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1 Introduction

1.1 Definitions

We start with a few definitions:
a) A real-valued process (Xt, t ≥ 0) is said to be increasing in the convex order if:

∀t > 0, E [|Xt|] <∞

and, for every convex function ψ : R −→ R:

t ∈ R+ 7−→ E [ψ(Xt)] ∈] −∞,+∞] is increasing. (1)

This notion plays an important role in many applied domains of probability; see, e.g.
Shaked-Shanthikumar [SS94, SS07]. We call such a process a peacock, an acronym derived
from the French term: Processus Croissant pour l’Ordre Convexe. To prove (1), it suffices
(see [HPRY, Chapter 1]) to consider only the class C of convex functions ψ such that:

C := {ψ is a convex function of C2 class such that ψ′′ has compact support}.

Note that if ψ ∈ C, then ψ′ is a bounded function.

b) A real-valued process (Xt, t ≥ 0) is called a 1-martingale if there exists a mar-
tingale (Mt, t ≥ 0) (defined on a suitable filtered probability space) which has the same
one-dimensional marginals as (Xt, t ≥ 0), that is to say, for each fixed t ≥ 0:

Xt
(law)
= Mt.

We say that such a martingale is associated to the process (Xt, t ≥ 0). From Jensen’s
inequality, it is clear that a 1-martingale is a peacock. Conversely, a remarkable result
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due to Kellerer [Kel72] states that any peacock is a 1-martingale. However, the proofs
presented in Kellerer’s paper are not constructive, and in general, it is a difficult task to
exhibit such a martingale.
In this paper, we shall only tackle the question of exhibiting peacocks, and mainly focus
on examples derived from diffusions.

1.2 Some examples

Let (Bs, s ≥ 0) be a standard Brownian motion. Carr, Ewald and Xiao [CEX08] proved
that the process:

„

At :=
1

t

Z t

0

exp
“

Bs − s

2

”

ds =

Z 1

0

exp

„

Bts − st

2

«

ds , t ≥ 0

«

(2)

is a peacock. Baker-Yor [BY09] then exhibited a martingale which is associated to this
peacock, and is constructed from the Wiener sheet. This example was the starting point
of many recent developments which we try to synthesize; consider, for every λ ≥ 0, a
real-valued measurable process

Zλ,� := (Zλ,t, t ≥ 0)

such that
∀λ ∈ R+, ∀t ∈ R+, E

h

eZλ,t

i

<∞,

and define, for any finite and positive measure µ on R+ the process:
 

A
(µ)
λ :=

Z +∞

0

eZλ,t

E
ˆ

eZλ,t
˜µ(dt), λ ≥ 0

!

. (3)

(Taking Zλ,t = Bλt and µ(ds) = 1[0,1](ds), we recover (2).)
Now, this raises the following natural question:

Under which conditions is the process
“

A
(µ)
λ , λ ≥ 0

”

a peacock ?

It is known that (A
(µ)
λ , λ ≥ 0) is a peacock in the following cases:

• Zλ,t = λtX with X a r.v., see ([HPRY]),

• Zλ,t = λLt with (Lt, t ≥ 0) a Lévy process such that E
ˆ

eL1
˜

<∞, (see [HRY09b]).

• Zλ,t = Gλ,t with, for every λ ≥ 0, (Gλ,t, t ≥ 0) a Gaussian process such that the
function λ −→ E [Gλ,tGλ,s] is increasing for every s, t ≥ 0, (see [HRY09a]).

In this paper, we shall exhibit several other families of peacocks.

In Section 2, we introduce the notion of conditional monotonicity which will lead to
a new large class of peacocks.

In Section 3, we give many examples, among which the processes with independent
log-concave increments and the “well-reversible” diffusions at fixed times.

In Section 4, we present another condition, this time relying upon Laplace transforms,
which implies the peacock property.

Finally, in Section 5, we present a result which links the stochastic and convex orders,
and makes it possible to recover some of the peacocks presented above.

2 A class of peacocks under the conditional mono-

tonicity hypothesis

In this section, we introduce and study the notion of conditional monotonicity, which
already appear in [SS94, Chapter 4.B, p.114-126].

2



Definition 2.1 (Conditional monotonicity). A process (Xλ, λ ≥ 0) is said to be condi-
tionally monotone if, for every n ∈ N∗, every i ∈ {1, . . . , n}, every 0 < λ1 < · · · < λn and
every bounded Borel function φ : Rn −→ R which increases (resp. decreases) with respect
to each of its arguments, we have:

E[φ(Xλ1 ,Xλ2 , . . . ,Xλn)|Xλi
] = φi(Xλi

), (CM)

where φi : R −→ R is a bounded increasing (resp. decreasing) function.

Remark 2.2.
1) If there is an interval I of R such that, for every λ ≥ 0, Xλ ∈ I , we may assume in
Definition 2.1 that φ is merely defined on In, and φi is defined on I .
2) Note that (Xλ, λ ≥ 0) is conditionally monotone if and only if (−Xλ, λ ≥ 0) is condi-
tionally monotone.
3) Let θ : R −→ R be a strictly monotone and continuous function. It is not difficult to
see that if the process (Xλ, λ ≥ 0) is conditionally monotone, then so is (θ(Xλ), λ ≥ 0).
4) We were careful to exclude the point λ1 = 0 in this definition. This is explained by the
fact that “well-reversible” diffusions (our main class of examples), can be only reversed a

priori on ]0, λ0]: (X
λ0
λ , 0 ≤ λ < λ0) := (Xλ0−λ, 0 ≤ λ < λ0), see Subsection 3.2.

To prove that a process is conditionally monotone, we can restrict ourselves to bounded
Borel functions φ increasing with respect to each of their arguments. Indeed, replacing φ
by −φ, the result then holds also for bounded Borel functions decreasing with respect to
each of their arguments.

Definition 2.3. We denote by En the set of bounded Borel functions φ : Rn −→ R which
are increasing with respect to each of their arguments.

Theorem 2.4. Let (Xλ, λ ≥ 0) a real-valued process which is right-continuous, condition-
ally monotone and which satisfies the following integrability conditions:
For every compact K ⊂ R+ and every t ≥ 0:

ΘK,t := sup
λ∈K

exp(tXλ) = exp

„

t sup
λ∈K

Xλ

«

is integrable, (INT1)

and
kK,t := inf

λ∈K
E [exp(tXλ)] > 0. (INT2)

We set hλ(t) = log E[exp(tXλ)]. Then, for every finite positive measure µ on R+:
„

A
(µ)
t :=

Z ∞

0

etXλ−hλ(t)µ(dλ) , t ≥ 0

«

is a peacock.

Proof of Theorem 2.4

1. By (INT1), for every λ ≥ 0 and every t ≥ 0, E [exp(tXλ)] < ∞. This easily im-
plies, thanks to the dominated convergence theorem, that hλ is continuous on R+,
differentiable on ]0,+∞[, and

h′
λ(t)ehλ(t) = E

h

Xλe
tXλ

i

. (4)

Since E
h

etXλ−hλ(t)
i

= 1, we obtain from (4):

E
h

(Xλ − h′
λ(t))etXλ−hλ(t)

i

= 0. (5)

Moreover, we also deduce from (INT1) that, for every t ≥ 0, the function λ ≥ 0 7−→
hλ(t) is right-continuous.
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2. Let ε > 0 and define µ(ε) to be the restriction of µ to the interval [ε,+∞[:
µ(ε) = µ|[ε,+∞[. We first consider the case

µ(ε) =
n
X

i=1

aiδλi
(6)

where n ∈ N∗, a1 ≥ 0, . . . , an ≥ 0, and ε ≤ λ1 < . . . < λn. Let ψ ∈ C . For t > 0, we
have:

∂

∂t
E

h

ψ
“

A
(µ(ε))
t

”i

= E

"

ψ′
“

A
(µ(ε))
t

”

n
X

i=1

ai

`

Xλi
− h′

λi
(t)
´

exp (tXλi
− hλi

(t))

#

Setting for i ∈ {1, . . . , n},

∆i = E

h

ψ′
“

A
(µ(ε))
t

”

`

Xλi
− h′

λi
(t)
´

exp (tXλi
− hλi

(t))
i

we shall show that ∆i ≥ 0 for every i ∈ {1, . . . , n}. Note that the function

(x1, . . . , xn) 7−→ ψ′

 

n
X

j=1

aj exp
`

txj − hλj
(t)
´

!

is bounded and increases with respect to each of its arguments, i.e. belongs to En.
Hence, from the conditional monotonicity property of (Xλ, λ ≥ 0):

∆i = E
h

E
h

ψ′
“

A
(µ(ε))
t

”

(Xλi
− h′

λi
(t))etXλi

−hλi
(t)|Xλi

ii

= E

h

(Xλi
− h′

λi
(t))etXλi

−hλi
(t)φi(Xλi

)
i

where φi is a bounded increasing function. Besides, we have,

(Xλi
− h′

λi
(t))

`

φi(Xλi
) − φi

`

h′
λi

(t)
´´

≥ 0.

Therefore,

∆i ≥ φi

`

h′
λi

(t)
´

E

h

(Xλi
− h′

λi
(t))etXλi

−hλi
(t)
i

= 0 from (5).

