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Abstract The aim of the paper is the construction and the analysis of nonlinear

and non-separable multi-scale representations for multivariate functions. The described

multi-scale representation is associated with an isotropic dilation matrix. We show that

the smoothness of a function can be characterized by the rate of decay of its multi-

scale coefficients. We also study the stability of these representations, a key issue in

the designing of adaptive algorithms.
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1 Introduction

A multi-scale representation of an abstract object v (e.g. a function representing the

grey level of an image) is defined as Mv := (v0, d0, d1, d2, · · · ), where v0 is the coarsest

approximation of v in some sense and dj , with j ≥ 0, are additional detail coefficients

representing the fluctuations between two successive levels.

Several strategies exist to build such representations: wavelet basis, lifting schemes

and also the discrete framework of Harten [8]. Using a wavelet basis, we compute

(v0, d0, d1, d2, · · · ) through linear filtering and thus the multi-scale representation cor-

responds to a change of basis. Although wavelet bases are optimal for one-dimensional
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functions, this is no longer the case for multivariate objects such as images where the

presence of singularities requires special treatments. Nevertheless, the approximation

property of wavelet bases and their use in image processing are now well understood

(see [5] and [12] for details).

Overcoming this ”course of dimensionality” for wavelet basis was in the past decade

the subject of active research. We mention here several strategies developed from the

wavelets theory: the curvelets transforms [3], the directionlets transforms [6] and the

bandelets transform [11]. Another approach proposed in [13] and studied in [2] uses

the discrete framework of Harten, which allows a better treatment of singularities and

consequently better approximation results.

The applications of all these methods to image processing are numerous: let us

mention some of these works in [2], [1] and [4]. In [2], the extension of univariate

methods using tensor product representations is studied. Although this extension is

natural and simple the results are not optimal.

We propose in the present paper a nonlinear multi-scale representations based

on the general framework of A. Harten (see [8] and [9]). Our representation is non-

separable and is associated to an isotropic dilation matrix M . Since the details are

computed adaptively, the multi-scale transform is completely nonlinear and is no more

equivalent to a change of basis. Moreover, the point of view of Harten is essentially

discrete and is not based on the study of scaling equations which implies that the results

of wavelet theory cannot be used. To study these representations, we develop some new

analysis tools and we prove that these representations give the same approximation

order as for wavelet basis. This strategy is fruitful in applications since it allows to cope

up with the deficiencies of wavelet bases without loosing the approximation order.

The outline of the paper is as follows : after recalling some notations and definitions,

we detail the construction of nonlinear and non-separable multi-scale representations.

In section 3 and section 4, extending upon [14], we characterize the smoothness of a

function v belonging to some Besov spaces by means of the decay of its detail coef-

ficients. In section 5 we study the stability of the underlying subdivision scheme and

we then switch on to the stability of the multi-scale representation in section 6. For

similar, one-dimensional results see [18] and [14]. Finally, we give a illustration of such

a multi-scale representation in two dimensions (see section 7).

2 Notations and Generalities

We start by introducing some notations that will be used throughout the paper. Let us

consider a multi-index µ = (µ1, µ2, . . . , µd) ∈ N
d and a vector x = (x1, x2, . . . , xd) ∈

R
d. We define |µ| =

d
P

i=1
µi and xµ =

d
Q

i=1
xi

µi . For two multi-indices m, µ ∈ N
d we

define
„

µ

m

«

=

„

µ1

m1

«

· · ·

„

µd

md

«

.

For a fixed integer N ∈ N, we define

qN = #{µ, |µ| = N} (2.1)

where #Q stands for the cardinal of the set Q. Let ℓ(Zd) be the space of all sequences in-

dexed by Z
d. The subspace of bounded sequences is denoted by ℓ∞(Zd) and ‖u‖ℓ∞(Zd)
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is the supremum of {|uk| : k ∈ Z
d}. We denote ℓ0(Zd) the subspace of all sequences

with finite support (i.e. the number of non-zero components of a sequence is finite). As

usual, let ℓp(Zd) be the Banach space of sequences u on Z
d such that ‖u‖ℓp(Zd) < ∞,

where

‖u‖ℓp(Zd) :=

0

@

X

k∈Zd

|uk|
p

1

A

1
p

for 1 ≤ p < ∞.

By Lp(Rd) we denote the space of all measurable functions v such that ‖v‖Lp(Rd) < ∞,

where

‖v‖Lp(Rd) :=

„Z

Rd

|v(x)|pdx

«
1
p

for 1 ≤ p < ∞,

‖v‖L∞(Rd) := ess sup
x∈Rd

|v(x)|.

Throughout the paper, the symbol ‖ · ‖∞ is the sup norm in Z
d when applied either

to a vector or a matrix. Let us recall that for a function v the finite difference of order

N ∈ N, in the direction h ∈ R
d is defined by:

∇N
h v(x) :=

N
X

k=0

(−1)k
„

N

k

«

v(x − kh).

and the mixed finite difference of order n = (n1, . . . , nd) ∈ N
d in the direction h =

(h1, . . . , hd) ∈ R
d by:

∇n
hv(x) := ∇n1

h1e1
· . . . · ∇nd

hded
v(x) =

max(n1,...,nd)
X

k1,...,kd=0

(−1)|n|
„

n

k

«

v(x − k · h),

where k · h :=
d
P

i=1
kihi is the usual inner product while (e1, . . . , ed) is the canonical

basis on Z
d. For any invertible matrix B we put

∇n
Bv(x) := ∇n1

Be1
· . . . · ∇nd

Bed
v(x).

Similarly, we define Dµv(x) = Dµ1

1 · · ·Dµd

d v(x), where Dj is the differential operator

with respect to the jth coordinate of the canonical basis. For a sequence (up)p∈Zd , we

will use the mixed finite differences of order N defined by the formulas

∇nu : = ∇n1
e1

∇n2
e2

· . . . · ∇nd
ed

u,

∆Nu : = {∇nu, |n| = N, n ∈ N
d}.

In the following, we will consider dilation matrices to define inter-scale operators. A

dilation matrix is an invertible integer-valued matrix M satisfying lim
n→∞

M−n = 0, and

m := | det(M)|. Besides, we will suppose that the dilation matrix is isotropic:

Definition 1 A matrix M is called isotropic if it is similar to the diagonal matrix

diag(σ1, . . . , σd), i.e. there exists an invertible matrix Λ such that

M = Λ−1diag(σ1, . . . , σd)Λ, (2.2)

with σ1, . . . , σd being the eigenvalues of matrix M , |σ1| = . . . = |σd| = m
1
d .
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Moreover, for any given norm in R
d there exist constants C1, C2 > 0 such that for any

integer n and for any v ∈ R
d

C1m
n
d ‖v‖ ≤ ‖Mnv‖ ≤ C2m

n
d ‖v‖.

We end this section with the following remark on notations: for two positive quantities

A and B depending on a set of parameters, the relation A <
∼ B implies the existence

of a positive constant C, independent of the parameters, such that A ≤ CB. Also

A ∼ B means A <
∼ B and B <

∼ A.

