma 4 of
v B s p,q (R d ) ∼ v L p + (2 js ωN (v, 2 -j ) L p ) j≥0 ℓ q (Z d ) .
Going further, there exists a family of equivalent norms on B s p,q (R d ).

Lemma 4.1.

For all σ > 1, v B s p,q (R d ) ∼ v L p (R d ) + (σ js ωN (v, σ -j ) L p ) j≥0 ℓ q (Z d ) .
Proof: Since σ > 1, for any j > 0 there exists j ′ > 0 such that 2 j ′ ≤ σ j ≤ 2 j ′ +1 . According to this, we have the inequalities

2 j ′ s ωN (v, 2 -j ′ -1 ) L p ≤ σ js ωN (v, σ -j ) L p ≤ 2 (j ′ +1)s ωN (v, 2 -j ′ ) L p ,
from which the norm equivalence follows.

Smoothness of Nonlinear Multi-scale Representations

In this section, we prove the equivalence between the norm of a function v belonging to B s p,q (R d ) and the discrete quantity computed using its detail coefficients d j arising from the nonlinear and non-separable multiscale representation. We show that the existing results in one dimension naturally extend to our framework due to the caracterization of Besov spaces by mixed finite differences.

Lower estimates of the Besov norm are associated to a so-called direct theorem while upper estimates are associated to a so-called inverse theorem.

Note that a similar technique was applied in [START_REF] Cohen | Numerical Analysis of Wavelet Method[END_REF] in a wavelet setting.

Direct Theorem

Let v be a function in some Besov space B s p,q (R d ) with p, q ≥ 1 and s > 0, (v 0 , (d j ) j≥0 ) be its nonlinear multi-scale representation. We now show under what conditions we are able to get a lower estimate of v B s p,q (R d ) using (v 0 , (d j ) j≥0 ). To prove such a result, we need to have first an estimate of the norm of the prediction error: Lemma 5.1. Assume that the quasi-linear prediction rule S(w) exactly reproduces polynomials of degree N -1 then the following estimation holds

e j ℓ p (Z d ) < ∼ |n|=N ∇ n v j ℓ p (Z d ) . (17) 
Proof: Let us compute

e j k (w) := v j k - k-M l ∞≤K a k-M l (w)v j-1 l .
Using [START_REF] Harten | Discrete Multiresolution Analysis and Generalized Wavelets[END_REF], we can write it down as

e j k (w) = v j k -m -1 l∈Z d k-M l ∞≤K a k-M l (w) n∈Z d n-M l ∞≤P hn-Ml v j n = v j k -m -1 n∈Z d k-n ∞≤K +P v j n l∈Z d k-M l ∞≤K a k-M l (w) hn-Ml = n∈F (k) b k,n (w)v j n , where b k,n (w) = l∈Z d k-M l ∞≤K a k-M l (w) hn-Ml , and F (k) = {n ∈ Z d : n - k ∞ ≤ P + K} is a finite set for any given k. For any k ∈ Z d let us define a vector b k (w) := (b k,n (w)) n∈F (k)
. By hypothesis, e j (w) = 0 if there exists p ∈ Π N ′ , 0 ≤ N ′ < N such that v k = p(k). Consequently, for any q ∈ Z d , |q| < N, b k (w) is orthogonal to any polynomial sequence associated to the polynomial l q = l q 1 1 • . . . • l q d d , thus it can be written in terms of a basis of the space orthogonal to the space spanned by these vectors. According to [START_REF] Jia | Characterization of Smoothness of Multivariate Refinable Fucntions in Sobolev Spaces[END_REF], Theorem 4.3, we can take {∇ µ δ •-l , |µ| = N, l ∈ Z d } as a basis of this space. By denoting c µ l (w) the coordinates of b k (w) in this basis, we may write:

b k,n (w) = |µ|=N l∈Z d c µ l (w)∇ µ δ n-l
and taking w = v j-1 we get

e j k := e j k (v j-1 ) = n∈F (k) |µ|=N l∈Z d c µ l (v j-1 )∇ µ δ n-l v j n = n∈F (k) |µ|=N c µ n (v j-1 )∇ µ v j n . (18) 
Finally, we use [START_REF] Jia | Characterization of Smoothness of Multivariate Refinable Fucntions in Sobolev Spaces[END_REF] to conclude that the coefficients b k,n (v j-1 ) and c µ l (v j-1 ) are bounded independently of k, n and w, and (17) follows from [START_REF] Mateï | Smoothness of Nonlinear and Nonseparable Subdivision Schemes[END_REF].

