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Introduction

Control systems are ubiquitous in modern technology. The use of feedback
control can be found in systems ranging from simple thermostats that regu-
late the temperature of a room, to digital engine controllers that govern the
operation of engines in cars, ships, and planes, to flight control systems for
high performance aircraft. The rapid advances in sensing, computation, and
actuation technologies is continuing to drive this trend and the role of control
theory in advanced (and even not so advanced) systems is increasing.

A typical use of control theory in many modern systems is to invert the
system dynamics to compute the inputs required to perform a specific task.
This inversion may involve finding appropriate inputs to steer a control system
from one state to another or may involve finding inputs to follow a desired
trajectory for some or all of the state variables of the system. In general, the
solution to a given control problem will not be unique, if it exists at all, and so
one must trade off the performance of the system for the stability and actuation
effort. Often this tradeoff is described as a cost function balancing the desired
performance objectives with stability and effort, resulting in an optimal control
problem.
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This inverse dynamics problem assumes that the dynamics for the system
are known and fixed. In practice, uncertainty and noise are always present in
systems and must be accounted for in order to achieve acceptable performance
of this system. Feedback control formulations allow the system to respond to
errors and changing operating conditions in real-time and can substantially
affect the operability of the system by stabilizing the system and extending its
capabilities. Again, one may formulate the feedback regulation problems as
an optimization problem to allow tradeoffs between stability, performance, and
actuator effort.

The basic paradigm used in most, if not all, control techniques is to exploit
the mathematical structure of the system to obtain solutions to the inverse
dynamics and feedback regulation problems. The most common structure to
exploit is linear structure, where one approximates the given system by its li-
nearization and then uses properties of linear control systems combined with
appropriate cost function to give closed form (or at least numerically com-
putable) solutions. By using different linearizations around different operating
points, it is even possible to obtain good results when the system is nonlinear
by “scheduling” the gains depending on the operating point.

As the systems that we seek to control become more complex, the use of
linear structure alone is often not sufficient to solve the control problems that
are arising in applications. This is especially true of the inverse dynamics
problems, where the desired task may span multiple operating regions and
hence the use of a single linear system is inappropriate.

In order to solve these harder problems, control theorists look for different
types of structure to exploit in addition to simple linear structure. In this
paper we concentrate on a specific class of systems, called “(differentially) flat
systems”, for which the structure of the trajectories of the (nonlinear) dynamics
can be completely characterized. Flat systems are a generalization of linear
systems (in the sense that all linear, controllable systems are flat), but the
techniques used for controlling flat systems are much different than many of the
existing techniques for linear systems. As we shall see, flatness is particularly
well tuned for allowing one to solve the inverse dynamics problems and one
builds off of that fundamental solution in using the structure of flatness to
solve more general control problems.

Flatness was first defined by Fliess et al. [13, 16] using the formalism of
differential algebra, see also [33] for a somewhat different approach. In differ-
ential algebra, a system is viewed as a differential field generated by a set of
variables (states and inputs). The system is said to be flat if one can find a set
of variables, called the flat outputs, such that the system is (non-differentially)
algebraic over the differential field generated by the set of flat outputs. Roughly
speaking, a system is flat if we can find a set of outputs (equal in number to the
number of inputs) such that all states and inputs can be determined from these
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outputs without integration. More precisely, if the system has states x ∈ R
n,

and inputs u ∈ R
m then the system is flat if we can find outputs y ∈ R

m of the
form

y = h(x, u, u̇, . . . , u(r))

such that

x = ϕ(y, ẏ, . . . , y(q))

u = α(y, ẏ, . . . , y(q)).

More recently, flatness has been defined in a more geometric context, where
tools for nonlinear control are more commonly available. One approach is to use
exterior differential systems and regard a nonlinear control system as a Pfaffian
system on an appropriate space [51]. In this context, flatness can be described
in terms of the notion of absolute equivalence defined by E. Cartan [6, 7, 70].

In this paper we adopt a somewhat different geometric point of view, relying
on a Lie-Bäcklund framework as the underlying mathematical structure. This
point of view was originally described by Fliess et al. in 1993 [14] and is related
to the work of Pomet et al. [57, 55] on “infinitesimal Brunovsky forms” (in the
context of feedback linearization). It offers a compact framework in which to
describe basic results and is also closely related to the basic techniques that are
used to compute the functions that are required to characterize the solutions
of flat systems (the so-called flat outputs).