3. We now assume that µ(ε) has compact support contained in a compact interval K.
Since the function λ 7−→ exp (tXλ − hλ(t)) is right-continuous and bounded from above

by k−1
K,tΘK,t which is finite a.s., there exists a sequence (µ

(ε)
n , n ≥ 0) of measures of

the form (6), with supp (µ
(ε)
n ) ⊂ K,

R

µ
(ε)
n (dλ) =

R

µ(ε)(dλ) and for every t ≥ 0,

lim
n→+∞

A
(µ

(ε)
n )

t = A
(µ(ε))
t a.s. Moreover, from (INT1) and (INT2):

|A(µ
(ε)
n )

t | ≤ θK,t

kK,t

Z

µ(dλ),

and from Point 2, for 0 ≤ s ≤ t:

E[ψ(A(µ
(ε)
n )

s )] ≤ E[ψ(A
(µ

(ε)
n )

t )].

Therefore, since ψ is sublinear, we can apply the dominated convergence theorem and

pass to the limit when n→ +∞ in this last inequality to obtain that (A
(µ(ε))
t , t ≥ 0) is

a peacock.
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4. In the general case, we set µ
(ε)
n (dλ) = 1[ε,n](λ)µ(dλ) and observe that for n increasing

and ε decreasing, A(µ
(ε)
n ) is an increasing sequence of processes. Let ρ be defined by

ρ(x) =

Z x

0

(x− z)ψ′′(z)dz. An integration by parts yields, for 0 ≤ s ≤ t:

E

»

ψ

„

A
(µ

(ε)
n )

t

«–

− E

»

ψ

„

A(µ
(ε)
n )

s

«–

= E

»

ψ′(0)

„

A
(µ

(ε)
n )

t − A(µ
(ε)
n )

s

«–

+ E

»

ρ

„

A
(µ

(ε)
n )

t

«–

− E

»

ρ

„

A(µ
(ε)
n )

s

«–

= E

»

ρ

„

A
(µ

(ε)
n )

t

«–

− E

»

ρ

„

A(µ
(ε)
n )

s

«–

≥ 0

from Point 3), and since E

»

A
(µ

(ε)
n )

t

–

= E

»

A
(µ

(ε)
n )

s

–

. Now, since ρ is an increasing

function on R+, the result follows from the monotone convergence theorem, applied
first while letting n tend towards +∞, and then while letting ε tend to 0.

Remark 2.5. Let θ : R −→ R be a strictly monotone and continuous function,
and µ denote a finite positive measure. From Remark 2.2, under the assumption
that (θ(Xλ), λ ≥ 0) still satisfies conditions (INT1) and (INT2), we obtain, denoting
hλ,θ(t) = log E [exp (tθ(Xλ))], that the process

„

A
(θ,µ)
t :=

Z ∞

0

etθ(Xλ)−hλ,θ(t)µ(dλ) , t ≥ 0

«

is a peacock. Note that θ only needs to be continuous and strictly monotone on an interval
containing the image of Xλ for every λ ≥ 0.

Of course, Theorem 2.4 may have some practical interest only if we are able to exhibit
enough examples of processes which enjoy the conditional monotonicity (CM) property.
Below, we shall see that there exists a large class of diffusions which enjoy this prop-
erty. But to start with, let us first give a few examples which consist of processes with
independent increments and Lévy processes in particular.

3 Examples of processes satisfying the conditional

monotonicity property

3.1 Processes with independent increments satisfying the

conditional monotonicity property

We start by giving an assertion equivalent to (CM) when dealing with processes with
independent (not necessarily time-homogeneous) increments.

Proposition 3.1. Let (Xλ, λ ≥ 0) be a process with independent increments. Then, the
conditional monotonicity hypothesis (CM) is equivalent to the following:
For every n ∈ N∗, every 0 < λ1 < · · · < λn and every function φ : Rn −→ R in En, we
have:

E [φ (Xλ1 , . . . ,Xλn) |Xλn ] = φn(Xλn) (gCM)

where φn is an increasing bounded function.

Proof of Proposition 3.1
The proof is straightforward. Indeed, let φ ∈ En. For i ∈ {1, . . . , n}, the hypothesis of
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independent increments implies:
E [φ (Xλ1 , . . . , Xλn) |Xλi

]
= E [E [φ (Xλ1 , . . . ,Xλn) |Fλi

] |Xλi
]

= E
ˆ

E
ˆ

φ
`

Xλ1 , . . . , ,Xλi
, Xλi+1 −Xλi

+Xλi
, . . . , Xλn −Xλi

+Xλi

´

|Fλi

˜

|Xλi

˜

= E
h

eφ (Xλ1 , . . . ,Xλi
) |Xλi

i

where

eφ(x1, . . . , xi) = E
ˆ

φ
`

x1, . . . , xi,Xλi+1 −Xλi
+ xi, , . . . ,Xλn −Xλi

+ xi

´˜

belongs to Ei.

3.1.1 The Gamma subordinator is conditionally monotone

The Gamma subordinator (γλ, λ ≥ 0) is characterized by:

E
ˆ

e−tγλ
˜

=
1

(1 + t)λ
= exp

„

−λ
Z ∞

0

(1 − e−tx)
e−x

x
dx

«

.

In particular, γλ is a gamma random variable with parameter λ. From (gCM), we wish to
show that for every n ∈ N∗, every 0 < λ1 < · · · < λn and every function φ : Rn −→ R in
En:

E[φ(γλ1 , . . . , γλn)|γλn ] = φn(γλn), (7)

where φn is an increasing function. The explicit knowledge of the law of γλ and the fact
that (γλ, λ ≥ 0) has time-homogeneous independent increments imply the well-known re-
sult that, given {γλn = x}, the vector (γλ1 , γλ2−γλ1 , . . . , γλn−γλn−1) follows the Dirichlet
law with parameters (λ1, λ2 − λ1, . . . , λn − λn−1) on [0, x]. In other words, the density fn

of (γλ1 , γλ2 , . . . , γλn−1) conditionally on {γλn = x} equals:

fn(x1, . . . , xn−1) =
C

xλn−1
xλ1−1

1 (x2 − x1)
λ2−λ1−1 . . .

(xn−1 − xn−2)
λn−1−λn−2−1(x− xn−1)

λn−λn−1−11Sn,x ,

where C := C(λ1, . . . , λn) is a positive constant and

S
n,x = {(x1, . . . , xn−1) ∈ R

n−1 : 0 ≤ x1 ≤ · · · ≤ xn−1 ≤ x}.
Hence,
E[φ(γλ1 , . . . , γλn)|γλn = x]

=

Z

Sn,x

φ(x1, . . . , xn−1, x)f(x1, . . . , xn−1)dx1 . . . dxn−1

=C

Z

Sn,1

φ(xy1, . . . , xyn−1, x)y
λ1−1
1 (y2 − y1)

λ2−λ1−1 . . .

(yn−1 − yn−2)
λn−1−λn−2−1(1 − yn−1)

λn−λn−1−1dy1 . . . dyn−1

after the change of variables: xi = xyi, i = 1, . . . , n − 1. It is then clear that since
φ increases with respect to each of its arguments, this last expression is an increasing
function with respect to x.

Corollary 3.2. Let (γλ, λ ≥ 0) be the gamma subordinator. Then, for every finite positive
measure µ on R+, and for every p > 0, the process:

„

A
(µ,p)
t :=

Z ∞

0

e−t(γλ)p−hλ,p(t)µ(dλ) , t ≥ 0

«

(8)

is a peacock. Here, the function hλ,p is defined as:

hλ,p(t) = log E [exp (−t(γλ)p)] .
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Proof of Corollary 3.2
By Remark 2.5 with θ(x) = −xp for x ≥ 0, the process (Xλ := −γp

λ, λ ≥ 0) is conditionally
monotone. Since it is a negative process, (INT1) is obviously satisfied. Moreover, since
(γλ, λ ≥ 0) is an increasing process, (INT2) is easily verified. Finally, Theorem 2.4 holds.

Remark 3.3. Actually, for p = 1, Corollary 3.2 holds more generally with µ a signed
measure, see [HRY09b].

3.1.2 The simple random walk is conditionally monotone

Let (εi, i ∈ N∗) be a sequence of independent and identically distributed r. v.’s such that,
for every i ∈ N∗:

P(εi = 1) = p, P(εi = −1) = q with p, q > 0 and p+ q = 1.