In what follows, we will use the definition of isotropic matrices: Definition 5.1. A matrix M is called isotropic if it is similar to the diagonal matrix diag(σ 1 , . . . , σ d ), i.e. there exists an invertible matrix Λ such that

M = Λ -1 diag(σ 1 , . . . , σ d )Λ, ( 19 
)
with σ 1 , . . . , σ d being the eigenvalues of matrix M, σ

:= |σ 1 | = . . . = |σ d | = m 1 d .
Moreover, for any given norm in R d there exist constants C 1 , C 2 > 0 such that for any integer n and for any

v ∈ R d C 1 m n d v ≤ M n v ≤ C 2 m n d v .
Lemma 17 enables us to compute the lower estimate:

Theorem 5.1. If for p, q ≥ 1 and some positive s, v belongs to B s p,q (R d ), if the quasi-linear prediction rule exactly reproduces polynomials of degree N -1 with N > s, if the matrix M is isotropic and if the equivalence (8) is satisfied, then

v 0 ℓ p (Z d ) + (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) < ∼ v B s p,q (R d ) . ( 20 
)
Proof: Using the Hölder inequality and the fact that φ is compactly supported, we first obtain

v 0 ℓ p (Z d ) = ( v, φ(• -k) ) k∈Z d ℓ p (Z d ) < ∼ ( v L p (Supp( φ(•-k))) ) k∈Z d ℓ p (Z d ) < ∼ v L p (R d ) .
Let us then consider a quasi-linear prediction rule which exactly repro-

duces polynomials of degree N -1. Since e j . ℓ p (Z d ) ∼ d j-1 . ℓ p (Z d ) , by Lemma 5.1 we get (m (s/d-1/p)j (d j . ) ℓ p (Z d ) ) j≥0 ℓ q (Z d ) < ∼ (m (s/d-1/p)j |n|=N (∇ n v j . ) ℓ p (Z d ) ) j≥0 ℓ q (Z d ) .
We have successively

|n|=N ∇ n v j ℓ p (Z d ) = |n|=N ∇ n ( v, m j φ(M j • -k) ) k∈Z d ℓ p (Z d ) = |n|=N ( ∇ n M -j v, m j φ(M j • -k) ) k∈Z d ℓ p (Z d ) < ∼ m j/p |n|=N ( ∇ n M -j v L p (Supp( φ(M j •-k))) ) k∈Z d ℓ p (Z d ) < ∼ m j/p |n|=N ∇ n M -j v L p (R d ) < ∼ m j/p ωN (v, C 2 m -j/d ) L p ,
since M is isotropic. Furthermore, for any integer C > 0 and any t > 0,

ωN (v, Ct) L p ≤ C ωN (v, t) L p . Thus, |n|=N ∇ n v j ℓ p (Z d ) < ∼ m j/p ωN (v, m -j/d ) L p ,
which implies (20).

Inverse Theorems

We consider the sequence (v 0 , (d j ) j≥0 ) and we study the convergence of the reconstruction process:

v j = S(v j-1 )v j-1 + Ed j-1
, throughout the study of the limit of the sequence of functions

v j (x) = k∈Z d v j k ϕ(M j x -k), (21) 
where ϕ is defined in (1). More precisely, we show that under certain conditions on the sequence (v 0 , (d j ) j≥0 ) and on ϕ, v j converges to some function v belonging to a Besov space.