Applications of flatness to problems of engineering interest have grown
steadily in recent years. It is important to point out that many classes of
systems commonly used in nonlinear control theory are flat, see for instance
the examples in section 4. As already noted, all controllable linear systems can
be shown to be flat. Indeed, any system that can be transformed into a linear
system by changes of coordinates, static feedback transformations (change of
coordinates plus nonlinear change of inputs), or dynamic feedback transforma-
tions is also flat. Nonlinear control systems in “pure feedback form”, which
have gained popularity due to the applicability of backstepping [29] to such
systems, are also flat. Thus, many of the systems for which strong nonlinear
control techniques are available are in fact flat systems, leading one to question
how the structure of flatness plays a role in control of such systems.

One common misconception is that flatness amounts to dynamic feedback
linearization. It is true that any flat system can be feedback linearized using
dynamic feedback (up to some regularity conditions that are generically satis-
fied). However, flatness is a property of a system and does not imply that one
intends to then transform the system, via a dynamic feedback and appropriate
changes of coordinates, to a single linear system. Indeed, the power of flatness
is precisely that it does not convert nonlinear systems into linear ones. When
a system is flat it is an indication that the nonlinear structure of the system is
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well characterized and one can exploit that structure in designing control algo-
rithms for motion planning, trajectory generation, and stabilization. Dynamic
feedback linearization is one such technique, although it is often a poor choice
if the dynamics of the system are substantially different in different operating
regimes.

Another advantage of studying flatness over dynamic feedback linearization
is that flatness is a geometric property of a system, independent of coordinate
choice. Typically when one speaks of linear systems in a state space context,
this does not make sense geometrically since the system is linear only in certain
choices of coordinate representations. In particular, it is difficult to discuss the
notion of a linear state space system on a manifold since the very definition
of linearity requires an underlying linear space. In this way, flatness can be
considered the proper geometric notion of linearity, even though the system
may be quite nonlinear in almost any natural representation.

Finally, the notion of flatness can be extended to distributed parameters
systems with boundary control, see section 3.2.2, and is useful even for control-
ling linear systems, whereas feedback linearization is yet to be defined in that
context.

This paper provides a self-contained description of flat systems. Section 1
introduces the fundamental concepts of equivalence and flatness in a simple ge-
ometric framework. This is essentially an open-loop point of view. In section 2
we adopt a closed-loop point of view and relate equivalence and flatness to
feedback design. Section 3 is devoted to open problems and new perspectives
including developments on symmetries and distributed parameters systems.
Finally, section 4 contains a representative catalog of flat systems arising in
various fields of engineering.

1 Equivalence and flatness

1.1 Control systems as infinite dimensional vector fields

A system of differential equations

ẋ = f(x), x ∈ X ⊂ R
n (1)

is by definition a pair (X, f), where X is an open set of R
n and f is a smooth

vector field on X. A solution, or trajectory, of (1) is a mapping t �→ x(t) such
that

ẋ(t) = f(x(t)) ∀t ≥ 0.
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Notice that if x �→ h(x) is a smooth function on X and t �→ x(t) is a trajectory
of (1), then

d

dt
h(x(t)) =

∂h

∂x
(x(t)) · ẋ(t) = ∂h

∂x
(x(t)) · f(x(t)) ∀t ≥ 0.

For that reason the total derivative, i.e., the mapping

x �→ ∂h

∂x
(x) · f(x)

is somewhat abusively called the “time-derivative” of h and denoted by ḣ.
We would like to have a similar description, i.e., a “space” and a vector

field on this space, for a control system

ẋ = f(x, u), (2)

where f is smooth on an open subset X × U ⊂ R
n × R

m. Here f is no longer
a vector field on X, but rather an infinite collection of vector fields on X
parameterized by u: for all u ∈ U , the mapping

x �→ fu(x) = f(x, u)

is a vector field on X. Such a description is not well-adapted when considering
dynamic feedback.