Let (Sn, n ∈ N) be the random walk defined by: S0 = 0 and

Sn =

n
X

i=1

εi, for every n ∈ N
∗

We shall prove that (Sn, n ∈ N) is conditionally monotone; i.e: for every r ∈ J2,+∞J,
every 0 < n1 < n2 < · · · < nr < +∞ and every function φ : Rr−1 −→ R in Er−1,

k ∈ Inr 7−→ E[φ(Sn1 , Sn2 , . . . , Snr−1)|Snr = k] is an increasing function on Inr (9)

where Ix ⊂ J−x, xK denotes the set of all the values the r.v. Sx can take. It is not
difficult to see that (9) holds if and only if: for every N ∈ J2,+∞J and every function
φ : RN−1 −→ R in EN−1:

k ∈ IN 7−→ E[φ(S1, . . . , SN−1)|SN = k] is an increasing function on IN . (10)

We shall distinguish two cases:
1) If N and k are even, we set N = 2n (n ∈ J1,+∞J) and k = 2x (x ∈ J−n, nK). For
every n ∈ J1,+∞J and every x ∈ J−n, nK, let us denote by J 2x

2n , the set of polygonal lines
ω := (ωi, i ∈ J0, 2nK) such that ω0 = 0, ωp+1 = ωp ± 1, (p ∈ J0, 2n − 1K) and ω2n = 2x.
Observe that any ω ∈ J 2x

2n has n+x positive slopes and n−x negative ones. This implies
that:

|J 2x
2n | = Cn+x

2n ,

where | · | denotes cardinality. It is well known that, conditionally on {S2n = 2x}, the law
of the random vector (S1, S2, . . . , S2n) is the uniform law on J 2x

2n .
Let n ∈ J1,+∞J and x ∈ J−n, nK be fixed and consider, for every i ∈ J1, n + x + 1K

the map:
Πi : J 2x+2

2n −→ J 2x
2n

defined by: for every ω ∈ J 2x+2
2n , Πi(ω) has the same negative slopes and the same positive

slopes as ω except the ith positive slope which is replaced by a negative one. For every
ω ∈ J 2x+2

2n and every function φ : R2n −→ R in E2n,

φ(ω) ≥ φ(Πi(ω)).

Summing this relation, we obtain:

(n+ x+ 1)
X

ω∈J 2x+2
2n

φ(ω) ≥
X

ω∈J 2x+2
2n

n+x+1
X

i=1

φ(Πi(ω))

=
X

ω∈J 2x
2n

n+x+1
X

i=1

Π−1
i (ω)φ(ω)

= (n− x)
X

ω∈J2x
2n

φ(ω).
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Thus, we have proved the following:

Lemma 3.4. For every n ∈ N∗ and every φ : R2n −→ R in E2n,

1

|J 2x+2
2n |

X

ω∈J 2x+2
2n

φ(ω) ≥ 1

|J 2x
2n |

X

ω∈J 2x
2n

φ(ω), (11)

which means that (Sn, n ∈ N) is conditionally monotone.

2) It is not difficult to establish a similar result when k and N are odd.

Corollary 3.5. For every odd and positive integer p, and for every positive finite measure
P

n∈N

anδn on N:
 

+∞
X

n=0

ane
−t(Sn)p−hn,p(t), t ≥ 0

!

is a peacock.

Here, the function hn,p is defined by: hn,p(t) = log E [exp (−t(Sn)p)].

3.1.3 The processes with independent log-concave increments are

conditionally monotone

We first introduce the notions of PF2 and log-concave random variables (see [DS96]).

Definition 3.6 (R-valued PF2 r.v.’s).
An R-valued random variable X is said to be PF2 if:

1) X admits a probability density f ,

2) for every x1 ≥ x2, y2 ≥ y1,

det

„

f(x1 − y1) f(x1 − y2)
f(x2 − y1) f(x2 − y2)

«

≥ 0.

Definition 3.7 (Z-valued PF2 r.v.’s).
A Z-valued random variable X is said to be PF2 if, setting f(x) = P(X = x) (x ∈ Z), one
has: for every x1 ≥ x2, y2 ≥ y1,

det

„

f(x1 − y1) f(x1 − y2)
f(x2 − y1) f(x2 − y2)

«

≥ 0.

Definition 3.8 (R-valued log-concave r.v.’s).
An R-valued random variable X is said to be log-concave if:

1 X admits a probability density f ,

2 the function log f is concave; i.e., the second derivative of log f (in the distribution
sense) is a negative measure.

Definition 3.9 (Z-valued log-concave r.v.’s).
A Z-valued random variable X is said to be log-concave if, with f(x) = P(X = x) (x ∈ Z),
one has: for every n, n− 1, n+ 1 ∈ Z,

f2(n) ≥ f(n− 1)f(n+ 1);

in other words, the discrete second derivative of log f is negative.

The following characterization of PF2 random variables is well-known (see [DS96]).

Lemma 3.10. An R-valued (resp. Z-valued) random variable X is PF2 if and only if its
probability density f satifies:
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1) The support of f is an (finite or infinite) interval I ⊂ R (resp. I ⊂ Z),

2) log f is concave on I (resp. for every n, n− 1, n+ 1 ∈ I, f2(n) ≥ f(n− 1)f(n+ 1)).

We thus easily deduce the equivalence:

Theorem 3.11 (see [An97] or [DS96]). An R-valued (or Z-valued) random variable is
PF2 if and only if it is log-concave.

Example and Counterexample 3.12. Many common density functions on R (or Z)
are PF2. Indeed, the normal density, the uniform density, the exponential density, the
negative binomial density, the Poisson density and the geometric density are PF2. We
refer to [An97] for more examples. Note that:

a) A Gamma random variable of parameter a (with density fa(x) =
1

Γ(a)
e−xxa−11[0,+∞[(x), a > 0) is not PF2 if a < 1,

b) A Bernoulli random variable X such that P(X = 1) = p = 1− P(X = −1) is not PF2.

The following result is due to Efron [Efr65] (see also [Sha87]).

Theorem 3.13. Let n ∈ J1,+∞J, X1,X2, . . . , Xn be independent R-valued (or Z-valued)
PF2 random variables, Sn =

Pn
i=1Xi, and φ : Rn → R belonging to En. Then,

E[φ(X1,X2, . . . ,Xn)|Sn = x] is increasing in x.

Thanks to Theorem 3.13, we obtain the following result:

Theorem 3.14. Let (Zλ, λ ∈ R+ or λ ∈ N) be a R-valued (or Z-valued) process sat-
isfying (INT1) and (INT2), with independent (not necessarily time-homogeneous) PF2

increments. Then, (Zλ, λ ≥ 0) is conditionally monotone, and for every positive measure
µ on R+ (or N) with finite total mass,

„

Z +∞

0

etZλ−hλ(t)µ(dλ), t ≥ 0

«

is a peacock,

where the function hλ is defined by: hλ(t) = log E
ˆ

etZλ
˜

.

Proof of Theorem 3.14
It suffices to show that (Zλ, λ ≥ 0) satisfies (gCM). Let n ∈ J1,+∞J and φ : Rn → R

belonging to En. For every 0 < λ1 < λ2 < · · · < λn and k ∈ R (or Z),

E[φ(Zλ1 , Zλ2 , . . . , Zλn)|Zλn = k] = E

h

bφ(Zλ1 , Zλ2 − Zλ1 , . . . , Zλn − Zλn−1)|Zλn = k
i

,

where the function bφ is given by:

bφ(x1, x2, . . . , xn) = φ(x1, x2 + x1, . . . , x1 + x2 + · · · + xn).

It is obvious that bφ belongs to En. Thus, applying Theorem 3.13 with: X1 = Zλ1 and
Xi+1 = Zλi+1 − Zλi

i = 1, . . . n− 1, one obtains the desired result.

Remark 3.15.
1) Theorem 3.14 does not apply neither in the case of the Gamma subordinator, nor
in the case of the random walk whose increments are Bernoulli with values in {−1, 1}.
Nevertheless, its conclusion remains true in these cases, see Subsections 3.1.1 and 3.1.2.
2) We deduce from Corollary 3.14 that the Poisson process and the random walk with
geometric increments are conditionally monotone. We shall give below a direct proof, i.e.
without using Theorem 3.13.
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3.1.4 The Poisson process is conditionally monotone

Let (Nλ, λ ≥ 0) be a Poisson process with parameter 1 and let (Tn, n ≥ 1) be its successive
jumps times. Then

Nλ = #{i ≥ 1 : Ti ≤ λ}.
In order to prove that (Nλ, λ ≥ 0) is conditionally monotone, we shall show that for every
λ1 < · · · < λn and every function φ : Rn −→ R in En, we have:

E[φ(Nλ1 , . . . , Nλn)|Nλn ] = φn(Nλn), (12)

where φn : R −→ R increases. But, conditionally on {Nλn = k}, the random vector
(T1, . . . , Tk) is distributed as (U1, . . . , Uk), U1, . . . , Uk being the increasing rearrangement
of k independent random variables, uniformly distributed on [0, λn]. We go from k to k+1
by adding one more point. Thus, with obvious notation, it is clear that: for all λ ∈ [0, λn],

N
(k+1)
λ ≥ N

(k)
λ . Then, the conditional monotonicity property follows immediately.

Corollary 3.16. Let (Nλ, λ ≥ 0) be a Poisson process and let µ be a finite positive
measure on R+. Then, for every p > 0, the process:

„

A
(µ,p)
t :=

Z ∞

0

e−t(Nλ)p−hλ,p(t)µ(dλ), t ≥ 0

«

(13)

is a peacock with:
hλ,p(t) = log E [exp (−t(Nλ)p)] .

3.1.5 The random walk with geometric increments is condition-

ally monotone

Let (εi, i ∈ J1,+∞J) be a sequence of independent geometric variables with the same
parameter p; i.e, such that:

P(εi = k) = pk(1 − p) (k ≥ 0, 0 < p < 1).

