
HAL Id: hal-00472176
https://hal.science/hal-00472176v2

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smoothness Characterization and Stability of Nonlinear
and Non-Separable Multi-scale Representations

Basarab Matei, Sylvain Meignen, Anastasia Zakharova

To cite this version:
Basarab Matei, Sylvain Meignen, Anastasia Zakharova. Smoothness Characterization and Stability of
Nonlinear and Non-Separable Multi-scale Representations. Journal of Approximation Theory, 2011,
163 (11), pp.1707-1728. �10.1016/j.jat.2011.06.009�. �hal-00472176v2�

https://hal.science/hal-00472176v2
https://hal.archives-ouvertes.fr


Smoothness Characterization and Stability of Nonlinear

and Non-Separable Multi-Scale Representations

Basarab Mateia, Sylvain Meignen∗b, Anastasia Zakharovac

a

LAGA Laboratory, Paris XIII University, France,

Tel:0033-1-49-40-35-71

FAX:0033-4-48-26-35-68

E-mail: matei@math.univ-paris13.fr

b

LJK Laboratory, University of Grenoble, France

Tel:0033-4-76-51-43-95

FAX:0033-4-76-63-12-63

E-mail: sylvain.meignen@imag.fr

c

LJK Laboratory, University of Grenoble, France

Tel:0033-4-76-51-43-95

FAX:0033-4-76-63-12-63

E-mail: anastasia.zakharova@imag.fr

Preprint submitted to Journal of Approximation Theory December 21, 2010



Abstract

The aim of the paper is the construction and the analysis of nonlinear and

non-separable multi-scale representations for multivariate functions. The

proposed multi-scale representation is associated with a non-diagonal dilation

matrix M . We show that the smoothness of a function can be characterized

by the rate of decay of its multi-scale coefficients. We also study the stability

of these representations, a key issue in the designing of adaptive algorithms.
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1. Introduction

A multi-scale representation of an abstract object v (e.g. a function rep-

resenting the grey level of an image) is defined as Mv := (v0, d0, d1, d2, · · · ),

where v0 is the coarsest approximation of v in some sense and dj, with

j ≥ 0, are additional detail coefficients representing the fluctuations between

two successive levels. Several strategies exist to build such representations:

wavelet basis, lifting schemes and also the discrete framework of Harten [9].

Using a wavelet basis, we compute (v0, d0, d1, d2, · · · ) through linear filtering

and thus the multi-scale representation corresponds to a change of basis. Al-

though wavelet bases are optimal for one-dimensional functions, this is no

longer the case for multivariate objects such as images where the presence

of singularities requires special treatments. The approximation property of

wavelet bases and their use in image processing are now well understood (see

[6] and [15] for details).

Overcoming this ”curse of dimensionality” for wavelet basis was in the

past decade the subject of active research. We mention here several strate-

gies developed from the wavelets theory: the curvelets transforms [3], the

directionlets transforms [7] and the bandelets transform [13]. Another ap-

proach proposed in [16] and studied in [2] uses the discrete framework of

Harten, which allows a better treatment of singularities and consequently

better approximation results.

The applications of all these methods to image processing are numerous:

let us mention some of these works in [2], [1] and [4]. In [2], the exten-

sion of univariate methods using tensor product representations is studied.

Although this extension is natural and simple, the results are not optimal.
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We propose in the present paper a new nonlinear multi-scale represen-

tation based on the general framework of A. Harten (see [9] and [11]). Our

representation is non-separable and is associated with a non-diagonal dilation

matrix M . The use of non-diagonal dilation matrices is motivated by better

image compression performances ([5] and [14]). Since the details are com-

puted adaptively, the multi-scale representations is completely nonlinear and

is no more equivalent to a change of basis. To study these representations,

we develop some new analysis tools. In particular we make extensive use

of mixed finite differences and of associated joint spectral radii to generalize

the existing convergence and stability results based on a tensor product ap-

proach. The smoothness characterization is based both on direct and inverse

theorems. To prove the direct theorem we use the polynomial reproduction

and we assume that the dilation matrix is isotropic. For the inverse theorem

the assumption on the isotropy of the matrix is not necessary. We prove that

our representations give the same approximation order as for wavelet basis.

This strategy is fruitful in applications since it allows to cope up with the

deficiencies of wavelet bases without loosing the approximation order. More

precisely, in this paper we show that the convergence and the stability in

Lp and Besov spaces of our representations can be obtained under the same

hypothesis on the joint spectral radii associated to mixed finite differences.

This was not the case in previous one-dimensional or tensor product studies

[20] and [17], where the joint spectral associated to finite differences had to be

lower than one to ensure stability. The outline of the paper is the following.

After having introduced nonlinear and non-separable multi-scale represen-

tations, we give an illustration on image compression of the improvement

4



brought about the use of non-diagonal matrix in the multi-scale represen-

tation. Extending the results of [17], we characterize the smoothness of a

function v belonging to some Besov spaces by means of the decay of the de-

tail coefficients of its nonlinear and non-separable multiscale representation

(section 4 and 5). We finally study the stability of this multi-scale represen-

tation in section 6 (for similar, one-dimensional results see [20] and [17]).

2. Multi-scale Representations on R
d

For the reader convenience, we recall the construction of linear multi-scale

representations based on multiresolution analysis (MRA). To this end, let M

be a d× d dilation matrix.

Definition 1. A multiresolution analysis of V is a sequence (Vj)j∈Z of closed

subspaces of V satisfying the following properties:

1. The subspaces are embedded: Vj ⊂ Vj+1;

2. f ∈ Vj if and only if f(M.) ∈ Vj+1;

3. ∪j∈ZVj = V ;

4. ∩j∈ZVj = {0};

5. There exists a compactly supported function ϕ ∈ V0 such that the family

{ϕ(· − k)}k∈Zd forms a Riesz basis of V0.

The function ϕ is called the scaling function. Since V0 ⊂ V1, ϕ satisfies the

following equation:

ϕ =
∑

k∈Zd

gkϕ(M · −k), with
∑

k

gk = m := | det(M)|. (1)
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To get the approximation of a given function v at level j, we consider a

compactly supported function ϕ̃ dual to ϕ (i.e. for all k, n ∈ Z
d < ϕ̃(· −

n), ϕ(· − k) >= δn,k, where δn,k denotes the Kronecker symbol and < ·, · >

the inner product on V ), which also satisfies a scaling equation

ϕ̃ =
∑

n∈Zd:‖n‖∞≤P

h̃nϕ̃(M · −n), with
∑

k

h̃k = m. (2)

The approximation vj of v we consider is then obtained by projection of v

on Vj as follows:

vj =
∑

n∈Zd

vjnϕ(M
j · −n). (3)

where

vjn =

∫

v(x)mjϕ̃(M jx− n)dx, n ∈ Z
d. (4)

Multi-scale representations based on specific choice for ϕ̃ are commonly used

in image processing and numerical analysis. We mention two of them: the

first one is the point-values case obtained when ϕ̃ is the Dirac distribution

and the second one is the cell average case obtained when ϕ̃ is the indicator

function of some domain on R
d. In the theoretical study that follows, we

assume that the data are obtained through a projection of a functional v as

in (4).