For that purpose, we establish that if the quasi-linear prediction rule S(w)

reproduces polynomials of degree N -1 then all the mixed finite differences of order lesser than N can be defined using difference operators:

Proposition 5.1. Let S(w) be a quasi-linear prediction rule reproducing polynomials of degree N -1. Then for any l, 0 < l ≤ N there exists a difference operator S l such that:

∆ l S(w)u := S l (w)∆ l u, for all u, w ∈ ℓ ∞ (Z d ).
The proof is available in [START_REF] Mateï | Smoothness of Nonlinear and Nonseparable Subdivision Schemes[END_REF], Proposition 1. In contrast to the tensor product case studied in [START_REF] Mateï | Smoothness Characterization and Stability in Nonlinear Multiscale Framework: Theoretical Results[END_REF], the operator S l (w) is multi-dimensional and is defined from (ℓ ∞ (Z d )) q l onto (ℓ ∞ (Z d )) q l , q l = #{µ, |µ| = l}, and cannot be reduced to a set of difference operators in some given directions.

The inverse theorem proved in this section is based on the contractivity of the difference operators. This is done by studying the joint spectral radius, which we now define:

Definition 5.2. Let us consider a set of difference operators (S l ) l≥0 , defined in Proposition 5.1 with S 0 := S. The joint spectral radius in (ℓ p (Z d )) q l of S l is given by

ρ p (S l ) := inf j>0 sup (w 0 ,••• ,w j-1 )∈(ℓ p (Z d )) j S l (w j-1 ) • . . . • S l (w 0 ) 1/j (ℓ p (Z d )) q l →(ℓ p (Z d )) q l = inf j>0 {ρ, S l (w j-1 ) • • • S l (w 0 )∆ l v (ℓ p (Z d )) q l < ∼ ρ j ∆ l v (ℓ p (Z d )) q l , ∀v ∈ ℓ p (Z d )}.
Remark 5.1. When v j = S(v j-1 )v j-1 , for all j > 0 we may write:

∆ l S(v j )v j = S l (S(v j-1 )v j-1 )∆ l v j = S l (S(v j-1 )v j-1 )S l (v j-1 )∆ l v j-1 = • • • := (S l ) j v 0 .
This naturally leads to another definition of the joint spectral radius by putting w j = S j v 0 in the above definition. In [START_REF] Dyn | Univariate Subdivision and Multi-Scale Transforms: the Nonlinear Case[END_REF], the following definition was introduced to study the convergence and stability of one-dimensional power-P scheme. In that context, the joint spectral radius in

(ℓ p (Z d )) q l of S l is changed into ρp (S l ) := inf j>0 (S l ) j 1/j (ℓ p (Z d )) q l →(ℓ p (Z d )) q l = inf j>0 {ρ, ∆ l S j v (ℓ p (Z d )) q l < ∼ ρ j ∆ l v (ℓ p (Z d )) q l , ∀v ∈ ℓ p (Z d )}.
Since our prediction operator is quasi-linear, the definition (5.2) is more appropriate.

Before we prove the inverse theorem, we need to establish some extensions to the non-separable case of results obtained in [START_REF] Mateï | Smoothness Characterization and Stability in Nonlinear Multiscale Framework: Theoretical Results[END_REF]:

Lemma 5.2. Let S(w) be a quasi-linear prediction rule that exactly reproduces polynomials of degree N -1. Then,

v j+1 -v j L p (R d ) < ∼ m -j/p ∆ N v j (ℓ p (Z d )) q N + d j ℓ p (Z d ) . ( 22 
)
Moreover, for any ρ p (S N ) < ρ < m 1/p there exists an n such that,

m -j/p ∆ N v j (ℓ p (Z d )) q N < ∼ δ j v 0 ℓ p (Z d ) + t-1 r=0 δ nr l=j-rn l=j-(r+1)n+1 m -l/p d l-1 ℓ p (Z d ) (23) 
where δ = ρm -1/p and t = ⌊j/n⌋.