We consider the random walk (Sn, n ∈ N) defined by: S0 = 0 and

Sn =
n
X

i=1

εi, for every n ∈ N
∗.

For n ∈ N∗, Sn is distributed as a negative binomial random variable with parameters n
and p; more precisely:

P(Sn = k) = Ck
n+k−1p

n(1 − p)k, for every k ∈ N.

As in Subsection 3.1.2, we only need to prove that: for every N ∈ N∗ and every function
φ : RN −→ R in EN :

k 7−→ E[φ(S1, . . . , SN )|SN+1 = k] is an increasing function on N. (14)

Let Jk
N denote the set:

Jk
N := {(x1, . . . , xN) ∈ N

N : 0 ≤ x1 ≤ · · · ≤ xN ≤ k}. (15)
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For every k ≥ 0 and N ≥ 1, it is well known that |Jk
N | = Ck

N+k. Now, we have:

E [φ (S1, . . . , SN) |SN+1 = k]

=
X

(l1,...,lN )∈J
k
N

φ (l1, . . . , lN)
P(S1 = l1, . . . , SN = lN , SN+1 = k)

P(SN+1 = k)

=
X

(l1,...,lN )∈Jk
N

φ (l1, . . . , lN)
P(S1 = l1, S2 − S1 = l2 − l1, . . . , SN+1 − SN = k − lN )

P(SN+1 = k)

=
X

(l1,...,lN )∈Jk
N

φ (l1, . . . , lN)
P(S1 = l1)P(S2 − S1 = l2 − l1) . . . P(SN+1 − SN = k − lN)

P(SN+1 = k)

=
X

(l1,...,lN )∈Jk
N

φ (l1, . . . , lN)
p(1 − p)l1p(1 − p)l2−l1 . . . p(1 − p)k−lN

Ck
N+kp

N+1(1 − p)k

=
1

Ck
N+k

X

(l1,...,lN )∈Jk
N

φ (l1, . . . , lN)

=
1

|Jk
N |

X

(l1,...,lN )∈Jk
N

φ (l1, . . . , lN) .

Therefore, the law of the random vector (S1, . . . , SN ) conditionally on {SN+1 = k} is the
uniform law on the set Jk

N . Hence, we will obtain (14) if we prove that: for every k ∈ N,
every N ∈ N∗ and every function φ : RN −→ R+ in EN :

1

|Jk
N |

X

x∈Jk
N

φ(x) ≤ 1

|Jk+1
N |

X

x∈J
k+1
N

φ(x). (16)

Let us notice that:

J0
N = {(0, . . . , 0

| {z }

N times

)}, for every N ∈ J1,+∞J

and
Jk

1 = {(0), (1), . . . , (k)}, for every k ∈ J0,+∞J.

For k ∈ J0,+∞J and N ∈ J1,+∞J, we define:

∆k+1
N := Jk+1

N \ Jk
N = {(x1, . . . , xN ) ∈ Jk+1

N : xN = k + 1}. (17)

and set ∆0
N = ∅. By Pascal’s formula,

|∆k+1
N | = Ck+1

k+1+N − Ck
k+N = Ck+1

N+k = |Jk+1
N−1|, (with N ∈ J2,+∞J).

On one hand, we consider, for N ∈ J2,+∞J, the map Γ : Jk+1
N−1 −→ ∆k+1

N defined by:

Γ [(x1, . . . , xN−1)] = (x1, . . . , xN−1, k + 1). (18)

The map Γ is bijective, and for every non empty pair of subsets G and H of Jk+1
N−1, there

is the equivalence:
8

>

>

<

>

>

:

∀ f : RN−1 −→ R ∈ EN−1,

1

|G|
P

x∈G

f(x) ≤ 1

|H |
P

x∈H

f(x)
⇐⇒

8

>

>

<

>

>

:

∀φ : RN −→ R ∈ EN ,

1

|Γ (G)|
P

z∈Γ (G)

φ(z) ≤ 1

|Γ (H)|
P

z∈Γ (H)

φ(z)

On the other hand, for N ∈ J2,+∞J, let Λ : ∆k
N −→ ∆k+1

N be the injection given by:

Λ[(x1, . . . , xN−1, k)] = (x1, . . . , xN−1, k + 1). (19)
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For every z ∈ ∆k
N and function φ : RN −→ R in EN ,

φ(z) ≤ φ(Λ(z)).

Therefore, for every non empty subset K of ∆k
N ,

1

|K|
X

z∈K

φ(z) ≤ 1

|Λ(K)|
X

u∈Λ(K)

φ(u). (20)

since |K| = |Λ(K)|. Furthermore, one notices that:

Γ−1[Λ(∆k
N )] = Jk

N−1 and Γ−1(∆k+1
N ) = Jk+1

N−1

where Γ−1 denotes the inverse map of Γ. Hence, the following is easily obtained:

Lemma 3.17. Let k ∈ J1,+∞J and N ∈ J2,+∞J. Assume that for every function
f : RN−1 −→ R in EN−1 :

1

|Jk
N−1|

X

x∈Jk
N−1

f(x) ≤ 1

|Jk+1
N−1|

X

x∈J
k+1
N−1

f(x). (21)

Then, for every function φ : RN → R in EN ,

1

|∆k
N |

X

y∈∆k
N

φ(y) ≤ 1

|∆k+1
N |

X

y∈∆
k+1
N

φ(y). (22)

Now, we are able to prove (16) by induction on N ∈ J1,+∞J and k ∈ J0,+∞J.

Proposition 3.18. Let k ∈ J0,+∞J, N ∈ J1,+∞J and let φ : RN → R be any function
in EN . Then,

1

|Jk
N |

X

z∈Jk
N

φ(z) ≤ 1

|Jk+1
N |

X

z∈J
k+1
N

φ(z); (23)

in other words, (Sn, n ∈ N) is conditionally monotone.

Proof of Proposition 3.18

1) It is obvious that (23) holds for (k,N) ∈ J0,+∞J×{1}, and for (k,N) ∈ {0} ×
J1,+∞J.

2) Let (k,N) ∈ J1,+∞J×J2,+∞J. We assume that:

∀ (l,m) ∈ D := J0, k − 1K × J1,+∞J∪{k} × J1, N − 1K

and any function f : Rm → R in Em:

1

|Jl
m|

X

x∈Jl
m

f(x) ≤ 1

|Jl+1
m |

X

x∈J
l+1
m

f(x). (IH)

N

m

N − 1

1 k − 1

(k,N)

k l
1

0

D

Fig.1 D := J0, k − 1K × J1,+∞J∪{k} × J1, N − 1K
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By taking (l, m) = (k,N − 1) in (IH), lemma (3.17) yields:

1

|∆k
N |

X

y∈∆
k
N

φ(y) ≤ 1

|∆k+1
N |

X

y∈∆
k+1
N

φ(y). (24)

On the other hand, from the definition of ∆k+1
N , (23) is equivalent to:

1

|Jk
N |

X

y∈Jk
N

φ(y) ≤ 1

|∆k+1
N |

X

y∈∆
k+1
N

φ(y). (25)

Using (IH) with (l,m) = (k − 1, N), we have:

1

|Jk
N |

X

y∈J
k
N

φ(y) ≤ 1

|∆k
N |

X

y∈∆
k
N

φ(y). (26)

The comparison of (24) with (26) yields (25) which is equivalent to (23).

Corollary 3.19. For every positive finite measure
P

n∈N

anδn on N and every p > 0 :

 

+∞
X

n=0

ane
−t(Sn)p−hn,p(t), t ≥ 0

!

is a peacock,

where the function hn,p is defined by: hn,p(t) = log E [exp (−t(Sn)p)].

Remark 3.20. The result in this example has to be compared with that of Subsection
3.1.1: we replace the gamma r.v’s by geometric ones.

3.2 Diffusions which are “well-reversible” at fixed times are

conditionally monotone.

Let us now present an important class of conditionally monotone processes: that of the
“well-reversible” diffusions at a fixed time.

3.2.1 The diffusion (Xλ, λ ≥ 0; Px, x ∈ R)

Let σ : R+×R → R and b : R+×R → R two Borel measurable functions and let (Bu, u ≥ 0)
a standard Brownian motion starting from 0. We consider the SDE:

Xλ = x+

Z λ

0

σ(s,Xs) dBs +

Z λ

0

b(s,Xs) ds, λ ≥ 0. (27)

We assume that:

(A1) For every x ∈ R, this SDE admits a unique pathwise solution (X
(x)
λ , λ ≥ 0), and

furthermore the mapping x 7−→ (X
(x)
λ , λ ≥ 0) may be chosen measurable.

As a consequence of (A1), from Yamada-Watanabe’s theorem, (X
(x)
λ , λ ≥ 0) is a strong

solution of equation (27), and it enjoys the strong Markov property; finally the transition

kernel Pλ(x, dy) = P(X
(x)
λ ∈ dy) is measurable.