A strategy which allows to build nonlinear multi-scale representations

based on such a projection can be done in terms of a very general discrete

framework using the concept of inter-scale operators introduced by A. Harten

in [9], which we now recall. Assume that we have two inter-scale discrete

operators associated to this sequence: the projection operator P j
j−1 and the

prediction operator P j−1
j . The projection operator P j

j−1 acts from fine to

coarse levels, that is, vj−1 = P j
j−1v

j. This operator is assumed to be linear.
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The prediction operator P j−1
j acts from coarse to fine levels. It computes

the ’approximation’ v̂j of vj from the vector (vj−1
k )k∈Zd which is associated

to vj−1 ∈ Vj−1:

v̂j = P j−1
j vj−1.

This operator may be nonlinear. Besides, we assume that these operators

satisfy the consistency property:

P j
j−1P

j−1
j = I, (5)

i.e., the projection of v̂j coincides with vj−1. Having defined the prediction

error ej := vj − v̂j , we obtain a redundant representation of vector vj :

vj = v̂j + ej . (6)

By the consistency property, one has

P j
j−1e

j = P j
j−1v

j − P j
j−1v̂

j = vj−1 − vj−1 = 0.

Hence, ej ∈ Ker(P j
j−1). Using a basis of this kernel , we write the error ej

in a non-redundant way and get the detail vector dj−1. The data vj is thus

completely equivalent to the data (vj−1, dj−1). Iterating this process from

the initial data vJ , we obtain its nonlinear multi-scale representation

MvJ = (v0, d0, . . . , dJ−1). (7)

From here on, we assume the equivalence

‖ej‖ℓp(Zd) ∼ ‖dj−1‖ℓp(Zd). (8)

Since the details are computed adaptively, the underlying multi-scale repre-

sentation is nonlinear and no more equivalent to a change of basis. Moreover,
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the discrete setting used here is not based on the study of scaling equations

as for wavelet basis, which implies that the results of wavelet theory cannot

be used directly in our analysis. Note also that the projection operator is

completely characterized by the function ϕ̃. Namely, if we consider the dis-

cretization defined by (4) then, in view of (2), we may write the projection

operator as follows:

vj−1
k = m−1

∑

‖n‖∞≤P

h̃nv
j
Mk+n = m−1

∑

‖n−Mk‖∞≤P

h̃n−Mkv
j
n := (P j

j−1v
j)k. (9)

To describe the prediction operator, for every w ∈ ℓ∞(Zd) we consider a

linear operator S(w) defined on ℓ∞(Zd) by

(S(w)u)k :=
∑

l∈Zd

ak−Ml(w)ul, k ∈ Z
d. (10)

Note that the coefficients ak(w) depend on w. We assume that S is local:

∃K > 0 such that ak−Ml(w) = 0 if ‖k −Ml‖∞ > K (11)

and that ak(w) is bounded independently of w:

∃C > 0 such that ∀w ∈ ℓ∞(Zd) ∀k, l ∈ Z
d |ak−Ml(w)| < C. (12)

Remark 2.1. From (12) it immediately follows that for any p ≥ 1 the norms

‖S(w)‖ℓp(Zd) are bounded independently of w.

The quasi-linear prediction operator is then defined by

v̂j = P j−1
j vj−1 = S(vj−1)vj−1. (13)

If for all k, l ∈ Z
d and all w ∈ ℓ∞(Zd) we put ak−Ml(w) = gk−Ml, where gk−Ml

is defined by the scaling equation (1), we get the so-called linear prediction
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operator. In the general case, the prediction operator P j−1
j can be viewed

as a perturbation of the linear prediction operator due to the consistency

property; that is why we will call it a quasi-linear prediction operator. The

operator-valued function which associates to any w an operator S(w) is called

a quasi-linear prediction rule.

For what follows, we need to introduce the notion of polynomial reproduc-

tion for quasi-linear prediction rules. A polynomial q of degree N is defined

as a linear combination q(x) =
∑

|n|≤N cnx
n. Let us denote by Π the linear

space of all polynomials, by ΠN the linear space of all polynomials of de-

gree N . With this in mind, we have the following definition for polynomial

reproduction:

Definition 2.1. We will say that the quasi-linear prediction rule S(w) re-

produces polynomials of degree N if for any w ∈ ℓ∞(Zd) and any u ∈ ℓ∞(Zd)

such that uk = p(k) ∀k ∈ Z
d for some p ∈ ΠN , we have:

(S(w)u)k = p(M−1k) + q(k),

where deg(q) < deg(p). If q = 0, we say that the quasi-linear prediction rule

S exactly reproduces polynomials of degree N .

Note that the property is required for any data w, and not only for w = u.

In the following, we will consider dilation matrices to define inter-scale oper-

ators. A dilation matrix is an invertible integer-valued matrix M satisfying

lim
n→∞

M−n = 0, and m := | det(M)|.
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3. Improvement Brought about Non-separable Representations for

Image Compression

In this section , we illustrate on an example the potential interest of non-

separable representations for image compression. The interested reader may

consult [5] and [14] for further details. The dilation matrix we use here is

the quincunx matrix defined by:

M =





−1 1

1 1



 ,

whose coset vectors are ε0 = (0, 0)T and ε1 = (0, 1)T . We consider an in-

terpolatory multi-scale representation which implies that vjk = v(M−jk) (i.e.

ϕ̃ is the Dirac function). By construction vjMk = vj−1
k , so we only need to

predict v(M−jk+ ε1) . To do so, we define four polynomials of degree 1 (i.e.

a+ bx+ cy) interpolating v on the following stencils:

V j,1
k = M−j+1{k, k + e1, k + e2}

V j,2
k = M−j+1{k, k + e1, k + e1 + e2}

V j,3
k = M−j+1{k + e1, k + e2, k + e1 + e2}

V j,4
k = M−j+1{k, k + e2, k + e1 + e2},

which in turn entails the following two predictions for v(M−jk + ε1):

v̂j,1Mk+ε1
= 1

2
(vj−1

k + vj−1
k+e1+e2

) (14)

v̂j,2Mk+ε1
= 1

2
(vj−1

k+e1
+ vj−1

k+e2
). (15)

We now show that to choose between the two predictions (14) and (15)

appropriately improves the compression performance on natural images. The
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cost function we use to make the choice of stencil is as follows:

Cj(k) = min(|vj−1
k+e1

− vj−1
k+e2

|, |vj−1
k − vj−1

k+e1+e2
|).

When the minimum of Cj(k) corresponds to the first (resp. second) argu-

ment, the prediction (15) (resp. (14)) is used. The motivation for the choice

of such a cost function is the following: when an edge intersect the cell Qj−1
k

defined by the vertices M−j+1{k, k+e1, k+e2, k+e1+e2}, several cases may

happen:

1. either the edge intersects [M−j+1k,M−j+1(k+e1+e2)] and [M−j+1(k+

e1),M
−j+1(k + e2)] in which case no direction is favored.