It is nevertheless possible to associate to (2) a vector field with the “same”
solutions using the following remarks: given a smooth solution of (2), i.e., a
mapping t �→ (x(t), u(t)) with values in X × U such that

ẋ(t) = f(x(t), u(t)) ∀t ≥ 0,

we can consider the infinite mapping

t �→ ξ(t) = (x(t), u(t), u̇(t), . . .)

taking values in X×U ×R
∞
m , where R

∞
m = R

m×R
m× . . . denotes the product

of an infinite (countable) number of copies of R
m. A typical point of R

∞
m is

thus of the form (u1, u2, . . .) with ui ∈ R
m. This mapping satisfies

ξ̇(t) =
(
f(x(t), u(t)), u̇(t), ü(t), . . .

)
∀t ≥ 0,

hence it can be thought of as a trajectory of the infinite vector field

(x, u, u1, . . .) �→ F (x, u, u1, . . .) = (f(x, u), u1, u2, . . .)

on X × U × R
∞
m . Conversely, any mapping

t �→ ξ(t) = (x(t), u(t), u1(t), . . .)
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that is a trajectory of this infinite vector field necessarily takes the form
(x(t), u(t), u̇(t), . . .) with ẋ(t) = f(x(t), u(t)), hence corresponds to a solution
of (2). Thus F is truly a vector field and no longer a parameterized family of
vector fields.

Using this construction, the control system (2) can be seen as the data of the
“space” X ×U ×R

∞
m together with the “smooth” vector field F on this space.

Notice that, as in the uncontrolled case, we can define the “time-derivative”
of a smooth function (x, u, u1, . . .) �→ h(x, u, u1, . . . , uk) depending on a finite
number of variables by

ḣ(x, u, u1, . . . , uk+1) := Dh · F

=
∂h

∂x
· f(x, u) + ∂h

∂u
· u1 +

∂h

∂u1
· u2 + · · · .

The above sum is finite because h depends on finitely many variables.

Remark. To be rigorous we must say something of the underlying topology and
differentiable structure of R

∞
m to be able to speak of smooth objects [76]. This

topology is the Fréchet topology, which makes things look as if we were working
on the product of k copies of R

m for a “large enough” k. For our purpose it is
enough to know that a basis of the open sets of this topology consists of infinite
products U0 × U1 × . . . of open sets of R

m, and that a function is smooth if
it depends on a finite but arbitrary number of variables and is smooth in the
usual sense. In the same way a mapping Φ : R

∞
m → R

∞
n is smooth if all of its

components are smooth functions.
R

∞
m equipped with the Fréchet topology has very weak properties: useful

theorems such as the implicit function theorem, the Frobenius theorem, and
the straightening out theorem no longer hold true. This is only because R

∞
m

is a very big space: indeed the Fréchet topology on the product of k copies of
R
m for any finite k coincides with the usual Euclidian topology.
We can also define manifolds modeled on R

∞
m using the standard machinery.

The reader not interested in these technicalities can safely ignore the details
and won’t loose much by replacing “manifold modeled on R

∞
m” by “open set

of R
∞
m”.

We are now in position to give a formal definition of a system:

Definition 1. A system is a pair (M, F ) where M is a smooth manifold,
possibly of infinite dimension, and F is a smooth vector field on M.

Locally, a control system looks like an open subset of R
α (α not necessarily

finite) with coordinates (ξ1, . . . , ξα) together with the vector field

ξ �→ F (ξ) = (F1(ξ), . . . , Fα(ξ))
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where all the components Fi depend only on a finite number of coordinates. A
trajectory of the system is a mapping t �→ ξ(t) such that ξ̇(t) = F (ξ(t)).

We saw in the beginning of this section how a “traditional” control system
fits into our definition. There is nevertheless an important difference: we lose
the notion of state dimension. Indeed

ẋ = f(x, u), (x, u) ∈ X × U ⊂ R
n × R

m (3)

and
ẋ = f(x, u), u̇ = v (4)

now have the same description (X × U × R
∞
m , F ), with

F (x, u, u1, . . .) = (f(x, u), u1, u2, . . .),

in our formalism: t �→ (x(t), u(t)) is a trajectory of (3) if and only if t �→
(x(t), u(t), u̇(t)) is a trajectory of (4). This situation is not surprising since the
state dimension is of course not preserved by dynamic feedback. On the other
hand we will see there is still a notion of input dimension.
Example 1 (The trivial system). The trivial system (R∞

m , Fm), with coordinates
(y, y1, y2, . . .) and vector field

Fm(y, y1, y2, . . .) = (y1, y2, y3, . . .)

describes any “traditional” system made of m chains of integrators of arbitrary
lengths, and in particular the direct transfer y = u.