We now remark that, for x ≤ y, the process (X
(y)
λ , λ ≥ 0) is stochastically greater than

(X
(x)
λ , λ ≥ 0) in the following sense: for every a ∈ R and λ ≥ 0,

P

“

X
(y)
λ ≥ a

”

≥ P

“

X
(x)
λ ≥ a

”

. (28)
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Indeed, assuming that both (X
(x)
λ , λ ≥ 0) and (X

(y)
λ , λ ≥ 0) are defined on the same

probability space, and setting

T = inf{λ ≥ 0; X
(x)
λ = X

(y)
λ }

(= +∞ if {λ ≥ 0; X
(x)
λ = X

(y)
λ } = ∅),

it is clear that, on {T = +∞},

X
(y)
λ ≥ X

(x)
λ (since y ≥ x)

while on {T < +∞}, we have:

X
(y)
λ > X

(x)
λ for every λ ∈ [0, T [

and
X

(y)
λ = X

(x)
λ for every λ ∈ [T,+∞[

since, as a consequence of our hypothesis (A1), (27) admits a unique strong Markovian
solution.
On the other hand, (28) is equivalent to: for every bounded and increasing (resp. decreas-
ing) function, and for every λ ≥ 0:

x→ Ex[φ(Xλ)] =

Z

R

Pλ(x, dy)φ(y) is increasing (resp. decreasing). (29)

Lemma 3.21. Let ((Xλ)λ≥0, (Fλ)λ≥0, (Px)x∈R) be a Markov process in R which satisfies
(28). Then, for every n ≥ 1, every 0 < λ1 < · · · < λn, every i ∈ {1, . . . , n}, every function
φ : Rn → R in En, and for every x ≥ 0,

Ex[φ(Xλ1 , . . . ,Xλn)|Fλi
] = eφi(Xλ1 , . . . , Xλi

), (30)

where eφi : Ri → R belongs to Ei . In particular,

x→ Ex[φ(Xλ1 , . . . , Xλn)] is increasing. (31)

Proof of Lemma 3.21
If i = n, (30) is obvious. If i = n− 1, then (30) is satisfied since:

Ex[φ(Xλ1 , . . . ,Xλn−1 ,Xλn)|Fλn−1 ] =

Z

R

φ(Xλ1 , . . . ,Xλn−1 , y)Pλn−λn−1(Xλn−1 , dy)

and then, for i = n− 1, (30) follows immediately from (29). Thus, Lemma 3.21 follows by
iteration of this argument.

Observe that as a consequence of Lemma 3.21, the conditional monotonicity property
(CM) for these diffusions is equivalent to (gCM).

3.2.2 Time-reversal at a fixed time

Let x ∈ R fixed. We assume that:

(A2) For every λ > 0, σ(λ, ·) is a differentiable function and Xλ admits a C1,2 density
function p on ]0,+∞[×R.

By setting
a(λ, y) := σ2(λ, y) for every λ ≥ 0 and y ∈ R,

we define successively, for any fixed λ0 > 0 and for y ∈ R:
8

>

<

>

:

aλ0(λ, y) = a(λ0 − λ, y), (0 ≤ λ ≤ λ0)

b
λ0(λ, y) = −b(λ0 − λ, y) +

1

p(λ0 − λ, y)

∂

∂y

`

a(λ0 − λ, y) p(λ0 − λ, y)
´

, (0 ≤ λ < λ0)

(32)
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and the differential operator Lλ0
λ , (0 ≤ λ < λ0):

Lλ0
λ f(x) =

1

2
aλ0(λ, y)f ′′(y) + b

λ0
(λ, y)f ′(y) for f ∈ C2

b .

Under some suitable conditions on a and b, U.G. Haussmann and E. Pardoux [HP86] (see
also P.A. Meyer [Mey94]) proved that:

(A3) The process (X
λ0
λ , 0 ≤ λ < λ0) obtained by time-reversing (Xλ, 0 < λ ≤ λ0) at

time λ0:
(X

λ0
λ , 0 ≤ λ < λ0) := (Xλ0−λ, 0 ≤ λ < λ0)

is a diffusion and there exists a Brownian motion (Bu, 0 ≤ u ≤ λ0), independent of

Xλ0 , such that (X
λ0
λ , 0 ≤ λ < λ0) solves the SDE:

8

<

:

dYλ = σλ0(λ, Yλ)dBλ + b
λ0(λ, Yλ)dλ (0 ≤ λ < λ0)

Y0 = Xλ0 (with σλ0(λ, y) = σ(λ0 − λ, y)).
(33)

Note that the coefficients b
λ0 and σλ0 depend on x.

(A4) We assume furthermore that the SDE (33) admits a unique strong solution on
[0, λ0[; thus, this strong solution is strongly Markovian.

Note that, a priori, the solution of (33) is only defined on [0, λ0[, but it can be extended

on [0, λ0] by setting X
λ0
λ0

= x.

3.2.3 Our hypotheses and the main result

Our goal here is not to give optimal hypotheses under which the assertions (A1)-(A4) are
satisfied. We refer the reader to [HP86] or [MNS89] for more details. Instead, we shall
present two hypotheses (H1) and (H2), either of them implying the preceding assertions:

(H1) We assume that:

i) the functions (λ, y) 7−→ σ(λ, y) and (λ, y) 7−→ b(λ, y) are of C1,2 class on
]0,+∞[×R, locally Lipschitz continuous in y uniformly in λ, and the solution
of (27) does not explode on [0, λ0],

ii) there exists α > 0 such that:

a(λ, y) ≡ σ2(λ, y) ≥ α for every y ∈ R and 0 ≤ λ ≤ λ0,

and
∂2a

∂y2
∈ L∞(]0, λ0] × R+).

(H2) We assume that:

i) the functions σ and b are of C1,2 class, locally Lipschitz continuous in y
uniformly in λ, and the solution of (27) does not explode on [0, λ0],

ii) the functions a and b are of C∞ class on ]0,+∞[×R in (λ, y) and the differ-
ential operator

L =
∂

∂λ
+ Lλ

is hypoelliptic (see Ikeda-Watanabe [IW89, p.411] for the definition and prop-
erties of hypoelliptic operators), where (Lλ, λ ≥ 0) is the generator of the
diffusion (27):

Lλ =
1

2
a(λ, ·) d

dy2
+ b(λ, ·) d

dy
. (34)
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Then, under either (H1) or (H2), the assertions (Ai)i=1...4 of both paragraphs 3.2.1 and

3.2.2 are satisfied, see [HP86]. In particular, (X
λ0
λ , 0 ≤ λ < λ0) is a strong solution of

equation (33), see P.A. Meyer [Mey94]. Let us now give the main result of this subsection.

Theorem 3.22. Under either (H1) or (H2), and for every x ∈ R, the process (Xλ, λ ≥ 0)
is conditionally monotone under Px.

Proof of Theorem 3.22
Let n ∈ N∗ and let φ : Rn → R in En. For every 0 < λ1 < · · · < λn and every i ∈ {1, . . . , n}:
Ex [φ(Xλ1 , . . . ,Xλn)|Xλi

= z]

= Ex [Ex [φ(Xλ1 , . . . ,Xλn)|Fλi
] |Xλi

= z]

= Ex

h

eφi(Xλ1 , . . . ,Xλi
)|Xλi

= z
i

(by Lemma 3.21, where eφi : R
i → R belongs to Ei

= Ex

h

eφi(X
λi
λi−λ1

, . . . , X
λi
0 )|Xλi

0 = z
i

(by time-reversal at λi)

= Ez

h

eφi(X
λi

λi−λ1
, . . . , X

λi

λi−λi−1
, z)
i

and, by applying (31) to the reversed process (X
λi

λ , 0 ≤ λ < λi), this last expression is a
bounded function which increases with respect to z.

Corollary 3.23. Let (Xλ, λ ≥ 0) the unique strong solution of (27), taking values in R+,
where b and σ satisfy either (H1) or (H2). Then, for every finite positive measure µ and
for every p > 0, the process:

„

A
(µ,p)
t :=

Z ∞

0

e−t(Xλ)p−hλ,p(t)µ(dλ), t ≥ 0

«

(35)

is a peacock, with:
hλ,p(t) = log Ex [exp (−t(Xλ)p)] .

Proof of Corollary 3.23
As (Xλ, λ ≥ 0) is a continuous positive process, conditions (INT1) and (INT2) are satisfied,
and we may apply Theorems 3.22 and 2.4.

3.2.4 A few examples of diffusions which are “well-reversible” at

fixed times

Example 3.24 (Brownian motion with drift ν).
We take σ ≡ 1, b(s, y) = ν and Xλ = x+Bλ + νλ. Then,

p(t, x, y) =
1√
2πt

exp

„

− (y − (x+ νt))2

2t

«

,

and (X
λ0
λ , 0 ≤ λ < λ0) is the solution of:

Yλ = X
λ0
0 +Bλ +

Z λ

0

x− Yu

λ0 − u
du

with (Bλ, 0 ≤ λ < λ0) independent from X
λ0
0 = X

(x)
λ0

.
See Jeulin-Yor [JY79] for similar computations.
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Example 3.25 (Bessel processes of dimension δ ≥ 2).