2. or the edge intersects [M−j+1k,M−j+1(k + e1 + e2)] or [M−j+1(k +

e1),M
−j+1(k + e2)], in which case the prediction operator favors the

direction which is not intersected by the edge (this will lead to a better

prediction).

When Qj−1
k is not intersected by an edge, the gain between choosing one

direction or the other is negligible and, in that case, we will apply predic-

tions (14) and (15) successively. It thus remains to determine when a cell is

intersected by an edge. An edge-cell is determined by the following condition:

argmin
k′=k,k+e1+e2,k−e1−e2

|vj−1
k′ − vj−1

k′+e1+e2
| = 1 or

argmin
k′=k,k+e1−e2,k−e1+e2

|vj−1
k′+e1

− vj−1
k′+e2

| = 1 (C),

which means the first order differences are locally maximum in the direction

of prediction. Then, to encode the representation, we use an adapted version

to our context of the EZW (Embedded Zero-tree Wavelet) [21]. To simplify,

consider a N ×N image with N = 2J and J even, then dj (defined in (7)) is

11



(A) (B)

Figure 1: (A): a 256× 256 Lena image, (B): a 256× 256 peppers image

associated to a 2j × 2j+1 matrix of coefficients when j is odd and to a 2j × 2j

matrix of coefficients when j is even. We denote by T j
1 the number of lines

of the matrix associated to dj. We display the compression results for the

256 × 256 images of Figure 1 on Figure 2 (A) and (B). We apply nonlinear

prediction only on edge-cells detected using (C) and only for the subspaces

Vj such that T j
1 ≥ T1. It means that for instance, if we take T1 = 64 and

N = 256, we only predict nonlinearly the last finest four detail coefficients

subspaces. A typical compression result is labeled by NS where NS stands

for non-separable.

In any tested cases (i.e. for several T1), using nonlinear predictions leads

better compression results than the one based on a diagonal dilation matrix.

These encouraging results motivate a deeper study of nonlinear and non-

separable multi-scale representations which we now carry out.
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Figure 2: (A): linear prediction (solid line) and NS (non-separable) prediction on edge-cells

computed using (C) and for varying T1 for the image of Lena, (B):idem but for the image

of peppers

4. Notations and Generalities

We start by introducing some notations that will be used throughout the

paper. Let us consider a multi-index µ = (µ1, µ2, . . . , µd) ∈ N
d and a vector

x = (x1, x2, . . . , xd) ∈ R
d. We define |µ| =

d
∑

i=1

µi and xµ =
d
∏

i=1

xi
µi . For two

multi-indices m,µ ∈ N
d we define




µ

m



 =





µ1

m1



 · · ·





µd

md



 .

For a fixed integer N ∈ N, we define

qN = #{µ, |µ| = N} (16)

where #Q stands for the cardinal of the set Q. The space of bounded se-

quences is denoted by ℓ∞(Zd) and ‖u‖ℓ∞(Zd) is the supremum of {|uk| : k ∈

Z
d}. As usual, let ℓp(Zd) be the Banach space of sequences u on Z

d such that

‖u‖ℓp(Zd) < ∞, where

‖u‖ℓp(Zd) :=

(

∑

k∈Zd

|uk|
p

) 1

p

for 1 ≤ p < ∞.
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We denote by Lp(Rd),the space of all measurable functions v such that

‖v‖Lp(Rd) < ∞, where

‖v‖Lp(Rd) :=

(∫

Rd

|v(x)|pdx

)
1

p

for 1 ≤ p < ∞,

‖v‖L∞(Rd) := ess sup
x∈Rd

|v(x)|.

Throughout the paper, the symbol ‖ · ‖∞ is the sup norm in Z
d when applied

either to a vector or a matrix. Let us recall that, for a function v, the finite

difference of order N ∈ N, in the direction h ∈ R
d is defined by:

∇N
h v(x) :=

N
∑

k=0

(−1)k





N

k



 v(x+ kh).

and the mixed finite difference of order n = (n1, . . . , nd) ∈ N
d in the direction

h = (h1, . . . , hd) ∈ R
d by:

∇n
hv(x) := ∇n1

h1e1
· . . . · ∇nd

hded
v(x) =

max(n1,...,nd)
∑

k1,...,kd=0

(−1)|n|





n

k



 v(x+ k · h),

where k · h :=
d
∑

i=1

kihi is the usual inner product while (e1, . . . , ed) is the

canonical basis on Z
d. For any invertible matrix B we put

∇n
Bv(x) := ∇n1

Be1
· . . . · ∇nd

Bed
v(x).

Similarly, we define Dµv(x) = Dµ1

1 · · ·Dµd

d v(x), where Dj is the differential

operator with respect to the jth coordinate of the canonical basis. For a

sequence (up)p∈Zd and a multi-index n, we will use the mixed finite differences

of order n defined by the formulae

∇nu : = ∇n1

e1
∇n2

e2
· . . . · ∇nd

ed
u,
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where ∇ni
ei

is defined recursively by

∇ni

ei
uk = ∇ni−1

ei
uk+ei −∇ni−1

ei
uk.

Then, we put for n ∈ N:

∆Nu : = {∇nu, |n| = N, n ∈ N
d}.

We end this section with the following remark on notations: for two positive

quantities A and B depending on a set of parameters, the relation A <
∼ B

implies the existence of a positive constant C, independent of the parameters,

such that A ≤ CB. Also A ∼ B means A <
∼ B and B <

∼ A.

4.1. Besov Spaces

Let us recall the definition of Besov spaces. Let p, q ≥ 1, s be a positive

real number andN be any integer such thatN > s. The Besov space Bs
p,q(R

d)

consists of those functions v ∈ Lp(Rd) satisfying

(2jsωN(v, 2
−j)Lp)j≥0 ∈ ℓq(Zd),

where ωN(v, t)Lp is the modulus of smoothness of v of order N ∈ N \ {0} in

Lp(Rd):

ωN(v, t)Lp = sup
h∈Rd

‖h‖2≤t

‖∇N
h v‖Lp(Rd), t ≥ 0,

where ‖.‖2 is the Euclidean norm. The norm in Bs
p,q(R

d) is then given by

‖v‖Bs
p,q(R

d) := ‖v‖Lp(Rd) + ‖(2jsωN(v, 2
−j)Lp)j≥0‖ℓq(Zd).

Let us now introduce a new modulus of smoothness ω̃N that uses mixed finite

differences of order N :

ω̃N(v, t)Lp = sup
n∈Nd

|n|=N

sup
h∈Rd

‖h‖2≤t

‖∇n
hv‖Lp(Rd), t > 0.
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It is easy to see that for any v in Lp(Rd), ‖∇N
h v‖Lp(Rd) <

∼
∑

|n|=N

‖∇n
hv‖Lp(Rd),

thus ωN(v, t)Lp <
∼ ω̃N(v, t)Lp. The inverse inequality ω̃N(v, t)Lp <

∼ ωN(v, t)Lp

immediately follows from Lemma 4 of [20]. It implies that:

‖v‖Bs
p,q(R

d) ∼ ‖v‖Lp + ‖(2jsω̃N(v, 2
−j)Lp)j≥0‖ℓq(Zd).