Proof: Using the definition of functions v j (x) and the scaling equation (1), we get

v j+1 (x) -v j (x) = k v j+1 k ϕ(M j+1 x -k) - k v j k ϕ(M j x -k) = k ((S(v j )v j ) k + d j k )ϕ(M j+1 x -k) - k v j k l g l-M k ϕ(M j+1 x -l) = k ((S(v j )v j ) k - l g k-M l v j l )ϕ(M j+1 x -k) + k d j k ϕ(M j+1 x -k).
If S(w) exactly reproduces polynomials of degree N -1 for all w, then having in mind that

Sv j := l g k-M l v j l , (24) 
is the linear prediction which exactly reproduces polynomials of degree N -1 and using the same arguments as in Lemma 5.1, we get

k ((S(v j )v j ) k -Sv j k )ϕ(M j+1 x-k) L p (R d ) < ∼ m -j/p ∆ N v j (ℓ p (Z d )) q N . ( 25 
)
The proof of ( 22) is thus complete. To prove (23), we note that for any ρ p (S N ) < ρ < m 1/p , there exists an n such that for all v:

(S N ) n v (ℓ p (Z d )) q N ≤ ρ n v (ℓ p (Z d )) q N . (26) 
Using the boundedness of the operator S N , we obtain:

∆ N v n (ℓ p (Z d )) q N ≤ S N ∆ N v n-1 (ℓ p (Z d )) q N + ∆ N d n-1 (ℓ p (Z d )) q N ≤ (S N ) n ∆ N v 0 (ℓ p (Z d )) q N + D n-1 l=0 d l ℓ p (Z d ) ≤ ρ n ∆ N v 0 (ℓ p (Z d )) q N + D n-1 l=0 d l ℓ p (Z d )
Then for any j, define t := ⌊j/n⌋, after t iterations of the above inequality, we get:

∆ N v j (ℓ p (Z d )) q N ≤ ρ nt ∆ N v j-nt (ℓ p (Z d )) q N + D t-1 r=0 ρ nr (r+1)n-1 l=rn d j-1-l ℓ p (Z d )
Then putting as in [START_REF] Harizanov | Stability of Nonlinear Subdivision Multiscale Transform[END_REF], δ = ρm -1/p , and

A j = m -j/p ∆ N v j (ℓ p (Z d ))
r d N , we get:

A j ≤ δ nt A j-nt + D t-1 r=0 δ nr l=(r+1)n-1 l=nr m -(j-l)/p d j-1-l ℓ p (Z d )
Then, we may write, due the boundedness of S (k) , for j ′ < n:

A j ′ < ∼ v 0 ℓ p (Z d ) + j ′ l=1 m -l/p d l-1 ℓ p (Z d )
which finally leads to:

m -j/p ∆ N v j (ℓ p (Z d )) r d N < ∼ δ j v 0 ℓ p (Z d ) + t-1 r=0 δ nr l=j-nr l=j-n(r+1)+1 m -l/p d l-1 ℓ p (Z d )
By abusing a little bit terminology, we say that ϕ exactly reproduces polynomials if the underlying subdivision scheme does. With this in mind, we are ready to state the inverse theorems: the first one deals with L p convergence under the main hypothesis ρ p (S 1 ) < m 1/p , while the second deals with the convergence in B s p,q (R d ) under the main hypothesis ρ p (S N ) < m 1/p-s/d for some N > 1 and N -1 ≤ s < N.

Theorem 5.2. Let S(w) be a quasi-linear prediction rule reproducing the constants. Assume that ρ p (S 1 ) < m 1/p , if

v 0 ℓ p (Z d ) + j≥0 m -j/p d j ℓ p (Z d ) < ∞, then the limit function v belongs to L p (R d ) and v L p (R d ) ≤ v 0 ℓ p (Z d ) + j≥0 m -j/p d j ℓ p (Z d ) . (27) 
Proof: From estimates ( 22) and ( 23), for any ρ p (S 1 ) < ρ < m 1/p there exists an n such that:

v j+1 -v j L p (R d ) < ∼ δ j v 0 ℓ p (Z d ) + s r=0 δ nr l=j-nr l=j-n(r+1)+1 m -l/p d l-1 ℓ p (Z d ) + m -j/p d j ℓ p (Z d ) ,
from which we deduce that:

v L p (R d ) ≤ v 0 L p (R d ) + j≥0 v j+1 -v j L p (R d ) (28) < ∼ v 0 ℓ p (Z d ) + j≥0 δ j v 0 ℓ p (Z d ) + t-1 r=0 δ nr l=j-nr l=j-n(r+1)+1 m -l/p d l-1 ℓ p (Z d ) + m -j/p d j ℓ p (Z d ) < ∼ v 0 ℓ p (Z d ) + ∞ t=0 n-1 q=0 t r ′ =1 δ n(t-r ′ ) l=r ′ n+q l=r ′ n-n+q+1 m -l/p d l-1 ℓ p (Z d ) + j>0 m -j/p d j ℓ p (Z d ) < ∼ v 0 ℓ p (Z d ) + ∞ r ′ =1 t>r ′ δ n(t-r ′ ) n-1 q=0 l=r ′ n+q l=r ′ n-n+q+1 m -l/p d l-1 ℓ p (Z d ) + j>0 m -j/p d j ℓ p (Z d ) < ∼ v 0 ℓ p (Z d ) + ∞ j>0 m -j/p d j-1 ℓ p (Z d ) (29)
The last equality being obtained remarking that t>r ′ δ n(t-r ′ ) = 1 1-δ n . This proves (27). Now, we extend this result to the case of Besov spaces: Theorem 5.3. Let S(w) be a quasi-linear prediction rule exactly reproducing polynomials of degree N -1 and let ϕ exactly reproduce polynomials of degree

N -1. Assume that ρ p (S N ) < m 1/p-s/d for some N > s ≥ N -1. If (v 0 , d 0 , d 1 , . . .) are such that v 0 ℓ p (Z d ) + (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) < ∞,
the limit function v belongs to B s p,q (R d ) and

v B s p,q (R d ) < ∼ v 0 ℓ p (Z d ) + (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) . ( 30 
)
Proof: First, by Hölder inequality for any q, q ′ > 0,

1 q + 1 q ′ = 1, it holds that l≥0 d l ℓ p (Z d ) m -l/p ≤ (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) (m -js/d ) j≥0 ℓ q ′ (R d ) < ∼ (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) ,
and finally,

v L p (R d ) < ∼ v 0 ℓ p (Z d ) + (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) .
It remains to evaluate the semi-norm |v| B s p,q (R d ) := (m js/d ωN (v, m -j/d ) L p ) j≥0 ℓ q (Z d ) . For each j ≥ 0, we have

ωN (v, m -j/d ) L p ≤ ωN (v -v j , m -j/d ) L p + ωN (v j , m -j/d ) L p . (31) 
Note that the property (23) can be extended to the case where ρ p (S N ) < m 1/p-s/d . Making the same kind of computation as in the proof of (23), one can prove that for any ρ p (S N ) < ρ < m 1/p-s/d there exists an n such that:

m -j(1/p-s/d) ∆ N v j (ℓ p (Z d )) q N < ∼ δ j v 0 ℓ p (Z d ) + t-1 r=0 δ nr l=j-rn l=j-(r+1)n+1 m -l(1/p-s/d) d l-1 ℓ p (Z d )
where δ := ρm -1/p+s/d and t = ⌊j/n⌋. Then, we can deduce that:

∆ N v j (ℓ p (Z d )) q N < ∼ ρ j ( v 0 ℓ p (Z d ) + δ -j s-1 r=0 δ nr l=j-rn l=j-(r+1)n+1 m -l(1/p-s/d) d l-1 ℓ p (Z d ) ) < ∼ ρ j ( v 0 ℓ p (Z d ) + s-1 r=0 δ -n+1 l=j-rn l=j-(r+1)n+1 ρ -l d l-1 ℓ p (Z d ) ) < ∼ ρ j ( v 0 ℓ p (Z d ) + j l=0 ρ -l d l-1 ℓ p (Z d ) ) (32) 
For the first term on the right hand side of (31), one has using (32):