We take σ ≡ 1 and b(s, y) =
δ − 1

2y
, with δ = 2(ν + 1), δ ≥ 2. Then,

i) for x > 0:

p(t, x, y) =
1

t

yν+1

xν
exp

„

−x
2 + y2

2t

«

Iν

“xy

t

”

,

where Iν denote the modified Bessel function of index ν (see Lebedev [Leb65, p.110] for

the definition of Iν), and (X
λ0
λ , 0 ≤ λ < λ0) is the solution of:

Yλ = X
λ0
0 +Bλ +

Z λ

0

„

1

2Yu
− Yu

λ0 − u
+

x

λ0 − u

I ′ν
Iν

„

xYu

λ0 − u

««

du.

ii) for x = 0:

p(t, 0, y) =
1

2νtν+1Γ(ν + 1)
y2ν+1 exp

„−y2

2t

«

,

and (X
λ0
λ , 0 ≤ λ < λ0) is the solution of:

Yλ = X
λ0
0 +Bλ +

Z λ

0

„

2ν + 1

2Yu
− Yu

λ0 − u

«

du

This examples has a strong likelihood with Bessel processes with drift, see Watanabe
[Wat75].

Example 3.26 (Squared Bessel processes of dimension δ > 0).
We take σ(s, y) = 2

√
y and b ≡ δ. Then:

i) for x > 0:

p(t, x, y) =
1

2t

“y

x

”ν/2

exp
“

−x+ y

2t

”

Iν

„√
xy

t

«

,

and (X
λ0
λ , 0 ≤ λ < λ0) is the solution of:

Yλ = X
λ0
0 + 2

Z λ

0

√
YudBu + 2λ− 2

Z λ

0

„

Yu

λ− u
−

√
xYu

λ0 − u

I ′ν
Iν

„

√
xYu

λ0 − u

««

du.

ii) for x = 0:

p(t, 0, y) =

„

1

2t

«δ/2
1

Γ(δ/2)
y

δ
2
−1 exp

“

− y

2t

”

,

and (X
λ0
λ , 0 ≤ λ < λ0) is the solution of:

Yλ = X
λ0
0 + 2

Z λ

0

√
YudBu + δλ−

Z λ

0

2Yu

λ− u
du.

Note that we could also have obtained this example by squaring the results on Bessel
processes.

Remark 3.27. All the above examples have a strong link with initial enlargement of a
filtration (by the terminal value). We refer the reader to Mansuy-Yor [MY06] for further
examples.

4 Another class of Markovian peacocks

We shall introduce another set of hypotheses on the Markov process (Xλ, λ ≥ 0) which
ensures that:

„

A
(µ)
t :=

Z ∞

0

e−tXλ−hλ(t)µ(dλ), t ≥ 0

«

is a peacock.
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Definition 4.1. A right-continuous Markov process (Xλ, λ ≥ 0; Px, x ∈ R+), with values
in R+, is said to satisfy conditon (L) if both (i) and (ii) below are satisfied:

i) This process increases in the stochastic order with respect to the starting point x;
in other words, for every a ≥ 0 and λ ≥ 0, and for every 0 ≤ x ≤ y:

Py(Xλ ≥ a) ≥ Px(Xλ ≥ a). (36)

ii) The Laplace transform Ex[e−tXλ ] is of the form:

Ex[e−tXλ ] = C1(t, λ) exp(−xC2(t, λ)), (37)

where C1 and C2 are two positive functions such that:

• For every t > 0 and λ ≥ 0,

∂

∂t
C2(t, λ) > 0. (38)

• For every t ≥ 0 and every compact K, there exist two constants kK(t) > 0

and ekK(t) < +∞ such that:

kK(t) ≤ inf
λ∈K

C1(t, λ); sup
λ∈K

C2(t, λ) ≤ ekK(t). (39)

Taking x = 0 in (37), we see that C1(�, λ) is completely monotone (and hence infinitely
differentiable) on ]0,+∞[ and continuous at 0. Consequently, C2(�, λ) is also infinitely
differentiable on ]0,+∞[ and continuous at 0. Moreover, we have for t > 0 and λ ≥ 0:

Ex

h

Xλe
−tXλ

i

=

„

− ∂

∂t
C1(t, λ) + xC1(t, λ)

∂

∂t
C2(t, λ)

«

exp (−xC2(t, λ))

and we introduce:
8

>

<

>

:

α(t, λ) := − ∂

∂t
C1(t, λ) ≥ 0

β(t, λ) := C1(t, λ)
∂

∂t
C2(t, λ) > 0

(40)

We can now state the main result of this subsection.

Theorem 4.2. Let (Xλ, λ ≥ 0; Px, x ∈ R+) be a Markov process which satisfies condition
(L). Then, for every x ≥ 0 and every finite positive measure µ on R+,

„

A
(µ)
t :=

Z ∞

0

e−tXλ−hλ(t)µ(dλ), t ≥ 0

«

is a peacock under Px. Here, the function hλ is defined by:

hλ(t) = log
“

Ex

h

e−tXλ

i”

.

Before proving Theorem 4.2, let us give two examples of processes (Xλ, λ ≥ 0; Px, x ∈
R+) which satisfy condition (L).

Example 4.3. Let (Xλ, λ ≥ 0; Qx, x ∈ R+) be the square of a δ-dimensional Bessel
process (denoted BESQδ, δ ≥ 0, see [RY99, Chapter XI]). This process satisfies condition
(L) since:

• It is stochastically increasing with respect to x; indeed, it solves a SDE which enjoys
both existence and uniqueness properties, hence the strong Markov property (see
paragraph 3.2.1).

18



• For every t > 0, We have:

Qx

h

e−tXλ

i

=
1

(1 + 2tλ)
δ
2

exp

„

− tx

1 + 2tλ

«

,

which yields Point ii) of Definition 4.1.

In particular, for (Xt, t ≥ 0) a squared Bessel process of dimension 0, (A
(µ)
t , t ≥ 0) is a

peacock. This case was outside the scope of Example 3.26.

Example 4.4 (A generalization of the preceding example for δ = 0).
Let (Xλ, λ ≥ 0; Px, x ∈ R+) be a continuous state branching process (denoted CSBP)
(see [LG99]).We denote by Pλ(x, dy) the law of Xλ under Px, (with x 6= 0), and by ∗ the
convolution product. Then (Pλ) satisfies:

Pλ(x, �) ∗ Pλ(x′, �) = Pλ(x+ x′, �) for every λ ≥ 0, x ≥ 0 and x′ ≥ 0

which easily implies (36) (see [LG99, p.21-23]). On the other hand, one has:

Ex

h

e−tXλ

i

= exp(−xC(t, λ)), (41)

where the function C : R+ × R+ → R+ satisfies:

• for every λ ≥ 0, the function C(�, λ) is continuous on R+ and differentiable on
]0,+∞[, and

∂C

∂t
(t, λ) > 0 for every t > 0,

• For every t ≥ 0 and every compact K, there exists a constant kK(t) <∞ such that:

sup
λ∈K

C(t, λ) ≤ kK(t). (42)

Thus, (Xλ, λ ≥ 0) satisfies (37).

Corollary 4.5. Let (Xλ, λ ≥ 0; Px, x ∈ R+) be either a BESQδ or a CSBP. Then, for
any finite positive measure µ on R+, and for every x ≥ 0:

„

A
(µ)
t :=

Z ∞

0

e−tXλ−hλ(t)µ(dλ), t ≥ 0

«

is a peacock under Px with:

hλ(t) = log
“

Ex

h

e−tXλ

i”

.

Remark 4.6. This example generalizes the previous one in the following sense. Let
(Yt, t ≥ 0) be a Lévy process of characteristic exponent ψ(λ) = cλα, (c > 0, α ∈]1, 2]):

E

h

e−λYt

i

= exp (−ctλα) .

We denote by (Ht, t ≥ 0) the height process associated to (Yt, t ≥ 0). This process admits
a family of local times (La

t (H), t ≥ 0, a ≥ 0) and, denoting by τr(H) := inf{s ≥ 0;L0
s(H) >

r} its right-continuous inverse, it is known (see [LG99]) that the process (La
τr(H), a ≥ 0) is

a stable CSBP of index α. Then, observe that for α = 2 and c = 1
2
, (Yt := Bt, t ≥ 0) is a

standard Brownian motion started from 0, (Ht, t ≥ 0)
(law)
= (|Bt|, t ≥ 0) has the same law

as a reflected Brownian motion, and that, from the Ray-Knight theorem, (La
τr(H), a ≥ 0)

is a squared Bessel process of dimension 0 started fom r.
We refer the interested reader to [HPRY, Chapter 4] for a description of other peacocks
constructed from CSBP, and their associated martingales.
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Proof of Theorem 4.2
Let (Xλ, λ ≥ 0) be a process which enjoys condition (L).

1. (−Xλ, λ ≥ 0) being a negative process, condition (INT1) clearly holds. Moreover, by
(39), (INT2) also holds. Thus, following the proof of Theorem 2.4, it suffices to show

that (A
(µ)
t , t ≥ 0) is a peacock when µ is a finite linear combination of Dirac measures

with positive coefficients.

2. For t ≥ 0, a1 ≥ 0, . . . , an ≥ 0 and 0 < λ1 < · · · < λn, we set:

At :=
n
X

i=1

aie
−tXλi

−hλi
(t).