Going further, there exists a family of equivalent norms on Bs
p,q(R

d).

Lemma 4.1. For all σ > 1, ‖v‖Bs
p,q(R

d) ∼ ‖v‖Lp(Rd)+‖(σjsω̃N(v, σ
−j)Lp)j≥0‖ℓq(Zd).

Proof: Since σ > 1, for any j > 0 there exists j′ > 0 such that 2j
′

≤ σj ≤

2j
′+1. According to this, we have the inequalities

2j
′sω̃N(v, 2

−j′−1)Lp ≤ σjsω̃N(v, σ
−j)Lp ≤ 2(j

′+1)sω̃N(v, 2
−j′)Lp ,

from which the norm equivalence follows.

5. Smoothness of Nonlinear Multi-scale Representations

In this section, we prove the equivalence between the norm of a function

v belonging to Bs
p,q(R

d) and the discrete quantity computed using its detail

coefficients dj arising from the nonlinear and non-separable multiscale rep-

resentation. We show that the existing results in one dimension naturally

extend to our framework due to the caracterization of Besov spaces by mixed

finite differences.

Lower estimates of the Besov norm are associated to a so-called direct

theorem while upper estimates are associated to a so-called inverse theorem.

Note that a similar technique was applied in [6] in a wavelet setting.
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5.1. Direct Theorem

Let v be a function in some Besov space Bs
p,q(R

d) with p, q ≥ 1 and

s > 0, (v0, (dj)j≥0) be its nonlinear multi-scale representation. We now show

under what conditions we are able to get a lower estimate of ‖v‖Bs
p,q(R

d) using

(v0, (dj)j≥0). To prove such a result, we need to have first an estimate of the

norm of the prediction error:

Lemma 5.1. Assume that the quasi-linear prediction rule S(w) exactly re-

produces polynomials of degree N − 1 then the following estimation holds

‖ej‖ℓp(Zd) <
∼

∑

|n|=N

‖∇nvj‖ℓp(Zd). (17)

Proof: Let us compute

ejk(w) := vjk −
∑

‖k−Ml‖∞≤K

ak−Ml(w)v
j−1
l .

Using (9), we can write it down as

ejk(w) = vjk −m−1
∑

l∈Zd

‖k−Ml‖∞≤K

ak−Ml(w)
∑

n∈Zd

‖n−Ml‖∞≤P

h̃n−Mlv
j
n

= vjk −m−1
∑

n∈Zd

‖k−n‖∞≤K+P

vjn
∑

l∈Zd

‖k−Ml‖∞≤K

ak−Ml(w)h̃n−Ml =
∑

n∈F (k)

bk,n(w)v
j
n,

where bk,n(w) =
∑

l∈Zd

‖k−Ml‖∞≤K

ak−Ml(w)h̃n−Ml, and F (k) = {n ∈ Z
d : ‖n −

k‖∞ ≤ P + K} is a finite set for any given k. For any k ∈ Z
d let us

define a vector bk(w) := (bk,n(w))n∈F (k). By hypothesis, ej(w) = 0 if there

exists p ∈ ΠN ′ , 0 ≤ N ′ < N such that vk = p(k). Consequently, for any

q ∈ Z
d, |q| < N , bk(w) is orthogonal to any polynomial sequence associated
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to the polynomial lq = lq11 · . . . · lqdd , thus it can be written in terms of a basis

of the space orthogonal to the space spanned by these vectors. According

to [12], Theorem 4.3, we can take {∇µδ·−l, |µ| = N, l ∈ Z
d} as a basis of

this space. By denoting cµl (w) the coordinates of bk(w) in this basis, we may

write:

bk,n(w) =
∑

|µ|=N

∑

l∈Zd

cµl (w)∇
µδn−l

and taking w = vj−1 we get

ejk := ejk(v
j−1) =

∑

n∈F (k)

∑

|µ|=N

∑

l∈Zd

cµl (v
j−1)∇µδn−lv

j
n =

∑

n∈F (k)

∑

|µ|=N

cµn(v
j−1)∇µvjn.

(18)

Finally, we use (12) to conclude that the coefficients bk,n(v
j−1) and cµl (v

j−1)

are bounded independently of k, n and w, and (17) follows from (18).

In what follows, we will use the definition of isotropic matrices:

Definition 5.1. A matrix M is called isotropic if it is similar to the diagonal

matrix diag(σ1, . . . , σd), i.e. there exists an invertible matrix Λ such that

M = Λ−1diag(σ1, . . . , σd)Λ, (19)

with σ1, . . . , σd being the eigenvalues of matrix M , σ := |σ1| = . . . = |σd| =

m
1

d .

Moreover, for any given norm in R
d there exist constants C1, C2 > 0 such

that for any integer n and for any v ∈ R
d

C1m
n
d ‖v‖ ≤ ‖Mnv‖ ≤ C2m

n
d ‖v‖.

Lemma 17 enables us to compute the lower estimate:
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Theorem 5.1. If for p, q ≥ 1 and some positive s, v belongs to Bs
p,q(R

d),

if the quasi-linear prediction rule exactly reproduces polynomials of degree

N − 1 with N > s, if the matrix M is isotropic and if the equivalence (8) is

satisfied, then

‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd) <
∼ ‖v‖Bs

p,q(R
d). (20)

Proof: Using the Hölder inequality and the fact that ϕ̃ is compactly sup-

ported, we first obtain

‖v0‖ℓp(Zd) = ‖(〈v, ϕ̃(· − k)〉)k∈Zd‖ℓp(Zd) <
∼ ‖(‖v‖Lp(Supp(ϕ̃(·−k))))k∈Zd‖ℓp(Zd) <

∼ ‖v‖Lp(Rd).

Let us then consider a quasi-linear prediction rule which exactly repro-

duces polynomials of degree N−1. Since ‖ej. ‖ℓp(Zd) ∼ ‖dj−1
. ‖ℓp(Zd), by Lemma

5.1 we get

‖(m(s/d−1/p)j‖(dj. )‖ℓp(Zd))j≥0‖ℓq(Zd)
<
∼ ‖(m(s/d−1/p)j

∑

|n|=N

‖(∇nvj. )‖ℓp(Zd))j≥0‖ℓq(Zd).

We have successively

∑

|n|=N

‖∇nvj‖ℓp(Zd) =
∑

|n|=N

‖∇n(〈v,mjϕ̃(M j · −k)〉)k∈Zd‖ℓp(Zd)

=
∑

|n|=N

‖(〈∇n
M−jv,mjϕ̃(M j · −k)〉)k∈Zd‖ℓp(Zd)

<
∼ mj/p‖

∑

|n|=N

(‖∇n
M−jv‖Lp(Supp(ϕ̃(Mj ·−k))))k∈Zd‖ℓp(Zd)

<
∼ mj/p

∑

|n|=N

‖∇n
M−jv‖Lp(Rd)

<
∼ mj/pω̃N(v, C2m

−j/d)Lp,
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since M is isotropic. Furthermore, for any integer C > 0 and any t > 0,

ω̃N(v, Ct)Lp ≤ Cω̃N(v, t)Lp. Thus,

∑

|n|=N

‖∇nvj‖ℓp(Zd)
<
∼ mj/pω̃N(v,m

−j/d)Lp,

which implies (20).