In practice we often identify the “system” F (x, u) := (f(x, u), u1, u2, . . .)
with the “dynamics” ẋ = f(x, u) which defines it. Our main motivation for
introducing a new formalism is that it will turn out to be a natural framework
for the notions of equivalence and flatness we want to define.
Remark. It is easy to see that the manifold M is finite-dimensional only when
there is no input, i.e., to describe a determined system of differential equations
one needs as many equations as variables. In the presence of inputs, the sys-
tem becomes underdetermined, there are more variables than equations, which
accounts for the infinite dimension.
Remark. Our definition of a system is adapted from the notion of diffiety in-
troduced in [76] to deal with systems of (partial) differential equations. By
definition a diffiety is a pair (M, CTM) where M is smooth manifold, possibly
of infinite dimension, and CTM is an involutive finite-dimensional distribution
on M, i.e., the Lie bracket of any two vector fields of CTM is itself in CTM.
The dimension of CTM is equal to the number of independent variables.

As we are only working with systems with lumped parameters, hence gov-
erned by ordinary differential equations, we consider diffieties with one di-
mensional distributions. For our purpose we have also chosen to single out a
particular vector field rather than work with the distribution it spans.
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1.2 Equivalence of systems

In this section we define an equivalence relation formalizing the idea that two
systems are “equivalent” if there is an invertible transformation exchanging
their trajectories. As we will see later, the relevance of this rather natural
equivalence notion lies in the fact that it admits an interpretation in terms of
dynamic feedback.

Consider two systems (M, F ) and (N, G) and a smooth mapping Ψ : M → N
(remember that by definition every component of a smooth mapping depends
only on finitely many coordinates). If t �→ ξ(t) is a trajectory of (M, F ), i.e.,

∀ξ, ξ̇(t) = F (ξ(t)),

the composed mapping t �→ ζ(t) = Ψ(ξ(t)) satisfies the chain rule

ζ̇(t) =
∂Ψ
∂ξ

(ξ(t)) · ξ̇(t) = ∂Ψ
∂ξ

(ξ(t)) · F (ξ(t)).

The above expressions involve only finite sums even if the matrices and vectors
have infinite sizes: indeed a row of ∂Ψ

∂ξ contains only a finite number of non zero
terms because a component of Ψ depends only on finitely many coordinates.
Now, if the vector fields F and G are Ψ-related, i.e.,

∀ξ, G(Ψ(ξ)) =
∂Ψ
∂ξ

(ξ) · F (ξ)

then
ζ̇(t) = G(Ψ(ξ(t)) = G(ζ(t)),

which means that t �→ ζ(t) = Ψ(ξ(t)) is a trajectory of (N, G). If moreover
Ψ has a smooth inverse Φ then obviously F,G are also Φ-related, and there is
a one-to-one correspondence between the trajectories of the two systems. We
call such an invertible Ψ relating F and G an endogenous transformation.

Definition 2. Two systems (M, F ) and (N, G) are equivalent at (p, q) ∈ M×N
if there exists an endogenous transformation from a neighborhood of p to a
neighborhood of q. (M, F ) and (N, G) are equivalent if they are equivalent at
every pair of points (p, q) of a dense open subset of M × N.

Notice that when M and N have the same finite dimension, the systems are
necessarily equivalent by the straightening out theorem. This is no longer true
in infinite dimensions.

Consider the two systems (X×U×R
∞
m , F ) and (Y ×V ×R

∞
s , G) describing

the dynamics

ẋ = f(x, u), (x, u) ∈ X × U ⊂ R
n × R

m (5)
ẏ = g(y, v), (y, v) ∈ Y × V ⊂ R

r × R
s. (6)
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The vector fields F,G are defined by

F (x, u, u1, . . .) = (f(x, u), u1, u2, . . .)

G(y, v, v1, . . .) = (g(y, v), v1, v2, . . .).

If the systems are equivalent, the endogenous transformation Ψ takes the form

Ψ(x, u, u1, . . .) = (ψ(x, u), β(x, u), β̇(x, u), . . .).