2.1 Besov Spaces

In the following sections, we will study the smoothness of the limit function v in Besov

spaces. Let us recall the definition of Besov spaces. Let p, q ≥ 1, s be a positive real

number and N be any integer such that N > s. The Besov space Bs
p,q(R

d) consists of

those functions v ∈ Lp(Rd) satisfying

(2jsωN (v, 2−j)Lp)j≥0 ∈ ℓq(Zd),

where ωN (v, t)Lp is the modulus of smoothness of v of order N ∈ N \ {0} in Lp(Rd):

ωN (v, t)Lp = sup
h∈R

d

‖h‖2≤t

‖∇N
h v‖Lp(Rd), t ≥ 0,

where ‖.‖2 is the Euclidean norm. The norm in Bs
p,q(R

d) is then given by

‖v‖Bs
p,q(Rd) := ‖v‖Lp(Rd) + ‖(2jsωN (v, 2−j)Lp)j≥0‖ℓq(Zd).

Let us now introduce a new modulus of smoothness ω̃N that uses mixed finite differ-

ences of order N :

ω̃N (v, t)Lp = sup
n∈N

d

|n|=N

sup
h∈R

d

‖h‖2≤t

‖∇n
hv‖Lp(Rd), t > 0.

It is easy to see that for any v in Lp(Rd), ‖∇N
h v‖Lp(Rd)

<
∼

P

|n|=N

‖∇n
hv‖Lp(Rd), thus

ωN (v, t)Lp <
∼ ω̃N (v, t)Lp . The inverse inequality ω̃N (v, t)Lp <

∼ ωN (v, t)Lp immedi-

ately follows from Lemma 4 of [18]. It implies that:

‖v‖Bs
p,q(Rd) ∼ ‖v‖Lp + ‖(2jsω̃N (v, 2−j)Lp)j≥0‖ℓq(Zd).

Going further, there exists a family of equivalent norms on Bs
p,q(R

d).

Lemma 1 For all σ > 1, ‖v‖Bs
p,q(Rd) ∼ ‖v‖Lp(Rd) + ‖(σjsω̃N (v, σ−j)Lp)j≥0‖ℓq(Zd).

Proof : Since σ > 1, for any j > 0 there exists j′ > 0 such that 2j′

≤ σj ≤ 2j′+1.

According to this, we have the inequalities

2j′sω̃N (v, 2−j′−1)Lp ≤ σjsω̃N (v, σ−j)Lp ≤ 2(j′+1)sω̃N (v, 2−j′

)Lp ,

from which the norm equivalence follows.
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3 Multi-scale Representations

Let us recall the concept of multiresolution analysis (MRA) for some d-dimensional

Hilbert space V . To this end, let M be a d×d dilation matrix (not necessarily isotropic).

Definition 1 A multiresolution analysis of V is a sequence (Vj)j∈Zd of closed sub-

spaces of V satisfying the following properties:

1. The subspaces are embedded: Vj ⊂ Vj+1;

2. f ∈ Vj if and only if f(M.) ∈ Vj+1;

3. ∪j∈ZVj = V ;

4. ∩j∈ZVj = {0};

5. There exists a compactly supported function ϕ ∈ V0 such that the family {ϕ(· −

k)}k∈Zd forms a Riesz basis of V0.

The function ϕ is called the scaling function. Since V0 ⊂ V1, ϕ satisfies the following

equation:

ϕ =
X

k∈Zd

gkϕ(M · −k), with
X

k

gk = m. (3.1)

To get the approximation of a given function v at the level j, we assume the existence of

a compactly supported function ϕ̃ dual to ϕ (i.e. for all k, n ∈ Z
d < ϕ̃(·−n), ϕ(·−k) >=

δn,k, where δn,k denotes the Kronecker symbol and < ·, · > the inner product on V ),

which satisfies a so-called scaling equation

ϕ̃ =
X

n∈Z:‖n‖∞≤P

h̃nϕ̃(M · −n), with
X

k

h̃k = m. (3.2)

The approximation vj of v we consider is then obtained by projection of v on Vj as

follows:

vj =
X

n∈Zd

vj
nϕ(Mj · −n). (3.3)

where

vj
n =

Z

v(x)mj ϕ̃(Mjx − n)dx, n ∈ Z
d. (3.4)

Multi-scale representations based on specific type of choice for ϕ̃ are commonly used

in image processing or numerical analysis. We now mention two of them: the first is

the point value case obtained when ϕ̃ is the Dirac distribution and the second case is

the cell average case obtained when ϕ̃ is the indicator function of some domain on R
d.

In the theoretical study that follows, we assume that the data are obtained through a

projection of a functional v as in (3.4).

A strategy which allows to build multi-scale representations based on such projec-

tion can be done in terms of a very general discrete framework based on the concept

of inter-scale operators introduced by A. Harten in [8], which we now recall. Assume

that we have a sequence of index sets Γj , j ≥ 0 and two inter-scale discrete op-

erators associated to this sequence: the projection operator P j
j−1 and the prediction

operator P j−1
j . The projection operator P j

j−1 acts from fine to coarse level, that is,

vj−1 = P j
j−1vj . This operator is always assumed to be linear. The prediction operator

P j−1
j acts from coarse to fine level. It computes the ’approximation’ v̂j of vj from the

vector (vj−1
k )k∈Zd which is associated to vj−1 ∈ Vj−1:

v̂j = P j−1
j vj−1.
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This operator may be nonlinear. Besides, we assume that these operators satisfy the

consistency property:

P j
j−1P j−1

j = I, (3.5)

i.e., the projection of v̂j coincides with vj−1. Having defined the prediction error ej :=

vj − v̂j , we obtain a redundant representation of vector vj :

vj = v̂j + ej . (3.6)

By the consistency property, one has

P j
j−1ej = P j

j−1vj − P j
j−1v̂j = vj−1 − vj−1 = 0.

Hence, ej ∈ Ker(P j
j−1). Using a basis of this kernel , we write down the error ej in

a non-redundant way and get the detail vector dj−1 = Eej−1. The data vj is thus

completely equivalent to the data (vj−1, dj−1). Iterating this process from the initial

data vJ , we obtain its nonlinear multi-scale representation

MvJ = (v0, d0, . . . , dJ−1). (3.7)

From here on, we assume the equivalence

‖ej‖ℓp(Zd) ∼ ‖dj−1‖ℓp(Zd). (3.8)

Note that the projection operator is characterized by the function ϕ̃. Namely, if we

consider the discretization defined by (3.4) then, in view of (3.2), we may write the

projection operator as follows:

vj−1
k = m−1

X

‖n‖∞≤P

h̃nvj
Mk+n = m−1

X

‖n−Mk‖∞≤P

h̃n−Mkvj
n := (P j

j−1vj)k. (3.9)

To describe the prediction operator, for every w ∈ ℓ∞(Zd) we consider a linear operator

S(w) defined on ℓ∞(Zd) by

(S(w)u)k :=
X

l∈Zd

ak−Ml(w)ul, k ∈ Z
d. (3.10)