ωN (v -v j , m -j/d ) L p < ∼ l≥j v l+1 -v l L p (R d ) < ∼ l≥j m -l/p ( ∆ N v l (ℓ p (Z d )) q N + d l ℓ p (Z d ) ) < ∼ l≥j m -l/p ρ l v 0 ℓ p (Z d ) + l k=0 ρ l-k d k ℓ p (Z d ) .
For the first term, choosing since ρ < m 1/p , we have

l≥j m -l/p ρ l v 0 ℓ p (Z d ) ∼ m -j/p ρ j v 0 ℓ p (Z d ) .
For the second term, we get

l≥j m -l/p l k=0 ρ l-k d k ℓ p (Z d ) = m -j/p j k=0 ρ j-k d k ℓ p (Z d ) + l>j m -l/p l k=0 ρ l-k d k ℓ p (Z d ) < ∼ m -j/p j k=0 ρ j-k d k ℓ p (Z d ) + k≥0 l>max(k,j) m -l/p ρ l-k d k ℓ p (Z d ) < ∼ m -j/p j k=0 ρ j-k d k ℓ p (Z d ) + k≥0 d k ℓ p (Z d ) ρ -k l>max(k,j) ρ l m -l/p < ∼ m -j/p j k=0 ρ j-k d k ℓ p (Z d ) + k>j m -k/p d k ℓ p (Z d ) .
Similarly, for the second term on the right hand side of (31), one has

ωN (v j , m -j/d ) L p < ∼ v j L p (R d ) < ∼ v L p (R d )
The estimate of the semi-norm |v| B s p,q is then reduced to the estimates of (m js/d a j ) j≥0 ℓ q (Z d ) , (m js/d b j ) j≥0 ℓ q (Z d ) and (m js/d c j ) j≥0 ℓ q (Z d ) , with

a j := m -j/p ρ j v 0 ℓ p (Z d ) , b j := m -j/p ρ j j l=0 ρ -l d l ℓ p (Z d ) , c j := l>j m -l/p d l ℓ p (Z d ) .
Recalling δ = m s/d-1/p ρ < 1, we write:

(σ js a j ) j≥0 ℓ q (Z d ) = v 0 ℓ p (Z d ) (δ j ) j≥0 ℓ q (Z d ) < ∼ v 0 ℓ p (Z d ) . (33) 
In order to estimate (m js/d b j ) j≥0 ℓ q (Z d ) , we rewrite it in the following form:

(m js/d b j ) j≥0 ℓ q (Z d ) = (m j(s/d-1/p) ρ j j l=0 ρ -l d l ℓ p ) j≥0 ℓ q (Z d ) = (δ j j l=0 δ -l m (s/d-1/p)l d l ℓ p (Z d ) ) j≥0 ℓ q (Z d ) .
We, now, make use of the following discrete Hardy inequality: if 0 < δ < 1, then

(δ j j l=0 δ -l x l ) j≥0 ℓ q (Z d ) < ∼ (x j ) j≥0 ℓ q (Z d ) . Applying it to x l = m (s/d-1/p)l d l ℓ p (Z d ) yields (m js/d b j ) j≥0 ℓ q (Z d ) < ∼ (m (s/d-1/p)j (d j k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) . (34) 
To estimate (m js/d c j ) j≥0 ℓ q (Z d ) , we rewrite it as follows

(m js/d c j ) j≥0 ℓ q (Z d ) = m js/d l>j m -ls/d m l(s/d-1/p) (d l k ) ℓ p (Z d ) ℓ q (Z d )
Now by Lemma 6.1, relation (41) and by then using the same kind of argument as in (28), one has:

v -ṽ L p (R d ) ≤ j>0 u j -ũj L p (R d ) + v 0 -ṽ0 L p (R d ) ≤ j>0 m -j/p ∆ 1 (v j-1 -ṽj-1 ) (ℓ p (Z d )) d + d j-1 -dj-1 ℓ p (Z d ) + v 0 -ṽ0 ℓ p (Z d ) ≤ v 0 -ṽ0 ℓ p (Z d ) + j l=0 m -l/p d l-1 -dl-1 ℓ p (Z d ) .
In view of the inverse inequality (30), it seems natural to seek an inequal-