Here we have used the short-hand notation u = (u, u1, . . . , uk), where k is some
finite but otherwise arbitrary integer. Hence Ψ is completely specified by the
mappings ψ and β, i.e, by the expression of y, v in terms of x, u. Similarly, the
inverse Φ of Ψ takes the form

Φ(y, v, v1, . . .) = (ϕ(y, v), α(y, v), α̇(y, v), . . .).

As Ψ and Φ are inverse mappings we have

ψ
(
ϕ(y, v), α(y, v)

)
= y

β
(
ϕ(y, v), α(y, v)

)
= v

and
ϕ
(
ψ(x, u), β(x, u)

)
= x

α
(
ψ(x, u), β(x, u)

)
= u.

Moreover F and G Ψ-related implies

f
(
ϕ(y, v), α(y, v)

)
= Dϕ(y, v) · g(y, v)

where g stands for (g, v1, . . . , vk), i.e., a truncation ofG for some large enough k.
Conversely,

g
(
ψ(x, u), β(y, u)

)
= Dψ(x, u) · f(y, u).

In other words, whenever t �→ (x(t), u(t)) is a trajectory of (5)

t �→ (y(t), v(t)) =
(
ϕ(x(t), u(t)), α(x(t), u(t))

)
is a trajectory of (6), and vice versa.

Example 2 (The PVTOL, see example 21). The system generated by

ẍ = −u1 sin θ + εu2 cos θ
z̈ = u1 cos θ + εu2 sin θ − 1

θ̈ = u2.

is globally equivalent to the systems generated by

ÿ1 = −ξ sin θ, ÿ2 = ξ cos θ − 1,
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where ξ and θ are the control inputs. Indeed, setting

X := (x, z, ẋ, ż, θ, θ̇)
U := (u1, u2)

and
Y := (y1, y2, ẏ1, ẏ2)
V := (ξ, θ)

and using the notations in the discussion after definition 2, we define the map-
pings Y = ψ(X,U) and V = β(X,U) by

ψ(X,U) :=




x− ε sin θ
z + ε cos θ
ẋ− εθ̇ cos θ
ż − εθ̇ sin θ


 and β(X,U) :=

(
u1 − εθ̇2

θ

)

to generate the mapping Ψ. The inverse mapping Φ is generated by the map-
pings X = ϕ(Y, V ) and U = α(Y, V ) defined by

ϕ(Y, V ) :=




y1 + ε sin θ
y2 − ε cos θ
ẏ1 + εθ̇ cos θ
ẏ2 − εθ̇ sin θ

θ

θ̇




and α(Y, V ) :=
(
ξ + εθ̇2

θ̈

)

An important property of endogenous transformations is that they preserve
the input dimension:

Theorem 1. If two systems (X × U × R
∞
m , F ) and (Y × V × R

∞
s , G) are

equivalent, then they have the same number of inputs, i.e., m = s.

Proof. Consider the truncation Φµ of Φ on X × U × (Rm)µ,

Φµ : X × U × (Rm+k)µ → Y × V × (Rs)µ

(x, u, u1, . . . , uk+µ) �→ (ϕ,α, α̇, . . . , α(µ)),

i.e., the first µ+ 2 blocks of components of Ψ; k is just a fixed “large enough”
integer. Because Ψ is invertible, Ψµ is a submersion for all µ. Hence the
dimension of the domain is greater than or equal to the dimension of the range,

n+m(k + µ+ 1) ≥ s(µ+ 1) ∀µ > 0,

which implies m ≥ s. Using the same idea with Ψ leads to s ≥ m.

Remark. Our definition of equivalence is adapted from the notion of equiva-
lence between diffieties. Given two diffieties (M, CTM) and (N, CTN), we say
that a smooth mapping Ψ from (an open subset of) M to N is Lie-Bäcklund
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if its tangent mapping TΨ satisfies TΦ(CTM) ⊂ CTN. If moreover Ψ has a
smooth inverse Φ such that TΨ(CTN) ⊂ CTM, we say it is a Lie-Bäcklund
isomorphism. When such an isomorphism exists, the diffieties are said to be
equivalent. An endogenous transformation is just a special Lie-Bäcklund iso-
morphism, which preserves the time parameterization of the integral curves.
It is possible to define the more general concept of orbital equivalence [14, 12]
by considering general Lie-Bäcklund isomorphisms, which preserve only the
geometric locus of the integral curves (see an example in section 26).