Note that the coefficients ak(w) depend on w. We assume that S is local:

∃K > 0 such that ak−Ml(w) = 0 if ‖k − Ml‖∞ > K (3.11)

and that ak(w) is bounded independently of w:

∃C > 0 such that ∀w ∈ ℓ∞(Zd) ∀k, l ∈ Z
d |ak−Ml(w)| < C. (3.12)

Remark 1 From (3.12) it immediately follows that for any p ≥ 1 the norms ‖S(w)‖ℓp(Zd)

are bounded independently of w.
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The prediction operator is then defined by

v̂j = P j−1
j vj−1 = S(vj−1)vj−1. (3.13)

If for all k, l ∈ Z
d and all w ∈ ℓ∞(Zd) we put ak−Ml(w) = gk−Ml, gk−Ml being defined

in the scaling equation (3.1) for ϕ, we get the so-called linear prediction operator. In

the general case, the prediction operator could be considered as a perturbation of the

linear prediction operator because of the consistency property, that is why we will call

them quasi-linear prediction operators. The operator-valued function which associates

to any w an operator S(w) is called a quasi-linear prediction rule.

For what follows, we need to introduce the notion of polynomial reproduction

for quasi-linear prediction rules. A polynomial q of total degree N is defined as a

linear combination q(x) =
P

|n|≤N cnxn. Let us denote by Π the linear space of all

polynomials, by ΠN the linear space of all polynomials of total degree N . With this in

mind, we have the following definition for polynomial reproduction:

Definition 2 We will say that the quasi-linear prediction rule S(w) reproduces poly-

nomials of total degree N if for any w ∈ ℓ∞(Zd) and any u ∈ ℓ∞(Zd) such that

uk = p(k)∀k ∈ Z
d and p ∈ ΠN , we have:

(S(w)u)k = p(M−1k) + q(k),

where deg(q) < deg(p). If q = 0, we say that the quasi-linear prediction rule S exactly

reproduces polynomials of total degree N .

Note that the property is required for any data w, and not only for w = u.

4 Smoothness of Nonlinear Multi-scale Representations

In this section, we prove the equivalence between the norm of a function v belonging

to Bs
p,q(R

d) and a quantity computed using its nonlinear detail coefficients dj . Lower

estimates of the Besov norm are associated to so-called direct theorems while upper

estimates are associated to so-called inverse theorems. Note that a similar technique

applied in a wavelet setting was used in [5].

4.1 Direct Theorem

Let v be a function in some Besov space Bs
p,q(R

d) with p, q ≥ 1 and s > 0, (v0, (dj)j≥0)

be its nonlinear multi-scale representation. We now show under what conditions we are

able to get a lower estimate of ‖v‖Bs
p,q(Rd) using (v0, (dj)j≥0). To prove such a result,

we need to have first an estimate of the norm of the prediction error:

Lemma 2 Assume that the quasi-linear prediction rule exactly reproduces polynomials

up to degree N − 1 then the following estimation holds

‖ej‖ℓp(Zd)
<
∼

X

|n|=N

‖∇nvj‖ℓp(Zd). (4.1)
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Proof : Let us compute

ej
k(w) := vj

k −
X

‖k−Ml‖∞≤K

ak−Ml(w)vj−1
l .

Using (3.9), we can write it down as

ej
k(w) = vj

k − m−1
X

l∈Z
d

‖k−Ml‖∞≤K

ak−Ml(w)
X

n∈Z
d

‖n−Ml‖∞≤P

h̃n−Mlv
j
n

= vj
k − m−1

X

n∈Z
d

‖k−n‖∞≤K+P

vj
n

X

l∈Z
d

‖k−Ml‖∞≤K

ak−Ml(w)h̃n−Ml =
X

n∈F (k)

bk,n(w)vj
n,

where bk,n(w) =
P

l∈Z
d

‖k−Ml‖∞≤K

ak−Ml(w)h̃n−Ml, and F (k) = {n ∈ Z
d : ‖n − k‖∞ ≤

P + K} is a finite set for any given k. For any k ∈ Z
d let us define a vector bk(w) :=

(bk,n(w))n∈F (k). By hypothesis, ej(w) = 0 if there exists p ∈ ΠN ′ , 0 ≤ N ′ < N

such that vk = p(k). Consequently, for any q ∈ Z
d, |q| < N , bk(w) is orthogonal to

any polynomial sequence associated to the polynomial lq = lq1

1 · . . . · lqd

d , thus it can

be written in terms of a basis of the space orthogonal to the space spanned by these

vectors. According to [10], Theorem 4.3, we can take {∇µδ·−l, |µ| = N, l ∈ Z
d} as a

basis of this space. By denoting cµ
l (w) the coordinates of bk(w) in this basis:

bk,n(w) =
X

|µ|=N

X

l∈Zd

cµ
l (w)∇µδn−l

and taking w = vj−1 we get

ek
j := ek

j (vj−1) =
X

n∈F (k)

X

|µ|=N

X

l∈Zd

cµ
l (vj−1)∇µδn−lv

j
n =

X

n∈F (k)

X

|µ|=N

cµ
n(vj−1)∇µvj

n.

(4.2)

Finally, we use (3.12) to conclude that the coefficients bk,n(vj−1) and cµ
l (vj−1) are

bounded independently of k, n and w, and (4.1) follows from (4.2).

The preceding lemma enables us to compute the lower estimate:

Theorem 1 If for p, q ≥ 1 and some positive s, v belongs to Bs
p,q(R

d), if the quasi-

linear prediction rule exactly reproduces polynomials up to degree N − 1 with N > s,

and if the equivalence (3.8) is satisfied, then

‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(dj
k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd)

<
∼ ‖v‖Bs

p,q(Rd). (4.3)

Proof: Using the Hölder inequality and the fact that ϕ̃ is compactly supported, we

first obtain

‖v0‖ℓp(Zd) = ‖(〈v, ϕ̃(· − k)〉)k∈Zd‖ℓp(Zd)
<
∼ ‖(‖v‖Lp(Supp(ϕ̃(·−k))))k∈Zd‖ℓp(Zd)

<
∼ ‖v‖Lp(Rd).

Let us then consider a quasi-linear prediction rule which exactly reproduces poly-

nomials up to degree N − 1. Since ‖ej‖ℓp(Zd) ∼ ‖dj−1‖ℓp(Zd), by Lemma 2 we get

‖(m(s/d−1/p)j‖(dj
k)‖ℓp(Zd))j≥0‖ℓq(Zd)

<
∼ ‖(m(s/d−1/p)j

X

|n|=N

‖(∇nvj
k)‖ℓp(Zd))j≥0‖ℓq(Zd).
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We have successively
X

|n|=N

‖∇nvj‖ℓp(Zd) =
X

|n|=N

‖∇n(〈v, mjϕ̃(Mj · −k)〉)k∈Zd‖ℓp(Zd)

=
X

|n|=N

‖(〈∇n
M−j v, mjϕ̃(Mj · −k)〉)k∈Zd‖ℓp(Zd)

<
∼ mj/p‖

X

|n|=N

(‖∇n
M−j v‖Lp(Supp(ϕ̃(Mj ·−k))))k∈Zd‖ℓp(Zd)

<
∼ mj/p

X

|n|=N

‖∇n
M−j v‖Lp(Rd)

<
∼ mj/pω̃N (v, C2m−j/d)Lp ,

Since M is isotropic, for any integer C > 0 and any t > 0, ω̃N (v, Ct)Lp ≤ Cω̃N (v, t)Lp .