ity of type v-ṽ B s p,q (R d ) < ∼ v 0 -ṽ 0 ℓ p (Z d ) + (m (s/d-1/p)j d j . -dj . ℓ p (Z d ) ) j≥0 ℓ q (Z d ) . (42) 
We now prove a stability theorem in Besov space B s p,q (R d ) in the following theorem: Theorem 6.2. Let S(w) be a quasi-linear prediction rule which exactly reproduces polynomials of degree N -1. Assume that v j and ṽj converge to v and ṽ in B s p,q (R d ) respectively and that there exist ρ < m 1/p-s/d and an n such that:

(S N ) n w -(S N ) n v (ℓ p (Z d )) q N ≤ ρ n w -v (ℓ p (Z d )) q N ∀v, w ∈ (ℓ p (Z d )) q N . (43)
Then, we get that:

v-ṽ B s p,q (R d ) < ∼ v 0 -ṽ 0 ℓ p (Z d ) + (m -j(1/p-s/d) (d j k -dj k ) k∈Z d ℓ p (Z d ) ) j≥0 ℓ q (Z d ) . (44) 
Remark 6.1. We shall note that a similar study was proposed in the onedimensional case to study the stability of the multiscale representation based on so-called r-shift invariant subdivision operators [START_REF] Dyn | Univariate Subdivision and Multi-Scale Transforms: the Nonlinear Case[END_REF]. In that paper, the stability is obtained when ρ p (S N ) < 1, while in our approach the condition for the stability is not directly related to the joint spectral radius of S N .

Proof: Using the same technique as in the proof of Theorem 6.1, replacing S 1 by S N and remarking that ρ of hypothesis ( 44) is smaller than m 1/p , we immediately get:

v -ṽ L p < ∼ v 0 -ṽ0 ℓ p (Z d ) + l≥0 m -l/p d l -dl ℓ p (Z d ) , .
from which we deduce that:

vṽ L p (R d ) ≤ v 0 -ṽ0 ℓ p (Z d ) + (m (s/d-1/p)j d jdj ℓ p (Z d ) ) j≥0 ℓ q (Z d ) (m -sj/d ) j≥0 ℓ q ′ (Z d ) < ∼ v 0 -ṽ0 ℓ p (Z d ) + (m (s/d-1/p)j d jdj ℓ p (Z d ) ) j≥0 ℓ q (Z d ) ,

It remains to estimate the semi-norm |w| B s p,q (R d ) := (m js/d ω N (w, m -j/d ) L p ) j≥0 ℓ q (Z d ) ,

for w := vṽ. For every j ≥ 0, denoting w j = v jṽj , we have ω N (w, m -j/d ) L p ≤ ω N (w -w j , m -j/d ) L p + ω N (w j , m -j/d ) L p .

For the first term, using successively Lemma 6.1, hypothesis (44), and then making the same kind of computation as in (32)one has ω N (w -w j , m -j/d ) L p < ∼ Since ρ < m 1/p , then for the first term we have l≥j m -l/p ρ l v 0 -ṽ0 ℓ p (Z d ) ∼ m -j/p ρ j v 0 -ṽ0 ℓ p (Z d ) .

For the second term, we get The second term in (45) is evaluated as follows:

ω N (v j -ṽj , m -j/d ) L p < ∼ v j -ṽj L p (R d )
< ∼ m -j/p ρ j v 0 -ṽ0 ℓ p (Z d ) + m -j/p j l=0 ρ j-l d ldl ℓ p (Z d ) .

The second term on the right hand side of (45), can be evaluated the same way. We have thus reduced the estimate of |w| B s p,q (R d ) , to the estimates of the discrete norms (m js/d a j ) j≥0 ℓ q (Z d ) , and (m js/d b j ) j≥0 ℓ q (Z d ) , where the sequences are defined as follows: Note that this quantities are identical to that obtained in the convergence theorem replacing v l by v lṽl and d l by d ldl , so that the end of the proof is identical.