5.2. Inverse Theorems

We consider the sequence (v0, (dj)j≥0) and we study the convergence of

the reconstruction process:

vj = S(vj−1)vj−1 + Edj−1,

throughout the study of the limit of the sequence of functions

vj(x) =
∑

k∈Zd

vjkϕ(M
jx− k), (21)

where ϕ is defined in (1). More precisely, we show that under certain condi-

tions on the sequence (v0, (dj)j≥0) and on ϕ, vj converges to some function

v belonging to a Besov space.

For that purpose, we establish that if the quasi-linear prediction rule S(w)

reproduces polynomials of degree N − 1 then all the mixed finite differences

of order lesser than N can be defined using difference operators:

Proposition 5.1. Let S(w) be a quasi-linear prediction rule reproducing

polynomials of degree N − 1. Then for any l, 0 < l ≤ N there exists a

difference operator Sl such that:

∆lS(w)u := Sl(w)∆
lu,

for all u, w ∈ ℓ∞(Zd).
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The proof is available in [18], Proposition 1. In contrast to the tensor

product case studied in [17], the operator Sl(w) is multi-dimensional and is

defined from (ℓ∞(Zd))ql onto (ℓ∞(Zd))ql, ql = #{µ, |µ| = l}, and cannot be

reduced to a set of difference operators in some given directions.

The inverse theorem proved in this section is based on the contractivity of

the difference operators. This is done by studying the joint spectral radius,

which we now define:

Definition 5.2. Let us consider a set of difference operators (Sl)l≥0, defined

in Proposition 5.1 with S0 := S. The joint spectral radius in (ℓp(Zd))ql of Sl

is given by

ρp(Sl) := inf
j>0

sup
(w0,··· ,wj−1)∈(ℓp(Zd))j

‖Sl(w
j−1) · . . . · Sl(w

0)‖
1/j

(ℓp(Zd))ql→(ℓp(Zd))ql

= inf
j>0

{ρ, ‖Sl(w
j−1) · · ·Sl(w

0)∆lv‖(ℓp(Zd))ql <
∼ ρj‖∆lv‖(ℓp(Zd))ql , ∀v ∈ ℓp(Zd)}.

Remark 5.1. When vj = S(vj−1)vj−1, for all j > 0 we may write:

∆lS(vj)vj = Sl(S(v
j−1)vj−1)∆lvj = Sl(S(v

j−1)vj−1)Sl(v
j−1)∆lvj−1 = · · · := (Sl)

jv0.

This naturally leads to another definition of the joint spectral radius by putting

wj = Sjv0 in the above definition. In [19], the following definition was in-

troduced to study the convergence and stability of one-dimensional power-P

scheme. In that context, the joint spectral radius in (ℓp(Zd))ql of Sl is changed

into

ρ̃p(Sl) := inf
j>0

‖(Sl)
j‖

1/j

(ℓp(Zd))ql→(ℓp(Zd))ql

= inf
j>0

{ρ, ‖∆lSjv‖(ℓp(Zd))ql <
∼ ρj‖∆lv‖(ℓp(Zd))ql , ∀v ∈ ℓp(Zd)}.

Since our prediction operator is quasi-linear, the definition (5.2) is more

appropriate.

21



Before we prove the inverse theorem, we need to establish some extensions

to the non-separable case of results obtained in [17]:

Lemma 5.2. Let S(w) be a quasi-linear prediction rule that exactly repro-

duces polynomials of degree N − 1. Then,

‖vj+1 − vj‖Lp(Rd)
<
∼ m−j/p

(

‖∆Nvj‖(ℓp(Zd))qN + ‖dj‖ℓp(Zd)

)

. (22)

Moreover, for any ρp(SN) < ρ < m1/p there exists an n such that,

m−j/p‖∆Nvj‖(ℓp(Zd))qN <
∼ δj‖v0‖ℓp(Zd) +

t−1
∑

r=0

δnr
l=j−rn
∑

l=j−(r+1)n+1

m−l/p‖dl−1‖ℓp(Zd)

(23)

where δ = ρm−1/p and t = ⌊j/n⌋.

Proof: Using the definition of functions vj(x) and the scaling equation (1),

we get

vj+1(x)− vj(x) =
∑

k

vj+1
k ϕ(M j+1x− k)−

∑

k

vjkϕ(M
jx− k)

=
∑

k

((S(vj)vj)k + djk)ϕ(M
j+1x− k)−

∑

k

vjk
∑

l

gl−Mkϕ(M
j+1x− l)

=
∑

k

((S(vj)vj)k −
∑

l

gk−Mlv
j
l )ϕ(M

j+1x− k) +
∑

k

djkϕ(M
j+1x− k).

If S(w) exactly reproduces polynomials of degree N−1 for all w, then having

in mind that

Svj :=
∑

l

gk−Mlv
j
l , (24)

is the linear prediction which exactly reproduces polynomials of degree N−1

and using the same arguments as in Lemma 5.1, we get

‖
∑

k

((S(vj)vj)k−Svjk)ϕ(M
j+1x−k)‖Lp(Rd)

<
∼ m−j/p‖∆Nvj‖(ℓp(Zd))qN . (25)
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The proof of (22) is thus complete. To prove (23), we note that for any

ρp(SN) < ρ < m1/p, there exists an n such that for all v:

‖(SN)
nv‖(ℓp(Zd))qN ≤ ρn‖v‖(ℓp(Zd))qN . (26)

Using the boundedness of the operator SN , we obtain:

‖∆Nvn‖(ℓp(Zd))qN ≤ ‖SN∆
Nvn−1‖(ℓp(Zd))qN + ‖∆Ndn−1‖(ℓp(Zd))qN

≤ ‖(SN)
n∆Nv0‖(ℓp(Zd))qN +D

n−1
∑

l=0

‖dl‖ℓp(Zd)

≤ ρn‖∆Nv0‖(ℓp(Zd))qN +D
n−1
∑

l=0

‖dl‖ℓp(Zd)

Then for any j, define t := ⌊j/n⌋, after t iterations of the above inequality,

we get:

‖∆Nvj‖(ℓp(Zd))qN ≤ ρnt‖∆Nvj−nt‖(ℓp(Zd))qN +D

t−1
∑

r=0

ρnr
(r+1)n−1
∑

l=rn

‖dj−1−l‖ℓp(Zd)

Then putting as in [10], δ = ρm−1/p, and Aj = m−j/p‖∆Nvj‖
(ℓp(Zd))

rd
N
, we

get:

Aj ≤ δntAj−nt +D
t−1
∑

r=0

δnr
l=(r+1)n−1
∑

l=nr

m−(j−l)/p‖dj−1−l‖ℓp(Zd)

Then, we may write, due the boundedness of S(k), for j′ < n:

Aj′ <
∼ ‖v0‖ℓp(Zd) +

j′
∑

l=1

m−l/p‖dl−1‖ℓp(Zd)

which finally leads to:

m−j/p‖∆Nvj‖
(ℓp(Zd))r

d
N

<
∼ δj‖v0‖ℓp(Zd) +

t−1
∑

r=0

δnr
l=j−nr
∑

l=j−n(r+1)+1

m−l/p‖dl−1‖ℓp(Zd)
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By abusing a little bit terminology, we say that ϕ exactly reproduces

polynomials if the underlying subdivision scheme does. With this in mind,

we are ready to state the inverse theorems: the first one deals with Lp

convergence under the main hypothesis ρp(S1) < m1/p, while the second

deals with the convergence in Bs
p,q(R

d) under the main hypothesis ρp(SN) <

m1/p−s/d for some N > 1 and N − 1 ≤ s < N .

Theorem 5.2. Let S(w) be a quasi-linear prediction rule reproducing the

constants. Assume that ρp(S1) < m1/p, if

‖v0‖ℓp(Zd) +
∑

j≥0

m−j/p‖dj‖ℓp(Zd) < ∞,

then the limit function v belongs to Lp(Rd) and

‖v‖Lp(Rd) ≤ ‖v0‖ℓp(Zd) +
∑

j≥0

m−j/p‖dj‖ℓp(Zd). (27)

Proof: From estimates (22) and (23), for any ρp(S1) < ρ < m1/p there exists

an n such that:

‖vj+1 − vj‖Lp(Rd)
<
∼ δj‖v0‖ℓp(Zd) +

s
∑

r=0

δnr
l=j−nr
∑

l=j−n(r+1)+1

m−l/p‖dl−1‖ℓp(Zd) +m−j/p‖dj‖ℓp(Zd),
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from which we deduce that:

‖v‖Lp(Rd) ≤ ‖v0‖Lp(Rd) +
∑

j≥0

‖vj+1 − vj‖Lp(Rd)(28)

<
∼ ‖v0‖ℓp(Zd) +

∑

j≥0

δj‖v0‖ℓp(Zd) +

t−1
∑

r=0

δnr
l=j−nr
∑

l=j−n(r+1)+1

m−l/p‖dl−1‖ℓp(Zd) +m−j/p‖dj‖ℓp(Zd)

<
∼ ‖v0‖ℓp(Zd) +

∞
∑

t=0

n−1
∑

q=0

t
∑

r′=1

δn(t−r′)

l=r′n+q
∑

l=r′n−n+q+1

m−l/p‖dl−1‖ℓp(Zd) +
∑

j>0

m−j/p‖dj‖ℓp(Zd)

<
∼ ‖v0‖ℓp(Zd) +

∞
∑

r′=1

∑

t>r′

δn(t−r′)
n−1
∑

q=0

l=r′n+q
∑

l=r′n−n+q+1

m−l/p‖dl−1‖ℓp(Zd) +
∑

j>0

m−j/p‖dj‖ℓp(Zd)

<
∼ ‖v0‖ℓp(Zd) +

∞
∑

j>0

m−j/p‖dj−1‖ℓp(Zd)(29)

The last equality being obtained remarking that
∑

t>r′
δn(t−r′) = 1

1−δn
. This

proves (27).

Now, we extend this result to the case of Besov spaces:

Theorem 5.3. Let S(w) be a quasi-linear prediction rule exactly reproducing

polynomials of degree N−1 and let ϕ exactly reproduce polynomials of degree

N − 1. Assume that ρp(SN) < m1/p−s/d for some N > s ≥ N − 1. If

(v0, d0, d1, . . .) are such that

‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd) < ∞,

the limit function v belongs to Bs
p,q(R

d) and

‖v‖Bs
p,q(R

d) <
∼ ‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (30)

Proof: First, by Hölder inequality for any q, q′ > 0, 1
q
+ 1

q′
= 1, it holds
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that

∑

l≥0

‖dl‖ℓp(Zd)m
−l/p ≤ ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd)‖(m

−js/d)j≥0‖ℓq′(Rd)

<
∼ ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd),

and finally,

‖v‖Lp(Rd) <
∼ ‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd).

It remains to evaluate the semi-norm |v|Bs
p,q(R

d) := ‖(mjs/dω̃N(v,m
−j/d)Lp)j≥0‖ℓq(Zd).

For each j ≥ 0, we have

ω̃N(v,m
−j/d)Lp ≤ ω̃N(v − vj , m

−j/d)Lp + ω̃N(vj , m
−j/d)Lp. (31)

Note that the property (23) can be extended to the case where ρp(SN) <

m1/p−s/d. Making the same kind of computation as in the proof of (23), one

can prove that for any ρp(SN) < ρ < m1/p−s/d there exists an n such that:

m−j(1/p−s/d)‖∆Nvj‖(ℓp(Zd))qN <
∼ δj‖v0‖ℓp(Zd) +

t−1
∑

r=0

δnr
l=j−rn
∑

l=j−(r+1)n+1

m−l(1/p−s/d)‖dl−1‖ℓp(Zd)

where δ := ρm−1/p+s/d and t = ⌊j/n⌋. Then, we can deduce that:

‖∆Nvj‖(ℓp(Zd))qN <
∼ ρj(‖v0‖ℓp(Zd) + δ−j

s−1
∑

r=0

δnr
l=j−rn
∑

l=j−(r+1)n+1

m−l(1/p−s/d)‖dl−1‖ℓp(Zd))

<
∼ ρj(‖v0‖ℓp(Zd) +

s−1
∑

r=0

δ−n+1

l=j−rn
∑

l=j−(r+1)n+1

ρ−l‖dl−1‖ℓp(Zd))

<
∼ ρj(‖v0‖ℓp(Zd) +

j
∑

l=0

ρ−l‖dl−1‖ℓp(Zd)) (32)
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For the first term on the right hand side of (31), one has using (32):

ω̃N(v − vj, m
−j/d)Lp <

∼

∑

l≥j

‖vl+1 − vl‖Lp(Rd)

<
∼

∑

l≥j

m−l/p(‖∆Nvl‖(ℓp(Zd))qN + ‖dl‖ℓp(Zd))

<
∼

∑

l≥j

m−l/p

(

ρl‖v0‖ℓp(Zd) +
l
∑

k=0

ρl−k‖dk‖ℓp(Zd)

)

.

For the first term, choosing since ρ < m1/p, we have

∑

l≥j

m−l/pρl‖v0‖ℓp(Zd) ∼ m−j/pρj‖v0‖ℓp(Zd).