Thus,
X

|n|=N

‖∇nvj‖ℓp(Zd)
<
∼ mj/pω̃N (v, m−j/d)Lp ,

which implies (4.3).

4.2 Inverse Theorem

Now, we are given the sequence (v0, (dj)j≤0) and we study the smoothness of the

reconstruction process:

vj = S(vj−1)vj−1 + Edj−1

by considering limit of the sequence of functions

vj(x) =
X

k∈Zd

vj
kϕ(Mjx − k) (4.4)

where ϕ is defined in (3.1), and we show that under certain conditions on the sequence

(v0, (dj)j≤0) and ϕ, vj converges to some function v belonging to a Besov space.

For that purpose, we need to establish that if the quasi-linear prediction rule S

reproduces polynomials up to total degree N −1 then all the mixed finite differences of

order less or equal to N can be described using local and bounded difference operators:

Proposition 1 Let S be a quasi-linear prediction rule reproducing polynomials up to

total degree N − 1. Then for any l, 0 < l ≤ N there exists a local bounded difference

operator Sl such that:

∆lS(w)u := Sl(w)∆lu,

for all u, w ∈ ℓ∞(Zd).

The proof is available in [16], Proposition 1. Note that contrary to the tensor prod-

uct case studied in [14], the operator Sl(w) is multi-dimensional and is defined from

(ℓ∞(Zd))ql onto (ℓ∞(Zd))ql where we recall that ql = #{l, |µ| = l} and cannot be

reduced to a set of difference operators in some given directions.

The inverse theorem we show at the end of this section is based on some property

of the joint spectral radius of the difference operators introduced above. It is defined

as follows:



10

Definition 3 Let us consider a set of local and bounded difference operators (Sl)l≥0,

defined in Proposition 1 with S0 := S. The joint spectral radius in (ℓp(Zd))ql of Sl is

given by

ρp(Sl) := inf
j≥0

sup
(w0,··· ,wj−1)∈(ℓp(Zd))j

‖Sl(w
j−1) · . . . · Sl(w

0)‖
1/j
(ℓp(Zd))ql→(ℓp(Zd))ql

= inf{ρ, ‖Sl(w
j−1) · · ·Sl(w

0)∆lv‖(ℓp(Zd))ql
<
∼ ρj‖∆lv‖(ℓp(Zd))ql , ∀v ∈ ℓp(Zd)}.

Remark 2 When vj = S(vj−1)vj−1, for all j > 0 we may write:

∆lS(vj)vj = Sl(S(vj−1)vj−1)∆lvj = Sl(S(vj−1)vj−1)Sl(v
j−1)∆lvj−1 = · · · := (Sl)

jv0.

This naturally leads to another definition of joint spectral radius putting wj = Sjv0

in the above definition. In [17], the following definition was introduced to study the

convergence and stability of one dimensional power-P scheme: Let us consider a set of

local and bounded difference operators (Sl)l≥0, defined in Proposition 1 where S0 := S.

The joint spectral radius in (ℓp(Zd))ql of Sl is given by

ρ̃p(Sl) := inf
j≥0

‖(Sl)
j‖

1/j
(ℓp(Zd))ql→(ℓp(Zd))ql

= inf{ρ, ‖∆lSjv‖(ℓp(Zd))ql
<
∼ ρj‖∆lv‖(ℓp(Zd))ql , ∀v ∈ ℓp(Zd)}.

Since our prediction operator is quasi-linear, the definition (3) is more appropriate.

Another ingredient that we will use in the proof of the inverse theorem is the following

proposition on joint spectral radius that holds for any matrix M , det M 6= 0:

Proposition 2 Assume that S0 = S and that S reproduces polynomials up to total

degree N − 1. Then

ρp(Sn+1) ≥
1

‖M‖∞
ρp(Sn) for all n = 0, . . . , N − 1.

In particular, if M is an isotropic matrix and S reproduces polynomials up to total

degree N − 1, then

ρp(Sn+1) ≥ m− 1
d ρp(Sn) for all n = 0, . . . , N − 1.

The proof is available in [16]. Considering that ϕ exactly reproduces polynomials when

the associated subdivision scheme does, we are ready to state the inverse theorem:

Theorem 2 Let S be a quasi-linear prediction rule reproducing exactly polynomials

up to total degree N − 1 and let ϕ exactly reproduces polynomials up to degree N − 1.

Assume that ρp(SN ) < m1/p−s/d for some s ≥ N − 1.

– If ‖v0‖ℓp(Zd) +
P

j≥0
m−j/p‖dj‖ℓp(Zd) < ∞, then the limit function v belongs to

Lp(Rd) and

‖v‖Lp(Rd) ≤ ‖v0‖ℓp(Zd) +
X

j≥0

m−j/p‖dj‖ℓp(Zd) (4.5)
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– If (v0, d0, d1, . . .) are such that

‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(dj
k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd) < ∞,

the limit function v belongs to Bs
p,q(R

d) and

‖v‖Bs
p,q(Rd)

<
∼ ‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(dj

k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (4.6)

Before we prove the theorem, we need to establish some extensions to the non-separable

case of results obtained in [14]:

Lemma 3 Let S be a data dependent prediction rule exactly reproducing polynomials

of total degree N − 1. Then,

‖vj+1 − vj‖Lp(Rd)
<
∼ m−j/p

“

‖∆Nvj‖(ℓp(Zd))qN + ‖dj‖ℓp(Zd)

”

. (4.7)

Moreover, if ρ > ρp(SN ),

‖∆Nvj‖(ℓp(Zd))qN
<
∼ ρj

0

@‖v0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl‖ℓp(Zd)

1

A . (4.8)

Proof: Using the definition of functions vj(x) and the scaling equation (3.1), we get

vj+1(x) − vj(x) =
X

k

vj+1
k ϕ(Mj+1x − k) −

X

k

vj
kϕ(Mjx − k)

=
X

k

((S(vj)vj)k + dj
k)ϕ(Mj+1x − k) −

X

k

vj
k

X

l

gl−Mkϕ(Mj+1x − l)

=
X

k

((S(vj)vj)k −
X

l

gk−Mlv
j
l )ϕ(Mj+1x − k) +

X

k

dj
kϕ(Mj+1x − k).

If S exactly reproduces polynomials up to total degree N − 1 then having in mind

that
P

l gk−Mlv
j
l is a linear prediction that exactly reproduces polynomials up to total

degree N − 1 and using the same arguments as in Lemma 2, we get

‖
X

k

((Svj)k −
X

l

gk−Mlv
j
l )ϕ(Mj+1x − k)‖Lp(Rd)

<
∼ m−j/p‖∆Nvj‖ℓp(Zd).