Conclusion

In this paper, we have presented a new kind of nonlinear and non-separable multi-scale representations based on the use of non-diagonal dilation matrices. We have shown that the non-linear scheme proposed by Harten naturally extends in that context and we have shown convergence and stability in L p and Besov spaces. The key idea is to use the characterization of Besov spaces by means of mixed finite differences and then to study the joint spectral radii of these difference operators. Because, these operators involve all potential mixed finite differences their study cannot be reduced to that of one-dimensional difference operators. Future work should involve the study of multi-scale representations which are associated with more general prediction operators which do not necessarily exactly reproduce polynomials.
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 1 Figure 1: (A): a 256 × 256 Lena image, (B): a 256 × 256 peppers image

Figure 2 :

 2 Figure 2: (A): linear prediction (solid line) and NS (non-separable) prediction on edge-cells computed using (C) and for varying T 1 for the image of Lena, (B):idem but for the image of peppers

l≥jw

  l+1 -w l L p (R d ) < ∼ l≥j m -l/p ∆ N (v lṽl ) (ℓ p (Z d )) q N + d ldl ℓ p (Z d ) < ∼ l≥j m -l/p ρ l v 0 -ṽ0 ℓ p (Z d ) + l k=0 ρ l-k d kdk ℓ p (Z d ) .

  k d kdk ℓ p (Z d ) = = m -j/p j k=0 ρ j-k d kdk ℓ p (Z d ) + l>j m -l/p l k=0 ρ l-k d kdk ℓ p (Z d ) < ∼ m -j/p j k=0 ρ j-k d kdk ℓ p (Z d ) + k≥0 l≥max(k,j+1) m -l/p ρ (l-k) d kdk ℓ p (Z d ) < ∼ m -j/p j k=0 ρ j-k d kdk ℓ p (Z d ) + k>j m -k/p d kdk ℓ p (Z d ) .

a

  j := ρ j m -j/p v 0 -ṽ0 ℓ p (Z d ) , b j := m -j/p j l=0 ρ j-l d ldl ℓ p (Z d ) , c j := l>j m -l/p d ldl ℓ p (Z d ) .

and make use of another discrete Hardy inequality: if β > 1, then (β j l>j β -l y l ) j≥0 ℓ q (Z d ) < ∼ (y j ) j≥0 ℓ q (Z d ) .

Taking y l = m l(s/d-1/p) d l ℓ p (Z d ) , we obtain, since s > N -1,

Then (30) follows by combining (33), ( 34) and (35).

Stability of the Multi-Scale Representation

Here, we consider two data sets (v 0 , d 0 , d 1 , . . .) and (ṽ 0 , d0 , d1 , . . .) corresponding to two reconstruction processes

and ṽj = S(ṽ j-1 )ṽ j-1 + ẽj = S(ṽ j-1 )ṽ j-1

where E is the matrix corresponding to the basis of the kernel of the projection operator. In that context, v is the limit of v j (x) = k∈Z d v j k ϕ(M j x -k) ( and similarly for ṽ).

To study the stability of the multi-scale representation in L p (R d ), we need the following Lemma: Lemma 6.1. Let S(w) be a quasi-linear prediction rule that exactly reproduces polynomials of degree N -1. Then, putting u j = v j -v j-1 and ũj = ṽjṽj-1 we get

Proof: By definition of the linear prediction operator S, see (24), we can write u jũj L p (R d ) ≤ m -j/p (S(v j-1 ) -S)v j-1 + d j-1 -((S(ṽ j-1 ) -S)ṽ j-1 + dj-1 )

Now, we study the stability of the multi-scale representation in

which is stated in the following result: Theorem 6.1. Let S(w) be a quasi-linear prediction rule that reproduces the constants and suppose that there exist a ρ < m 1/p and and an n such that

Assume that v j and ṽj converge to v and ṽ in L p (R d ) then we have:

Proof: First remark that due to the hypothesis (39) and the fact that the fact that S 1 is bounded, we may write that

Then using the same kind of arguments as in the proof of (23), we can write:

m -l/p d l-1 -dl-1 ℓ p (Z d ) .

(4