1.3 Differential Flatness

We single out a very important class of systems, namely systems equivalent to
a trivial system (R∞

s , Fs) (see example 1):

Definition 3. The system (M, F ) is flat at p ∈ M (resp. flat) if it equivalent
at p (resp. equivalent) to a trivial system.

We specialize the discussion after definition 2 to a flat system (X × U ×
R

∞
m , F ) describing the dynamics

ẋ = f(x, u), (x, u) ∈ X × U ⊂ R
n × R

m.

By definition the system is equivalent to the trivial system (R∞
s , Fs) where the

endogenous transformation Ψ takes the form

Ψ(x, u, u1, . . . ) = (h(x, u), ḣ(x, u), ḧ(x, u), . . . ). (7)

In other words Ψ is the infinite prolongation of the mapping h. The inverse Φ
of Ψ takes the form

Ψ(y) = (ψ(y), β(y), β̇(y), . . .).

As Φ and Ψ are inverse mappings we have in particular

ϕ
(
h(x, u)

)
= x and α

(
h(x, u)

)
= u.

Moreover F and G Φ-related implies that whenever t �→ y(t) is a trajectory of
y = v –i.e., nothing but an arbitrary mapping–

t �→
(
x(t), u(t)

)
=

(
ψ(y(t)), β(y(t))

)
is a trajectory of ẋ = f(x, u), and vice versa.

We single out the importance of the mapping h of the previous example:

Definition 4. Let (M, F ) be a flat system and Ψ the endogenous transforma-
tion putting it into a trivial system. The first block of components of Ψ, i.e.,
the mapping h in (7), is called a flat (or linearizing) output.
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With this definition, an obvious consequence of theorem 1 is:

Corollary 1. Consider a flat system. The dimension of a flat output is equal
to the input dimension, i.e., s = m.

Example 3 (The PVTOL). The system studied in example 2 is flat, with

y = h(X,U) := (x− ε sin θ, z + ε cos θ)

as a flat output. Indeed, the mappings X = ϕ(y) and U = α(y) which generate
the inverse mapping Φ can be obtained from the implicit equations

(y1 − x)2 + (y2 − z)2 = ε2

(y1 − x)(ÿ2 + 1)− (y2 − z)ÿ1 = 0
(ÿ2 + 1) sin θ + ÿ1 cos θ = 0.

We first solve for x, z, θ,

x = y1 + ε
ÿ1√

ÿ2
1 + (ÿ2 + 1)2

z = y2 + ε
(ÿ2 + 1)√

ÿ2
1 + (ÿ2 + 1)2

θ = arg(ÿ1, ÿ2 + 1),

and then differentiate to get ẋ, ż, θ̇, u in function of the derivatives of y. Notice
the only singularity is ÿ2

1 + (ÿ2 + 1)2 = 0.

1.4 Application to motion planning

We now illustrate how flatness can be used for solving control problems. Con-
sider a nonlinear control system of the form

ẋ = f(x, u) x ∈ R
n, u ∈ R

m

with flat output
y = h(x, u, u̇, . . . , u(r)).

By virtue of the system being flat, we can write all trajectories (x(t), u(t))
satisfying the differential equation in terms of the flat output and its derivatives:

x = ϕ(y, ẏ, . . . , y(q))

u = α(y, ẏ, . . . , y(q)).

222



We begin by considering the problem of steering from an initial state to
a final state. We parameterize the components of the flat output yi, i =
1, . . . ,m by

yi(t) :=
∑
j

Aijλj(t), (8)

where the λj(t), j = 1, . . . , N are basis functions. This reduces the problem
from finding a function in an infinite dimensional space to finding a finite set
of parameters.

Suppose we have available to us an initial state x0 at time τ0 and a final
state xf at time τf . Steering from an initial point in state space to a desired
point in state space is trivial for flat systems. We have to calculate the values
of the flat output and its derivatives from the desired points in state space and
then solve for the coefficients Aij in the following system of equations:

yi(τ0) =
∑

j Aijλj(τ0) yi(τf ) =
∑

j Aijλj(τf )
...

...
y
(q)
i (τ0) =

∑
j Aijλ

(q)
j (τ0) y

(q)
i (τf ) =

∑
j Aijλ

(q)
j (τf ).