The proof of (4.7) is thus complete. To prove (4.8), we note that:

‖∆Nvj‖(ℓp(Zd))qN
<
∼ ‖SN (vj−1)∆Nvj−1‖(ℓp(Zd))qN + ‖∆Ndj−1‖(ℓp(Zd))qN

<
∼ ρ‖∆Nvj−1‖(ℓp(Zd))qN + ‖∆Ndj−1‖(ℓp(Zd))qN

<
∼ ρj

0

@‖v0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl‖ℓp(Zd)

1

A .

Proof of Theorem 2: From estimates (4.7) and (4.8) one has, in particular

‖vj+1 − vj‖Lp(Rd)
<
∼ m−j/pρj

0

@‖v0‖ℓp(Zd) +

j
X

l=0

ρ−l‖dl‖ℓp(Zd)

1

A (4.9)
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for ρ > ρp(S1). From Proposition 2 it follows that for any k ≤ N , ρp(Sk) < m1/p−s/d+(N−k)/d,

and in particular, since s ≥ N − 1, ρp(S1) < m1/p. We then choose ρ such that

ρp(S1) < ρ < m1/p to obtain:

‖v‖Lp(Rd) ≤ ‖v0‖Lp(Rd) +
X

j≥0

‖vj+1 − vj‖Lp(Rd)

<
∼ (4.9)

‖v0‖ℓp(Zd) +
X

j≥0

m−j/pρj

0

@‖v0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl‖ℓp(Zd)

1

A

<
∼ ‖v0‖ℓp(Zd)

0

@

X

j≥0

(m−1/pρ)j + 1

1

A+
X

l≥0

‖dl‖ℓp(Zd)ρ
−l
X

j>l

(m−1/pρ)j

<
∼ ‖v0‖ℓp(Zd) +

X

l≥0

‖dl‖ℓp(Zd)m
−l/p.

This proves (4.5).

Now let us prove (4.6). Since by Hölder inequality for any q, q′ > 0, 1
q + 1

q′ = 1, it

holds that

X

l≥0

‖dl‖ℓp(Zd)m
−l/p ≤ ‖(m(s/d−1/p)j‖(dj

k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd)‖(m
−js/d)j≥0‖ℓq′ (Rd)

<
∼ ‖(m(s/d−1/p)j‖(dj

k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd),

and finally,

‖v‖Lp(Rd)
<
∼ ‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(dj

k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd).

It remains to evaluate the semi-norm |v|Bs
p,q(Rd) := ‖(mjs/dω̃N (v, m−j/d)Lp)j≥0‖ℓq(Zd).

For each j ≥ 0, we have

ω̃N (v, m−j/d)Lp ≤ ω̃N (v − vj , m
−j/d)Lp + ω̃N (vj , m

−j/d)Lp . (4.10)

For the first term on the right hand side of (4.10), one has using Lemma 3

ω̃N (v − vj , m
−j/d)Lp <

∼

X

l≥j

‖vl+1 − vl‖Lp(Rd)

<
∼

X

l≥j

m−l/p(‖∆Nvl‖ℓp(Zd) + ‖dl‖ℓp(Zd)qN )

<
∼

X

l≥j

m−l/p

 

ρl‖v0‖ℓp(Zd) +
l
X

k=0

ρl−k‖dk‖ℓp(Zd)

!

.

For the first term, choosing ρp(SN ) < ρ < m1/p, we have

X

l≥j

m−l/pρl‖v0‖ℓp(Zd) ∼ m−j/pρj‖v0‖ℓp(Zd).
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For the second term, we get

X

l≥j

m−l/p
l
X

k=0

ρl−k‖dk‖ℓp(Zd)

= m−j/p
j
X

k=0

ρj−k‖dk‖ℓp(Zd) +
X

l>j

m−l/p
l
X

k=0

ρl−k‖dk‖ℓp(Zd)

<
∼ m−j/p

j
X

k=0

ρj−k‖dk‖ℓp(Zd) +
X

k≥0

X

l>max(k,j)

m−l/pρl−k‖dk‖ℓp(Zd)

<
∼ m−j/p

j
X

k=0

ρj−k‖dk‖ℓp(Zd) +
X

k≥0

‖dk‖ℓp(Zd)ρ
−k

X

l>max(k,j)

ρlm−l/p

<
∼ m−j/p

j
X

k=0

ρj−k‖dk‖ℓp(Zd) +
X

k>j

m−k/p‖dk‖ℓp(Zd).

Similarly, for the second term on the right hand side of (4.10), one has

ω̃N (vj , m
−j/d)Lp <

∼ ‖vj‖Lp(Rd)
<
∼ ‖v‖Lp(Rd)

The estimate of the semi-norm |v|Bs
p,q

is then reduced to the estimates of ‖(mjs/daj)j≥0‖ℓq(Zd),

‖(mjs/dbj)j≥0‖ℓq(Zd) and ‖(mjs/dcj)j≥0‖ℓq(Zd), with

aj := m−j/pρj‖v0‖ℓp(Zd),

bj := m−j/pρj
j
X

l=0

ρ−l‖dl‖ℓp(Zd),

cj :=
X

l>j

m−l/p‖dl‖ℓp(Zd).

The main point here is that ρp(SN )(ms/d−1/p) < 1, thus, we can choose ρ > ρp(SN )

such that

α = ms/d−1/pρ < 1.

Therefore

‖(σjsaj)j≥0‖ℓq(Zd) = ‖v0‖ℓp(Zd)‖(α
j)j≥0‖ℓq(Zd)

<
∼ ‖v0‖ℓp(Zd). (4.11)

In order to estimate ‖(mjs/dbj)j≥0‖ℓq(Zd), we rewrite it in the following form:

‖(mjs/dbj)j≥0‖ℓq(Zd) = ‖(mj(s/d−1/p)ρj
j
X

l=0

ρ−l‖dl‖ℓp)j≥0‖ℓq(Zd)

= ‖(αj
j
X

l=0

α−lm(s/d−1/p)l‖dl‖ℓp(Zd))j≥0‖ℓq(Zd).
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We now make use of the following discrete Hardy inequality: if 0 < α < 1, then

‖(αj
j
X

l=0

α−lxl)j≥0‖ℓq(Zd)
<
∼ ‖(xj)j≥0‖ℓq(Zd).

Applying it to xl = m(s/d−1/p)l‖dl‖ℓp(Zd) yields

‖(mjs/dbj)j≥0‖ℓq(Zd)
<
∼ ‖(m(s/d−1/p)j‖(dj

k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (4.12)

To estimate ‖(mjs/dcj)j≥0‖ℓq(Zd), we rewrite it as follows

‖(mjs/dcj)j≥0‖ℓq(Zd) = ‖mjs/d
X

l>j

m−ls/d
“

ml(s/d−1/p)‖(dl
k)‖ℓp(Zd)

”

‖ℓq(Zd)

and make use of another discrete Hardy inequality: if β > 1, then

‖(βj
X

l>j

β−lyl)j≥0‖ℓq(Zd)
<
∼ ‖(yj)j≥0‖ℓq(Zd).