Let ψ ∈ C . One has:

∂

∂t
Ex[ψ(At)] = −Ex

"

ψ′(At)

n
X

i=1

aie
−tXλi

−hλi
(t)(h′

λi
(t) +Xλi

)

#

and, we shall prove as in the proof of Theorem 2.4 that, for every i ∈ {1, . . . , n},
∆i ≤ 0, with:

∆i = Ex

h

ψ′(At)e
−tXλi

−hλi
(t)(h′

λi
(t) +Xλi

)
i

= Ex

ˆ

ψ′(At)eλi
(Xλi

)
˜

,

and where we have set

eλi
(z) := e−tz−hλi

(t)(h′
λi

(t) + z).

We note, since E

h

e−tXλi
−hλi

(t)
i

= 1, that:

Ex[eλi
(Xλi

)] = 0. (43)

Since the function

(x1, . . . , xn) → ψ′

 

n
X

j=0

aje
−txj−hλj

(t)

!

is bounded and decreases with respect to each of its arguments, it suffices to show that:
for every bounded Borel function φ : Rn → R+ which decreases with respect to each
of its arguments, and for every i ∈ {1, . . . , n},

Ex[φ(Xλ1 , . . . ,Xλn)eλi
(Xλi

)] ≤ 0. (44)

3. We now show (44).
a) We may suppose i = n. Indeed, thanks to (36) and to Lemma 3.21, we have, for
i < n:

Ex[φ(Xλ1 , . . . ,Xλn)eλi
(Xλi

)] = Ex[Ex[φ(Xλ1 , . . . ,Xλn)|Fλi
]eλi

(Xλi
)]

= Ex[eφi(Xλ1 , . . . ,Xλi
)eλi

(Xλi
)],

where eφi : Ri → R is a bounded Borel function which decreases with respect to each
of its arguments.
b) On the other hand, one has:

Ex[eφi(Xλ1 , . . . ,Xλi
)eλi

(Xλi
)]

=Ex[eφi(Xλ1 , . . . ,Xλi
)e−tXλi

−hλi
(t)(h′

λi
(t) +Xλi

)]

≤Ex[eφi(Xλ1 , . . . ,Xλi−1 ,−h′
λi

(t))eλi
(Xλi

)]

(since eφi(Xλ1 , . . . ,Xλi
)(h′

λi
(t) +Xλi

) ≤ eφi(Xλ1 , . . . ,−h′
λi

(t))(h′
λi

(t) +Xλi
))

=Ex

»

e

eφi(Xλ1 , . . . ,Xλi−1)eλi
(Xλi

)

–

,
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where
e

eφi : Ri−1 → R is a bounded Borel function which decreases with respect to each
of its arguments, and is defined by:

e

eφi(z1, . . . , zi−1) = eφi(z1, . . . , zi−1,−h′
λi

(t)). (45)

c) We now end the proof of Theorem 4.2 by showing the following lemma.

Lemma 4.7. For every i ∈ {1, . . . , n} and j ∈ {0, 1, . . . , i − 1}, let φ : Rj → R be a
bounded Borel function which decreases with respect to each of its arguments. Then,

Ex[φ(Xλ1 , . . . , Xλj
)eλi

(Xλi
)] ≤ 0. (46)

In particular,
Ex[φ(Xλ1 , . . . ,Xλi−1)eλi

(Xλi
)] ≤ 0. (47)

Proof of Lemma 4.7
We prove this lemma by induction on j.
• For j = 0, φ is constant and one has:

Ex[φ eλi
(Xλi

)] = φEx[eλi
(Xλi

)] = 0 (from (43))

• On the other hand, if one assumes that (46) holds for 0 ≤ j < i− 1, then

Ex[φ(Xλ1 , . . . ,Xλj
, Xλj+1)eλi

(Xλi
)]

= Ex[φ(Xλ1 , . . . , Xλj
,Xλj+1)Pλi−λj+1eλi

(Xλj+1)]

(by the Markov property)

= Ex[φ(Xλ1 , . . . , Xλj
,Xλj+1)e

−Xλj+1
C2(t,λi−λj+1)−hλi

(t)

.
`

α(t, λi − λj+1) +Xλj+1β (t, λi − λj+1)
´

] (48)
`

where, from (37) and (40), β > 0, and α depends on a and h′
λi

´

≤ Ex

»

φ

„

Xλ1 , . . . ,Xλj
,− α(t, λi − λj+1)

β (t, λi − λj+1)

«

Pλi−λj+1eλi
(Xλj+1)

–

= Ex

h

eφ(Xλ1 , . . . ,Xλj
)eλi

(Xλi
)
i

≤ 0 (by the induction hypothesis),

where eφ : Rj → R is defined by:

eφ(z1, . . . , zj) = φ

„

z1, . . . , zj ,− α(t, λi − λj+1)

β (t, λi − λj+1)

«

.

5 Stochastic and convex orders

The purpose of this Section is different from that of the previous Sections. Here, we do
not look a priori for peacocks, but rather study a link between the stochastic and convex
orders. As a byproduct, this will provide us with some new peacocks.

Definition 5.1. Let µ and ν be two probability measures on R+. We shall say that µ is
stochastically greater than ν, and we write:

µ
(st)

≥ ν

if for every t ≥ 0,
Fµ(t) := µ([0, t]) ≤ Fν(t) := ν([0, t]).
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In [HPRY], the authors prove that if (Mt, t ≥ 0) is a martingale in H1
loc (thus, it is a

peacock), and α : R+ −→ R+ is a continuous and strictly increasing function such that
α(0) = 0, then the process

„

1

α(t)

Z t

0

Mudα(u) , u ≥ 0

«

is a peacock. In other words, for every 0 ≤ s ≤ t:

Z +∞

0

Mu

„

1

α(t)
1[0,t](u)

«

dα(u)
(c)

≥
Z +∞

0

Mu

„

1

α(s)
1[0,s](u)

«

dα(u).

Now, it is clear that:

„

1

α(t)
1[0,t](u)

«

dα(u)
(st)

≥
„

1

α(s)
1[0,s](u)

«

dα(u),

and this leads to the following question: which processes (Xt,≥ 0) satisfy, for every couple

of probabilities (µ, ν) such that µ
(st)

≥ ν, the property:

A(µ) :=

Z +∞

0

Xuµ(du)
(c)

≥ A(ν) :=

Z +∞

0

Xuν(du) ? (49)

Note that such a process (Xt, t ≥ 0) must be a peacock. Indeed, taking for 0 ≤ s ≤ t,

µ = δt and ν = δs, we deduce from (49) that Xt

(c)

≥ Xs, i.e. (Xt, t ≥ 0) is a peacock.
Here is a partial answer to this question:

Theorem 5.2. Let (Xt, t ≥ 0) be an integrable right-continuous process satisfying both
following conditions:

i) For every bounded and increasing function φ : R −→ R+ and every 0 ≤ s ≤ t,
E[φ(Xt)|Fs] is an increasing function of Xs.

ii) For every n ∈ N∗, every 0 < t1 < · · · < tn and every φ : Rn → R in En, we have:

E
ˆ

φ (Xt1 , . . . ,Xtn) (Xtn+1 −Xtn)
˜

≥ 0.

Let µ and ν two probability measures on R+ such that µ
(st)

≥ ν. Moreover, we assume that
either:

µ and ν have compact supports, and for every compact K ⊂ R+, sup
t∈K

Xt is integrable,

or:
sup
t≥0

Xt is integrable.

Then:

A(µ) :=

Z +∞

0

Xuµ(du)
(c)

≥ A(ν) :=

Z +∞

0

Xuν(du).

Remark 5.3.
a) Observe that condition ii) implies that the process (Xt, t ≥ 0) is a peacock. Indeed, if
ψ is a convex function of C1 class, then, for 0 ≤ s ≤ t:

E[ψ(Xt)] − E[ψ(Xs)] ≥ E[ψ′(Xs)(Xt −Xs)] ≥ 0.

In particular, E[Xt] does not depend on t.
b) Note also that condition i) implies that (Xt, t ≥ 0) is Markovian.
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Before proving Theorem 5.2, we shall give some examples of processes which satisfy both
conditions i) and ii).

Example 5.4. Let X be a r.v. such that for every t ≥ 0, E[etX ] < ∞. We define
(ξX

t = exp(tX − hX(t)), t ≥ 0) where hX(t) = log E[etX ]. Then, (ξX
t , t ≥ 0) satisfies the

conditions of Theorem 5.2. Indeed, condition i) is obvious, and condition ii) follows from:

E

h

φ(ξX
t1 , . . . , ξ

X
tn

)(ξX
tn+1

− ξX
tn

)
i

≥ φ(et1βn−hX (t1), . . . , etnβn−hX (tn))E
h

ξX
tn+1

− ξX
tn

i

= 0,

where βn =
hX(tn+1) − hX(tn)

tn+1 − tn
. In particular, we recover that, if α : R+ −→ R+ is a

continuous and strictly increasing function such that α(0) = 0, then the process
„

1

α(t)

Z t

0

euX−hX(u)dα(u) , t ≥ 0

«

is a peacock.