(9)

To streamline notation we write the following expressions for the case of
a one-dimensional flat output only. The multi-dimensional case follows by
repeatedly applying the one-dimensional case, since the algorithm is decoupled
in the component of the flat output. Let Λ(t) be the q + 1 by N matrix
Λij(t) = λ

(i)
j (t) and let

ȳ0 = (y1(τ0), . . . , y
(q)
1 (τ0))

ȳf = (y1(τf ), . . . , y
(q)
1 (τf ))

ȳ = (ȳ0, ȳf ).

(10)

Then the constraint in equation (9) can be written as

ȳ =
(

Λ(τ0)
Λ(τf )

)
A =: ΛA. (11)

That is, we require the coefficients A to be in an affine sub-space defined by
equation (11). The only condition on the basis functions is that Λ is full rank,
in order for equation (11) to have a solution.

The implications of flatness is that the trajectory generation problem can
be reduced to simple algebra, in theory, and computationally attractive algo-
rithms in practice. In the case of the towed cable system of example 25, a
reasonable state space representation of the system consists of approximately
128 states. Traditional approaches to trajectory generation, such as optimal
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control, cannot be easily applied in this case. However, it follows from the
fact that the system is flat that the feasible trajectories of the system are com-
pletely characterized by the motion of the point at the bottom of the cable. By
converting the input constraints on the system to constraints on the curvature
and higher derivatives of the motion of the bottom of the cable, it is possible
to compute efficient techniques for trajectory generation.

1.5 Motion planning with singularities

In the previous section we assumed the endogenous transformation

Ψ(x, u, u1, . . . ) :=
(
h(x, u), ḣ(x, u), ḧ(x, u), . . .

)
generated by the flat output y = h(x, u) everywhere nonsingular, so that we
could invert it and express x and u in function of y and its derivatives,

(y, ẏ, . . . , y(q)) �→ (x, u) = φ(y, ẏ, . . . , y(q)).

But it may well be that a singularity is in fact an interesting point of operation.
As φ is not defined at such a point, the previous computations do not apply.
A way to overcome the problem is to “blow up” the singularity by considering
trajectories t �→ y(t) such that

t �→ φ
(
y(t), ẏ(t), . . . , y(q)(t)

)
can be prolonged into a smooth mapping at points where φ is not defined. To
do so requires a detailed study of the singularity. A general statement is beyond
the scope of this paper and we simply illustrate the idea with an example.

Example 4. Consider the flat dynamics

ẋ1 = u1, ẋ2 = u2u1, ẋ3 = x2u1,

with flat output y := (x1, x3). When u1 = 0, i.e., ẏ1 = 0 the endogenous
transformation generated by the flat output is singular and the inverse mapping

(y, ẏ, ÿ)
φ�−→ (x1, x2, x3, u1, u2) =

(
y1,

ẏ2

ẏ1
, y2, ẏ1,

ÿ2ẏ1 − ÿ1ẏ2

ẏ3
1

)
,

is undefined. But if we consider trajectories t �→ y(t) :=
(
σ(t), p(σ(t))

)
, with σ

and p smooth functions, we find that

ẏ2(t)
ẏ1(t)

=

dp

dσ

(
σ(t)

)
· σ̇(t)

σ̇(t)
and

ÿ2ẏ1 − ÿ1ẏ2

ẏ3
1

=

d2p

dσ2

(
σ(t)

)
· σ̇3(t)

σ̇3(t)
,
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hence we can prolong t �→ φ(y(t), ẏ(t), ÿ(t)) everywhere by

t �→
(
σ(t),

dp

dσ

(
σ(t)

)
, p(σ(t)), σ̇(t),

d2p

dσ2

(
σ(t)

))
.

The motion planning can now be done as in the previous section: indeed, the
functions σ and p and their derivatives are constrained at the initial (resp.
final) time by the initial (resp. final) point but otherwise arbitrary.

For a more substantial application see [66, 67, 16], where the same idea
was applied to nonholonomic mechanical systems by taking advantage of the
“natural” geometry of the problem.

2 Feedback design with equivalence

2.1 From equivalence to feedback

The equivalence relation we have defined is very natural since it is essentially a
1−1 correspondence between trajectories of systems. We had mainly an open-
loop point of view. We now turn to a closed-loop point of view by interpreting
equivalence in terms of feedback. For that, consider the two dynamics

ẋ = f(x, u), (x, u) ∈ X × U ⊂ R
n × R

m

ẏ = g(y, v), (y, v) ∈ Y × V ⊂ R
r × R

s.