Taking yl = ml(s/d−1/p)‖dl‖ℓp(Zd), we obtain, since s > N − 1,

‖(mjs/dcj)j≥0‖ℓq(Zd)
<
∼ ‖(mj(s/d−1/p)‖(dj

k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (4.13)

Then (4.6) follows by combining (4.11), (4.12) and (4.13).

5 Stability of Nonlinear Subdivision Schemes

We study the stability of the iteration vj = S(vj−1)vj−1 in Sobolev spaces W p
N (Rd).

We recall that the elements of W p
N (Rd) are those functions of Lp(Rd) having their

differential up to order N in Lp(Rd), the norm on W p
N (Rd) being defined as follows:

‖v‖W p

k
(Rd) = ‖v‖Lp +

X

|µ|≤N

‖Dµv‖Lp(Rd).

We use the following definition for the stability of subdivision scheme in Sobolev spaces:

Definition 4 Let S be a quasi-linear prediction rule, the subdivision scheme vj =

S(vj−1)vj−1 is said to be stable in W p
N (Rd) if for all v0 and ṽ0 in ℓ∞(Zd), we have:

‖Dµvj − Dµṽj‖Lp(Rd)
<
∼ ‖v0 − ṽ0‖ℓp(Zd) ∀|µ| ≤ N

where vj =
P

k∈Zd

vj
kϕ(Mjx − k), ϕ belonging to W p

N (Rd)

We now state the following theorem on the stability of the subdivision scheme in

W p
N (Rd).
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Theorem 3 Let S be a quasi-linear prediction rule that exactly reproduces polynomials

up to total degree N . Assume that SN satisfies ρp(SN+1) < m1/p−N/d and that

‖∆N+1(vj − ṽj)‖(ℓp(Zd))qN+1 <
∼ ρj‖v0 − ṽ0‖ℓp(Zd) (5.1)

for some ρp(SN+1) < ρ < m1/p−N/d, and also that ϕ is in W p
N (Rd) and exactly

reproduces polynomial up to total degree N then the subdivision scheme is stable in

W p
N (Rd).

Before proving the theorem we need to show the following lemma:

Lemma 4 Assume that S is a quasi-linear prediction rule exactly reproducing polyno-

mials up to total degree N and that ϕ exactly reproduces polynomials up to total degree

N then

‖vj − ṽj‖ℓp(Zd) ≤ m1/p−N/d‖vj−1 − ṽj−1‖ℓp(Zd) + C‖∆N+1(vj − ṽj)‖(ℓp(Zd))qN+1

(5.2)

Proof: Let us consider ϕ that exactly reproduces polynomials up to total degree N

; it defines a subdivision scheme S̃ that exactly reproduces polynomials up to total

degree N . Then let us define for any x = (x1, . . . , xd) ∈ R
d

ri(x) =
d
X

l=1

λi,lxl, i = 1, . . . , d,

where the matrix Λ = (λi,l)
d
i,l=1 is the same as in (2.2). For a multi-index µ =

(µ1, . . . , µd) ∈ N
d let

rµ(x) := rµ1

1 (x) · . . . · rµd

d (x)

and let us consider the differential operator

rµ(D) := rµ1

1 (D) · . . . · rµd

d (D), where ri(D) =
d
X

l=1

λi,lDel , i = 1, . . . , d.

Let us for any Since Λ is invertible, the set {rµ : |µ| = N} forms a basis of the space

of all polynomials of exact degree N , which proves that
X

|µ|=N

‖Dµ1
e1

. . . Dµd
ed

(v − vj)‖Lp(Rd)

X

|µ|=N

X

l≥j

‖rµ(D)(vl+1 − vl)‖Lp(Rd).

Now, we use the fact that M is isotropic, then rµ(D)(f(M lx)) = σlµ/d(rµ(D)f)(M lx)

([10]), where σµ =
d
Q

i=1
σµi

i .With this in mind, we may write:

‖rµ(D)(vj − vj−1)‖Lp(Rd) ∼ mj(−1/p+N/d)‖vj − S̃vj−1‖ℓp(Zd)

Using the consistency property and the fact that S̃ exactly reproduces polynomials up

to total degree N and also since the projection operator is linear, we may deduce

‖rµ(D)(vj − ṽj)‖Lp(Rd) ≤‖rµ(D)(vj−1 − ṽj−1)‖Lp(Rd)+

Cmj(−1/p+N/d)‖∆N+1(vj − ṽj)‖(ℓp(Zd))qN+1
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and we finally get:

‖vj − ṽj‖ℓp(Zd) ≤ m1/p−N/d‖vj−1 − ṽj−1‖ℓp(Zd) + C‖∆N+1(vj − ṽj)‖(ℓp(Zd))qN+1

Proof of Theorem (3): First, remark that:

X

|µ|=N

‖Dµ(vj − ṽj)‖ℓp(Zd) ∼
X

|µ|=N

‖rµ(D)(vj − ṽj)‖ℓp(Zd)

Then since the matrix M is isotropic we may write

‖rµ(D)(vj − ṽj)‖ℓp(Zd) ∼ mj(−1/p+N/d)‖vj − ṽj‖ℓp(Zd).

Let ρ be such that ρp(SN+1) < ρ < m1/p−N/d. Let us consider the sequences αj :=

mj(−1/p+N/d)‖vj − ṽj‖ℓp(Zd) and βj = mj(−1/p+N/d)‖∆N+1(vj − ṽj)‖(ℓp(Zd))qN+1 .

By (5.1) and Lemma 4, these sequences satisfy the following inequalities:

αj ≤ αj−1 + Dβj

βj ≤ C(ρm(−1/p+N/d))jα0,

the constant C being independent of j. From the above inequality we deduce the

following estimation:

mj(−1/p+N/d)‖vj − ṽj‖ℓp(Zd)
<
∼ ‖v0 − ṽ0‖ℓp(Zd)

6 Stability of the Multi-Scale Representation

Let us consider two data sets (v0, d0, d1, . . .) and (ṽ0, d̃0, d̃1, . . .) with corresponding

reconstruction processes

vj = S(vj−1)vj−1 + ej = S(vj−1)vj−1 + Edj−1 (6.1)

and

ṽj = S(ṽj−1)ṽj−1 + ẽj = S(ṽj−1)ṽj−1 + Ed̃j−1. (6.2)

In that context, ṽ is the limit of ṽj(x) =
P

k∈Zd

ṽj
kϕ(Mjx − k) ( and similarly for v).
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6.1 Stability in Lp Spaces

First, we study the stability of the multi-scale representation in Lp(Rd), which is stated

in the following theorem:

Theorem 4 Let S be a quasi-linear prediction rule that reproduces the constants and

suppose that ρp(S1) < m
1
p . Assume that

‖∇vj −∇ṽj‖(ℓp(Zd))d <
∼ ρj

0

@‖v0 − ṽ0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl − d̃l‖ℓp(Zd)

1

A . (6.3)

holds for some ρp(S1) < ρ < m1/p, then we have:

‖v − ṽ‖Lp(Rd)
<
∼ ‖v0 − ṽ0‖ℓp(Zd) +

X

l≥0

ρ−l‖dl − d̃l‖ℓp(Zd). (6.4)

Proof: Let us take ρ such that ρp(S1) < ρ < m
1
p . By letting j → ∞, it is sufficient to

prove that

‖vj − ṽj‖Lp(Rd)
<
∼ ‖v0 − ṽ0‖Lp(Rd) +

j
X

l=1

ρ−l‖dl − d̃l‖ℓp(Zd), (6.5)

with a constant independent of j. For simplicity, let

αj := m−j/p‖vj − ṽj‖ℓp(Zd),

βj := m−j/p‖∇vj −∇ṽj‖(ℓp(Zd))d ,

γj := ρ−j‖dj − d̃j‖ℓp(Zd).