Example 5.5 (Martingales).
Clearly, martingales satisfy condition ii). Here are some examples of martingales satisfying
also condition i):

a) Let (Xt, t ≥ 0) be an integrable process with independent and centered increments.
Then

E[φ(Xt)|Fs] = E[φ(Xs +Xt −Xs)|Fs] = E[φ(x+ Z)],

where Xs = x and Z
(law)
= Xt −Xs, is an increasing function of x.

b) Let (Lt, t ≥ 0) be an integrable right-continuous process with independent incre-
ments, and such that, for every λ, t ≥ 0, E[eλLt ] <∞. Then, the process

“

Xt := eλLt−hLt
(λ), t ≥ 0

”

where hLt (λ) = log E

h

eλLt

i

is a martingale which, as in item a), satisfies condition i).

c) Let (Xt, t ≥ 0) be a diffusion process which satisfies an equation of type

X
(x)
t = x+

Z t

0

σ(X(x)
s ) dBs.

Then condition i) follows from the stochastic comparison theorem (see Point (A1)).

Example 5.6 (“Well-reversible” diffusions).
Let (Zt, t ≥ 0) be a “well-reversible” diffusion satisfying (27) and such that b is an in-
creasing function. Then (Xt := Zt − E[Zt], t ≥ 0) satisfies both conditions i) and ii).
Indeed, condition i) is clearly satisfied from Lemma 3.21. As for condition ii), setting
h(t) = E[Zt], we have by time reversal at tn+1:
E
ˆ

φ (Xt1 , . . . ,Xtn) (Xtn+1 −Xtn)
˜

=E

h

φ
“

X
(tn+1)
tn+1−t1

, . . . , X
(tn+1)
tn+1−tn

”

(X
(tn+1)
0 −X

(tn+1)
tn+1−tn

)
i

=E
h

E
h

φ
“

X
(tn+1)
tn+1−t1

, . . . , X
(tn+1)
tn+1−tn

”

|Ftn+1−tn

i

(X
(tn+1)
0 −X

(tn+1)
tn+1−tn

)
i

=E

h

eφ
“

X
(tn+1)
tn+1−tn

”

(X
(tn+1)
0 −X

(tn+1)
tn+1−tn

)
i

where eφ is an increasing function,

=E

h

eφ (Xtn) (Xtn+1 −Xtn)
i

.

Now from (27):

E

»

eφ (Ztn − h(tn))

„

Z tn+1

tn

µ(s, Zs)dBs +

Z tn+1

tn

b(s, Zs)ds− h(tn+1) + h(tn)

«–
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=

Z tn+1

tn

E
h

eφ (Ztn − h(tn)) (b(s,Zs) − h′(s))
i

ds

=

Z tn+1

tn

E

h

eφ (Ztn − h(tn)) (eb(s, Ztn) − h′(s))
i

ds

where x 7−→ eb(s, x) := E[b(s, Zs)|Ztn = x] is an increasing function such that

E
h

eb(s,Ztn)
i

= E[b(s, Zs)] = h′(s). Denoting by eb−1
s its right-continuous inverse, we

finally obtain:

E

h

eφ (Xtn) (Xtn+1 −Xtn)
i

≥
Z tn+1

tn

eφ
“

eb−1
s (h′(s)) − h(tn)

”

E

h

eb(s, Ztn) − h′(s)
i

ds = 0.

Example 5.7. Let (Bt, t ≥ 0) be a Brownian motion started from 0 and ϕ be a strictly
increasing odd function of C2 class such that ϕ′ is convex. It is known, see [HPRY,
Chapter 1, Section 5] that the process (ϕ(Bt), t ≥ 0) is a peacock. As a consequence of

Example 5.6 and of Theorem 5.2 applied with µ(du) =
1

α(t)
1[0,t](u)dα(u) and ν(du) =

1

α(s)
1[0,s](u)dα(u), where α : R+ −→ R+ is a continuous and strictly increasing function

such that α(0) = 0, we deduce that the process

„

1

α(t)

Z t

0

ϕ(Bu)dα(u) , t ≥ 0

«

is also a peacock. Indeed, from Itô’s formula, (ϕ(Bu), u ≥ 0) satisfies (27) with b =
1
2
ϕ′′ ◦ ϕ−1 increasing.

Proof of Theorem 5.2

1. Since

A(µ) :=

Z ∞

0

Xs dµ(s) =

Z ∞

0

Xs dFµ(s) =

Z 1

0

X
F−1

µ (u)
du,

it suffices, by approximation of dFµ with a linear combination of Dirac measures (as
in the proof of Theorem 2.4), to show that for every n ∈ N∗, for every a1, a2, . . . , an

and for every t1 ≥ s1, . . . , tn ≥ sn,

n
X

i=1

aiXti

(c)

≥
n
X

i=1

aiXsi . (50)

2. Let ψ : R → R in C. By convexity, we have:

ψ

 

n
X

i=1

aiXti

!

= ψ

 

n
X

i=1

aiXsi +
n
X

i=1

ai(Xti −Xsi)

!

≥ ψ

 

n
X

i=1

aiXsi

!

+ ψ′

 

n
X

i=1

aiXsi

!

n
X

j=1

aj(Xtj −Xsj ).

Then, taking the expectation leads to:

E

"

ψ

 

n
X

i=1

aiXti

!#

≥ E

"

ψ

 

n
X

i=1

aiXsi

!#

+E

"

ψ′

 

n
X

i=1

aiXsi

!

n
X

j=1

aj(Xtj −Xsj )

#

.

(51)

We set φ(x1, . . . , xn) := ψ′

 

n
X

i=1

aixi

!

. Thus, φ ∈ En. Let j be fixed and assume

that:
0 < s1 < . . . < sj < . . . < sj+r < tj < sj+r+1 < . . . < sn.
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We write:
φ(Xs1 , . . . , Xsn)(Xtj −Xsj )

=φ(Xs1 , . . . ,Xsn )(Xtj −Xsj+r +Xsj+r − . . .+Xsj+1 −Xsj )

=φ(Xs1 , . . . ,Xsn )(Xtj −Xsj+r ) +

r−1
X

k=0

φ(Xs1 , . . . ,Xsn)(Xsj+k+1 −Xsj+k
)

and we study the expectation of each term separately. From condition i), we obtain
by iteration:

E
ˆ

φ(Xs1 , . . . , Xsn)(Xtj −Xsj+r )
˜

= E

h

eφ(Xs1 , . . . ,Xsj+r ,Xtj )(Xtj −Xsj+r )
i

≥ E

h

eφ(Xs1 , . . . ,Xsj+r ,Xsj+r )(Xtj −Xsj+r )
i

≥ 0

from condition ii). The other terms can be dealt with in the same way.

Remark 5.8.
1) Note that, in general, the process

“

1
t

R t

0
Xudu, t ≥ 0

”

may be a peacock even if (Xt, t ≥
0) is not a peacock. For example, this is the case for the process (Xt = e−tG, t ≥ 0)
where G is a centered Gaussian r.v. Similarly, (Xu, u ≥ 0) may be a peacock while
“

1
t

R t

0
Xudu, t ≥ 0

”

is not; for example, take the process (Xt = (1[0,1](t)−1]1,+∞[(t))G, t ≥
0) where G is a centered Gaussian r.v.
2) Theorem 5.2 answers partially a question raised in [HRY10], namely, for which martin-
gales does (49) hold ?

Concluding remark 5.9. In this paper, our aim has been to give several examples of
peacocks. On the other hand, we did not exhibit associated martingales (see Point b) of
the introduction). We refer the interested reader to [HPRY] where numerous martingales
associated to given peacocks are presented. However, for most of the peacocks presented
in this paper, we do not know how to exhibit an associated martingale.

Acknowledgement We are grateful to F. Hirsch and M. Yor for numerous fruitful dis-
cussions during the preparation of this work.
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[IW89] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion pro-
cesses, volume 24 of North-Holland Mathematical Library. North-Holland Pub-
lishing Co., Amsterdam, second edition, 1989.
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Yor. In Séminaire de Probabilités, XXVIII, volume 1583 of Lecture Notes in
Math., pages 98–101. Springer, Berlin, 1994.

[MNS89] A. Millet, D. Nualart, and M. Sanz. Integration by parts and time reversal for
diffusion processes. Ann. Probab., 17(1):208–238, 1989.

[MY06] R. Mansuy and M. Yor. Random times and enlargements of filtrations in a
Brownian setting, volume 1873 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 2006.

[RY99] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume
293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[Sha87] J. G. Shanthikumar. On stochastic comparison of random vectors. J. Appl.
Probab., 24(1):123–136, 1987.

[SS94] M. Shaked and J.G. Shanthikumar. Stochastic orders and their applications.
Probability and Mathematical Statistics. Academic Press, Boston, 1994.

[SS07] M. Shaked and J.G. Shanthikumar. Stochastic orders. Springer Series in Statis-
tics. Springer, New York, 2007.

[SW73] T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of
diffusion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27:37–
46, 1973.

[Wat75] S. Watanabe. On time inversion of one-dimensional diffusion processes. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 31:115–124, 1974/75.

26