For the second term, we get

∑

l≥j

m−l/p
l
∑

k=0

ρl−k‖dk‖ℓp(Zd)

= m−j/p

j
∑

k=0

ρj−k‖dk‖ℓp(Zd) +
∑

l>j

m−l/p
l
∑

k=0

ρl−k‖dk‖ℓp(Zd)

<
∼ m−j/p

j
∑

k=0

ρj−k‖dk‖ℓp(Zd) +
∑

k≥0

∑

l>max(k,j)

m−l/pρl−k‖dk‖ℓp(Zd)

<
∼ m−j/p

j
∑

k=0

ρj−k‖dk‖ℓp(Zd) +
∑

k≥0

‖dk‖ℓp(Zd)ρ
−k

∑

l>max(k,j)

ρlm−l/p

<
∼ m−j/p

j
∑

k=0

ρj−k‖dk‖ℓp(Zd) +
∑

k>j

m−k/p‖dk‖ℓp(Zd).

Similarly, for the second term on the right hand side of (31), one has

ω̃N(vj, m
−j/d)Lp <

∼ ‖vj‖Lp(Rd) <
∼ ‖v‖Lp(Rd)
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The estimate of the semi-norm |v|Bs
p,q

is then reduced to the estimates of

‖(mjs/daj)j≥0‖ℓq(Zd), ‖(m
js/dbj)j≥0‖ℓq(Zd) and ‖(mjs/dcj)j≥0‖ℓq(Zd), with

aj := m−j/pρj‖v0‖ℓp(Zd),

bj := m−j/pρj
j
∑

l=0

ρ−l‖dl‖ℓp(Zd),

cj :=
∑

l>j

m−l/p‖dl‖ℓp(Zd).

Recalling δ = ms/d−1/pρ < 1, we write:

‖(σjsaj)j≥0‖ℓq(Zd) = ‖v0‖ℓp(Zd)‖(δ
j)j≥0‖ℓq(Zd) <

∼ ‖v0‖ℓp(Zd). (33)

In order to estimate ‖(mjs/dbj)j≥0‖ℓq(Zd), we rewrite it in the following form:

‖(mjs/dbj)j≥0‖ℓq(Zd) = ‖(mj(s/d−1/p)ρj
j
∑

l=0

ρ−l‖dl‖ℓp)j≥0‖ℓq(Zd)

= ‖(δj
j
∑

l=0

δ−lm(s/d−1/p)l‖dl‖ℓp(Zd))j≥0‖ℓq(Zd).

We, now, make use of the following discrete Hardy inequality: if 0 < δ < 1,

then

‖(δj
j
∑

l=0

δ−lxl)j≥0‖ℓq(Zd) <
∼ ‖(xj)j≥0‖ℓq(Zd).

Applying it to xl = m(s/d−1/p)l‖dl‖ℓp(Zd) yields

‖(mjs/dbj)j≥0‖ℓq(Zd) <
∼ ‖(m(s/d−1/p)j‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (34)

To estimate ‖(mjs/dcj)j≥0‖ℓq(Zd), we rewrite it as follows

‖(mjs/dcj)j≥0‖ℓq(Zd) = ‖mjs/d
∑

l>j

m−ls/d
(

ml(s/d−1/p)‖(dlk)‖ℓp(Zd)

)

‖ℓq(Zd)

28



and make use of another discrete Hardy inequality: if β > 1, then

‖(βj
∑

l>j

β−lyl)j≥0‖ℓq(Zd) <
∼ ‖(yj)j≥0‖ℓq(Zd).

Taking yl = ml(s/d−1/p)‖dl‖ℓp(Zd), we obtain, since s > N − 1,

‖(mjs/dcj)j≥0‖ℓq(Zd) <
∼ ‖(mj(s/d−1/p)‖(djk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd). (35)

Then (30) follows by combining (33), (34) and (35).

6. Stability of the Multi-Scale Representation

Here, we consider two data sets (v0, d0, d1, . . .) and (ṽ0, d̃0, d̃1, . . .) corre-

sponding to two reconstruction processes

vj = S(vj−1)vj−1 + ej = S(vj−1)vj−1 + Edj−1 (36)

and

ṽj = S(ṽj−1)ṽj−1 + ẽj = S(ṽj−1)ṽj−1 + Ed̃j−1. (37)

where E is the matrix corresponding to the basis of the kernel of the projec-

tion operator. In that context, v is the limit of vj(x) =
∑

k∈Zd

vjkϕ(M
jx− k) (

and similarly for ṽ).

To study the stability of the multi-scale representation in Lp(Rd), we need

the following Lemma:

Lemma 6.1. Let S(w) be a quasi-linear prediction rule that exactly re-

produces polynomials of degree N − 1. Then, putting uj = vj − vj−1 and

ũj = ṽj − ṽj−1 we get

‖uj−ũj‖Lp(Rd) <
∼ m−j/p

(

‖∆N(vj−1 − ṽj−1)‖(ℓp(Zd))qN + ‖dj−1 − d̃j−1‖ℓp(Zd)

)

.

(38)
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Proof: By definition of the linear prediction operator S, see (24), we can

write

‖uj − ũj‖Lp(Rd) ≤ m−j/p‖(S(vj−1)− S)vj−1 + dj−1 − ((S(ṽj−1)− S)ṽj−1 + d̃j−1)‖ℓp(Zd)

≤ m−j/p
(

‖∆N(vj−1 − ṽj−1)‖(ℓp(Zd))qN + ‖dj−1 − d̃j−1‖ℓp(Zd)

)

.

Now, we study the stability of the multi-scale representation in Lp(Rd),

which is stated in the following result:

Theorem 6.1. Let S(w) be a quasi-linear prediction rule that reproduces the

constants and suppose that there exist a ρ < m1/p and and an n such that

‖(S1)
nw − (S1)

nv‖ℓp(Zd)d ≤ ρn‖v − w‖ℓp(Zd)d . ∀v, w ∈ ℓp(Zd)d (39)

Assume that vj and ṽj converge to v and ṽ in Lp(Rd) then we have:

‖v − ṽ‖Lp(Rd) <
∼ ‖v0 − ṽ0‖ℓp(Zd) +

∑

l≥0

m−l/p‖dl − d̃l‖ℓp(Zd). (40)

Proof: First remark that due to the hypothesis (39) and the fact that the

fact that S1 is bounded, we may write that

‖∆1(vn − ṽn)‖(ℓp(Zd))d ≤ ‖S1∆
1vn−1 − S1∆

1ṽn−1‖(ℓp(Zd))d + ‖∆1(dn−1 − d̃n−1)‖(ℓp(Zd))d

≤ ‖(S1)
n∆1v0 − (S1)

n∆1ṽ0‖(ℓp(Zd))d +D
n−1
∑

l=0

‖dl − d̃l‖ℓp(Zd)

≤ ρn‖∆1v0 −∆1ṽ0‖(ℓp(Zd))d +D
n−1
∑

l=0

‖dl − d̃l‖ℓp(Zd)

Then using the same kind of arguments as in the proof of (23), we can write:

m−j/p‖∆1(vj − ṽj)‖(ℓp(Zd))d
<
∼ δj‖v0 − ṽ0‖ℓp(Zd) +

t−1
∑

r=0

δnr
l=j−nr
∑

l=j−n(r+1)+1

m−l/p‖dl−1 − d̃l−1‖ℓp(Zd).