Using estimate (6.3), we get

βj <
∼ ρ̄j

0

@α0 +

j−1
X

l=0

γl

1

A ,

where ρ̄ = ρm−1/p < 1. On the other hand, using the same technique as in the proof

of Lemma 3 one can show that

‖vj − ṽj‖Lp(Rd) ≤ ‖vj−1 − ṽj−1‖Lp(Rd) + Dβj .

i.e., αj ≤ αj−1 + Dβj . From this, we immediately deduce that:

αj <
∼ α0 +

j
X

l=1

l−1
X

k=0

ρ̄lγk <
∼ α0 +

j−1
X

k=0

γk.

This ends the proof. �
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6.2 Stability in Besov spaces

In view of the inverse inequality (4.6), it seems natural to seek an inequality of type

‖v − ṽ‖Bs
p,q(Rd)

<
∼ ‖v0 − ṽ0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖dj

. − d̃j
. ‖ℓp(Zd))j≥0‖ℓq(Zd). (6.6)

We now prove a stability theorem in Besov space Bs
p,q(R

d) in the following theorem:

Theorem 5 Let us assume that S is a quasi-linear prediction rule which reproduces

polynomials up to degree N − 1, that S is such that ρp(SN ) < m1/p−s/d for some

s > N − 1 and assume that

‖∆N (vj − ṽj)‖(ℓp(Zd))qN
<
∼ ρj

0

@‖v0 − ṽ0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl − d̃l‖ℓp(Zd)

1

A (6.7)

for some ρp(SN ) < ρ < m1/p−s/d. Then the function v − ṽ belongs to Bs
p,q(R

d).

Moreover, we obtain for that ρ

‖v − ṽ‖Bs
p,q(Rd)

<
∼ ‖v0 − ṽ0‖ℓp(Zd) + ‖(ρ−j‖(dj

k − d̃j
k)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (6.8)

Remark 3 With the hypothesis (6.7), which is a natural extension of (4.8) for the

stability issue, we have no specific condition on s, p, q which was not the case with

the tensor product method proposed in [14]. Furthermore, we shall note that a similar

study was proposed in the one dimensional case to study the stability of so-called r-

shift invariant subdivision operators [17] with a slightly lighter hypothesis than (6.7).

However, in [17] the stability is obtained only when ρ(SN ) < 1, while with our approach

the condition on the joint spectral radius is the same both for the stability and the

smoothness.

Proof of Theorem (5): Using the same technique as in Lemma 3, we may write that:

‖vj − ṽj‖Lp(Rd)
<
∼ ‖vj−1 − ṽj−1‖Lp(Rd)+

Cm−j/p
“

‖∆N (vj − ṽj)‖(ℓp(Zd))qN + ‖dj − d̃j‖ℓp(Zd)

”

Then using the hypothesis (6.7), we get:

‖vj − ṽj‖Lp(Rd)
<
∼ ‖vj−1 − ṽj−1‖Lp(Rd)+

C(ρjm−j/p)

0

@‖v0 − ṽ0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl − d̃l‖ℓp(Zd)

1

A

Using the fact that ρm−1/p < 1 we immediately get:

‖vj − ṽj‖Lp <
∼ ‖v0 − ṽ0‖ℓp(Zd) +

j−1
X

l=0

ρ−l‖dl − d̃l‖ℓp(Zd),
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from which we obtain when j → +∞:

‖v − ṽ‖Lp <
∼ ‖v0 − ṽ0‖ℓp(Zd) +

X

l≥0

ρ−l‖dl − d̃l‖ℓp(Zd),

Since by the constraints on s we can put ρ = m1/p+(−s−ε)/d for some positive ε. This

enables us write

‖v − ṽ‖Lp(Rd) ≤ ‖v0 − ṽ0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖dj − d̃j‖ℓp(Zd))j≥0‖ℓq(Zd)‖(m
−ε/dj)j≥0‖ℓq′ (Rd)

<
∼ ‖v0 − ṽ0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖dj − d̃j‖ℓp(Zd))j≥0‖ℓq(Zd),

It remains to estimate the semi-norm

|w|Bs
p,q(Rd) := ‖(mjs/dωN (w, m−j/d)Lp)j≥0‖ℓq(Zd),

for w := v − ṽ. For every j ≥ 0, denoting wj = vj − ṽj , we have

ωN (w, m−j/d)Lp ≤ ωN (w − wj , m
−j/d)Lp + ωN (wj , m

−j/d)Lp . (6.9)

For the first term, using successively Lemma (3) and hypothesis (6.7), one has

ωN (w − wj , m
−j/d)Lp <

∼

X

l≥j

‖wl+1 − wl‖Lp(Rd)

<
∼

X

l≥j

m−l/p
“

‖∆N (vl − ṽl)‖(ℓp(Zd))qN + ‖dl − d̃l‖ℓp(Zd)

”

<
∼

X

l≥j

m−l/p

 

ρl‖v0 − ṽ0‖ℓp(Zd) +
l
X

k=0

ρl−k‖dk − d̃k‖ℓp(Zd)

!

.

Since ρ < m1/p, then for the first term we have

X

l≥j

m−l/pρl‖v0 − ṽ0‖ℓp(Zd) ∼ m−j/pρj‖v0 − ṽ0‖ℓp(Zd).

For the second term, we get

X

l≥j

m−l/p
l
X

k=0

ρl−k‖dk − d̃k‖ℓp(Zd) =

= m−j/p
j
X

k=0

ρj−k‖dk − d̃k‖ℓp(Zd) +
X

l>j

m−l/p
l
X

k=0

ρl−k‖dk − d̃k‖ℓp(Zd)

<
∼ m−j/p

j
X

k=0

ρj−k‖dk − d̃k‖ℓp(Zd) +
X

k≥0

X

l≥max(k,j+1)

m−l/pρ(l−k)‖dk − d̃k‖ℓp(Zd)

<
∼ m−j/p

j
X

k=0

ρj−k‖dk − d̃k‖ℓp(Zd) +
X

k>j

m−k/p‖dk − d̃k‖ℓp(Zd).
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The second term in (6.9) is evaluated as follows:

ωN (vj − ṽj , m
−j/d)Lp <

∼ ‖vj − ṽj‖Lp(Rd)

<
∼ m−j/pρj‖v0 − ṽ0‖ℓp(Zd) + m−j/p

j
X

l=0

ρj−l‖dl − d̃l‖ℓp(Zd).

The second term on the right hand side of (6.9), can be evaluated the same way. We

have thus reduced the estimate of |w|Bs
p,q(Rd), to the estimates of the discrete norms

‖(mjs/daj)j≥0‖ℓq(Zd), and ‖(mjs/dbj)j≥0‖ℓq(Zd), where the sequences are defined as

follows:

aj := ρjm−j/p‖v0 − ṽ0‖ℓp(Zd),

bj := m−j/p
j
X

l=0

ρj−l‖dl − d̃l‖ℓp(Zd),

cj :=
X

l>j

m−l/p‖dl − d̃l‖ℓp(Zd).

Note that this quantities are identical to that obtained in the convergence theorem

replacing vl by vl − ṽl and dl by dl − d̃l, so that the end of the proof is identical.

7 Bi-dimensional Nonlinear Affine Prediction Using the Hexagonal

Dilation Matrix

We now focus on the construction of nonlinear multi-scale representations using as

dilation matrix the hexagonal matrix

M =

„

2 1

0 −2

«

.

In that context, we make up a partition of Z
2 using the coset vectors of the matrix M .

For the matrix M , there are m coset vectors which are the following for the hexagonal

matrix: ε0 = (0, 0)T , ε1 = (1, 0)T , ε2 = (1,−1)T , ε3 = (2,−1)T . These coset vectors

satisfy Z
2 =

3
S

i=0
{Mk + εi, k ∈ Z

2}. We now build the prediction v̂j for the different

coset points Mk + εi using an affine interpolant defined on the coarse grid Γ j−1 =

{M−j+1k, k ∈ Z
2} corresponding to the location of the values (vj−1

k )k∈Z2 (see (3.3)).

To build the affine interpolant, we use one of the following four different stencils on

the grid Γ j−1:

V j,1
k = M−j+1{k, k + e1, k + e2},

V j,2
k = M−j+1{k, k + e2, k + e1 + e2},

W j,1
k = M−j+1{k + e1, k + e2, k + e1 + e2},

W j,2
k = M−j+1{k, k + e1, k + e1 + e2}.

Each approximated value vj
k being associated to the location M−jk, we determine the

stencil this point belongs to, and we then define the prediction as the value of the affine



21

interpolant at M−jk using the selected stencil. In that context, the prediction rules at

Mk and Mk + ε1 are independent of the choice of the stencil, and we always have:

vj
Mk = vj−1

k and vj
Mk+ε1

=
1

2
vj−1
k +

1

2
vj−1
k+e1

. (7.1)

For the prediction at Mk + ε2, we use stencils V j,1
k or V j,2

k leading respectively to:

vj,1
Mk+ε2

=
1

4
vj−1
k+e1

+
1

2
vj−1
k+e2

+
1

4
vj−1
k

vj,2
Mk+ε2

=
1

2
vj−1
k +

1

4
vj−1
k+e2

+
1

4
vj−1
k+e1+e2

. (7.2)

For the points Mk + ε3, we use W j,1
k or W j,2

k leading respectively to:

vj,1
Mk+ε3

=
1

4
vj−1
k+e2

+
1

4
vj−1
k+e1+e2

+
1

2
vj−1
k+e1

vj,2
Mk+ε3

=
1

4
vj−1
k +

1

4
vj−1
k+e1

+
1

2
vj−1
k+e1+e2

(7.3)

when the stencils W j,1
k and W j,2

k are used respectively.

This leads to four different linear prediction rules depending on the choice for the

prediction operator for coset vector ε2 and ε3. The described quasi-linear prediction

operator satisfies ρ∞(S1) < 1 since we have:

Proposition 3 The prediction defined by (7.1), (7.2), (7.3) satisfies:

‖∇v̂j
M.+εi

‖(l∞(Z2))2 ≤
3

4
‖∇vj−1‖(l∞(Z2))2 .

The proof of the above proposition is carried out considering all the possibilities for

the choice of stencil. This example shows how the tensor product approach developed

in [14] can be generalized to a non-diagonal dilation matrix M .

Now, to generalize the ENO (essentially non-oscillatory [14]) method to our context,

the choice of stencil has to aim at a sparser representation of edges. For instance,

this could be interesting for image compression purpose. The choice of stencil can

be determined by minimizing a certain cost function that is built using first order

differences in such a way that the cost is high for stencil intersecting an edge and low

otherwise. In that framework, we can consider the following cost function to predict at

Mk + ε2:

Cj,ε2

H (k) = min(|vj−1
k+e1

− vj−1
k+e2

| + |vj−1
k+e1

− vj−1
k |, |vj−1

k − vj−1
k+e1+e2

| + |vj−1
k+e1+e2

− vj−1
k+e1

|)

= min(Cj,ε2,1
H (k), Cj,ε2,2

H (k)).

When the minimum corresponds to the first (resp. second) argument, the stencil V 1
k

(resp. V 2
k ) is used. Similarly, when one considers the prediction at Mk + ε3, we can

consider:

Cj,ε3

H (k) = min(|vj−1
k+e1

− vj−1
k+e2

| + |vj−1
k+e1+e2

− vj−1
k+e2

|, |vj−1
k − vj−1

k+e1
| + |vj−1

k+e1+e2
− vj−1

k |)

= min(Cj,ε3,1
H (k), Cj,ε3,2

H (k)).

When the minimum corresponds to the first (resp. second) argument, the stencil W 1
k

(resp. W 2
k ) is used. This technique has been recently used for image compression [15].
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Finally, note that making a convex combination of potential operators given by the

ENO method, we obtain an extension of the so-called WENO method, that is for

i = 2, 3:

v̂j
Mk+εi

:= α1v̂j,1
Mk+εi

+ α2v̂j,2
Mk+εi

A possible form for the weights is given by αr := ar

a1+a2
where ar := 1

ε+Cj,εi,r(k)
, and

ε is used to avoid ar = +∞ when Cj,εi,r(k) = 0. Finally, we shall conclude by saying

that our approach could be extended to other type of matrix of non-diagonal matrix

M (an example is available in [15]) with a noticeable improvement on compression

performance over linear method.

8 Conclusion

In this paper, we have presented a new nonlinear multi-scale representation based on

the use of non-diagonal dilation matrices. We have shown that the non-linear scheme

proposed by Harten naturally extends in that context and that convergence and sta-

bility in Besov spaces can be obtained when the matrix M is isotropic. These results

are deeply related to the existence of difference operators associated to the prediction

operator we use. The main difference with the tensor product approach consists in

the fact these difference operators use mixed finite differences and thus cannot be re-

duced to one dimensional difference operators. This specificity obliged us to consider

a definition of Besov spaces using mixed finite differences. After we have shown these

theoretical results, we have ended the paper by giving some applications of the new

multi-scale representation we propose when the underlying subdivision scheme is in-

terpolatory. Future work should involve the designing of non-interpolatory multi-scale

representations and also possible extension of our method to more general prediction

operators than quasi-linear ones.
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