(41)
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Now by Lemma 6.1, relation (41) and by then using the same kind of argu-

ment as in (28), one has:

‖v − ṽ‖Lp(Rd) ≤
∑

j>0

‖uj − ũj‖Lp(Rd) + ‖v0 − ṽ0‖Lp(Rd)

≤
∑

j>0

m−j/p
(

‖∆1(vj−1 − ṽj−1)‖(ℓp(Zd))d + ‖dj−1 − d̃j−1‖ℓp(Zd)

)

+ ‖v0 − ṽ0‖ℓp(Zd)

≤ ‖v0 − ṽ0‖ℓp(Zd) +

j
∑

l=0

m−l/p‖dl−1 − d̃l−1‖ℓp(Zd).

In view of the inverse inequality (30), it seems natural to seek an inequal-

ity of type

‖v−ṽ‖Bs
p,q(R

d) <
∼ ‖v0−ṽ0‖ℓp(Zd)+‖(m(s/d−1/p)j‖dj. −d̃j. ‖ℓp(Zd))j≥0‖ℓq(Zd). (42)

We now prove a stability theorem in Besov space Bs
p,q(R

d) in the following

theorem:

Theorem 6.2. Let S(w) be a quasi-linear prediction rule which exactly re-

produces polynomials of degree N − 1. Assume that vj and ṽj converge to

v and ṽ in Bs
p,q(R

d) respectively and that there exist ρ < m1/p−s/d and an n

such that:

‖(SN)
nw − (SN)

nv‖(ℓp(Zd))qN ≤ ρn‖w − v‖(ℓp(Zd))qN ∀v, w ∈ (ℓp(Zd))qN . (43)

Then, we get that:

‖v−ṽ‖Bs
p,q(R

d) <
∼ ‖v0−ṽ0‖ℓp(Zd)+‖(m−j(1/p−s/d)‖(djk−d̃jk)k∈Zd‖ℓp(Zd))j≥0‖ℓq(Zd).

(44)
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Remark 6.1. We shall note that a similar study was proposed in the one-

dimensional case to study the stability of the multiscale representation based

on so-called r-shift invariant subdivision operators [19]. In that paper, the

stability is obtained when ρp(SN) < 1, while in our approach the condition

for the stability is not directly related to the joint spectral radius of SN .

Proof: Using the same technique as in the proof of Theorem 6.1, replacing

S1 by SN and remarking that ρ of hypothesis (44) is smaller than m1/p, we

immediately get:

‖v − ṽ‖Lp <
∼ ‖v0 − ṽ0‖ℓp(Zd) +

∑

l≥0

m−l/p‖dl − d̃l‖ℓp(Zd), .

from which we deduce that:

‖v − ṽ‖Lp(Rd) ≤ ‖v0 − ṽ0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖dj − d̃j‖ℓp(Zd))j≥0‖ℓq(Zd)‖(m
−sj/d)j≥0‖ℓq′(Zd)

<
∼ ‖v0 − ṽ0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖dj − d̃j‖ℓp(Zd))j≥0‖ℓq(Zd),

It remains to estimate the semi-norm

|w|Bs
p,q(R

d) := ‖(mjs/dωN(w,m
−j/d)Lp)j≥0‖ℓq(Zd),

for w := v − ṽ. For every j ≥ 0, denoting wj = vj − ṽj, we have

ωN(w,m
−j/d)Lp ≤ ωN(w − wj , m

−j/d)Lp + ωN(wj, m
−j/d)Lp. (45)

For the first term, using successively Lemma 6.1, hypothesis (44), and then
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making the same kind of computation as in (32)one has

ωN(w − wj, m
−j/d)Lp <

∼

∑

l≥j

‖wl+1 − wl‖Lp(Rd)

<
∼

∑

l≥j

m−l/p
(

‖∆N(vl − ṽl)‖(ℓp(Zd))qN + ‖dl − d̃l‖ℓp(Zd)

)

<
∼

∑

l≥j

m−l/p

(

ρl‖v0 − ṽ0‖ℓp(Zd) +
l
∑

k=0

ρl−k‖dk − d̃k‖ℓp(Zd)

)

.

Since ρ < m1/p, then for the first term we have

∑

l≥j

m−l/pρl‖v0 − ṽ0‖ℓp(Zd) ∼ m−j/pρj‖v0 − ṽ0‖ℓp(Zd).

For the second term, we get

∑

l≥j

m−l/p
l
∑

k=0

ρl−k‖dk − d̃k‖ℓp(Zd) =

= m−j/p

j
∑

k=0

ρj−k‖dk − d̃k‖ℓp(Zd) +
∑

l>j

m−l/p
l
∑

k=0

ρl−k‖dk − d̃k‖ℓp(Zd)

<
∼ m−j/p

j
∑

k=0

ρj−k‖dk − d̃k‖ℓp(Zd) +
∑

k≥0

∑

l≥max(k,j+1)

m−l/pρ(l−k)‖dk − d̃k‖ℓp(Zd)

<
∼ m−j/p

j
∑

k=0

ρj−k‖dk − d̃k‖ℓp(Zd) +
∑

k>j

m−k/p‖dk − d̃k‖ℓp(Zd).

The second term in (45) is evaluated as follows:

ωN(vj − ṽj , m
−j/d)Lp <

∼ ‖vj − ṽj‖Lp(Rd)

<
∼ m−j/pρj‖v0 − ṽ0‖ℓp(Zd) +m−j/p

j
∑

l=0

ρj−l‖dl − d̃l‖ℓp(Zd).

The second term on the right hand side of (45), can be evaluated the same

way. We have thus reduced the estimate of |w|Bs
p,q(R

d), to the estimates of
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the discrete norms ‖(mjs/daj)j≥0‖ℓq(Zd), and ‖(mjs/dbj)j≥0‖ℓq(Zd), where the

sequences are defined as follows:

aj := ρjm−j/p‖v0 − ṽ0‖ℓp(Zd),

bj := m−j/p

j
∑

l=0

ρj−l‖dl − d̃l‖ℓp(Zd),

cj :=
∑

l>j

m−l/p‖dl − d̃l‖ℓp(Zd).

Note that this quantities are identical to that obtained in the convergence

theorem replacing vl by vl − ṽl and dl by dl − d̃l, so that the end of the proof

is identical.

7. Conclusion

In this paper, we have presented a new kind of nonlinear and non-separable

multi-scale representations based on the use of non-diagonal dilation matri-

ces. We have shown that the non-linear scheme proposed by Harten natu-

rally extends in that context and we have shown convergence and stability

in Lp and Besov spaces. The key idea is to use the characterization of Besov

spaces by means of mixed finite differences and then to study the joint spec-

tral radii of these difference operators. Because, these operators involve all

potential mixed finite differences their study cannot be reduced to that of

one-dimensional difference operators. Future work should involve the study

of multi-scale representations which are associated with more general predic-

tion operators which do not necessarily exactly reproduce polynomials.
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