They are described in our formalism by the systems (X × U × R
∞
m , F ) and

(Y × V × R
∞
s , G), with F and G defined by

F (x, u, u1, . . .) := (f(x, u), u1, u2, . . .)

G(y, v, v1, . . .) := (g(y, v), v1, v2, . . .).

Assume now the two systems are equivalent, i.e., they have the same trajecto-
ries. Does it imply that it is possible to go from ẋ = f(x, u) to ẏ = g(y, v) by
a (possibly) dynamic feedback

ż = a(x, z, v), z ∈ Z ⊂ R
q

u = κ(x, z, v),

and vice versa? The question might look stupid at first glance since such a
feedback can only increase the state dimension. Yet, we can give it some sense
if we agree to work “up to pure integrators” (remember this does not change
the system in our formalism, see the remark after definition 1).
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Theorem 2. Assume ẋ = f(x, u) and ẏ = g(y, v) are equivalent. Then ẋ =
f(x, u) can be transformed by (dynamic) feedback and coordinate change into

ẏ = g(y, v), v̇ = v1, v̇1 = v2, . . . , v̇µ = w

for some large enough integer µ. Conversely, ẏ = g(y, v) can be transformed
by (dynamic) feedback and coordinate change into

ẋ = f(x, u), u̇ = u1, u̇1 = u2, . . . , u̇ν = w

for some large enough integer ν.

Proof [33]. Denote by F and G the infinite vector fields representing the two
dynamics. Equivalence means there is an invertible mapping

Φ(y, v) = (ϕ(y, v), α(y, v), α̇(y, v), . . .)

such that
F (Φ(y, v)) = DΦ(y, v).G(y, v). (12)

Let ỹ := (y, v, v1, . . . , vµ) and w := vµ+1. For µ large enough, ϕ (resp. α)
depends only on ỹ (resp. on ỹ and w). With these notations, Φ reads

Φ(ỹ, w) = (ϕ(ỹ), α(ỹ, w), α̇(y, w), . . .),

and equation (12) implies in particular

f(ϕ(ỹ), α(ỹ, w)) = Dϕ(ỹ).g̃(ỹ, w), (13)

where g̃ := (g, v1, . . . , vk). Because Φ is invertible, ϕ is full rank hence can be
completed by some map π to a coordinate change

ỹ �→ φ(ỹ) = (ϕ(ỹ), π(ỹ)).

Consider now the dynamic feedback

u = α(φ−1(x, z), w))

ż = Dπ(φ−1(x, z)).g̃(φ−1(x, z), w)),

which transforms ẋ = f(x, u) into(
ẋ
ż

)
= f̃(x, z, w) :=

(
f(x, α(φ−1(x, z), w))

Dπ(φ−1(x, z)).g̃(φ−1(x, z), w))

)
.

Using (13), we have

f̃
(
φ(ỹ), w

)
=

(
f
(
ϕ(ỹ), α(ỹ, w)

)
Dπ(ỹ).g̃(ỹ, w)

)
=

(
Dϕ(ỹ)
Dπ(ỹ)

)
· g̃(ỹ, w) = Dφ(ỹ).g̃(ỹ, w).

Therefore f̃ and g̃ are φ-related, which ends the proof. Exchanging the roles
of f and g proves the converse statement.
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As a flat system is equivalent to a trivial one, we get as an immediate
consequence of the theorem:

Corollary 2. A flat dynamics can be linearized by (dynamic) feedback and
coordinate change.

Remark. As can be seen in the proof of the theorem there are many feedbacks
realizing the equivalence, as many as suitable mappings π. Notice all these
feedback explode at points where ϕ is singular (i.e., where its rank collapses).

Further details about the construction of a linearizing feedback from an
output and the links with extension algorithms can be found in [35].

Example 5 (The PVTOL). We know from example 3 that the dynamics

ẍ = −u1 sin θ + εu2 cos θ
z̈ = u1 cos θ + εu2 sin θ − 1

θ̈ = u2

admits the flat output

y = (x− ε sin θ, z + ε cos θ).

It is transformed into the linear dynamics

y
(4)
1 = v1, y

(4)
2 = v2

by the feedback

ξ̈ = −v1 sin θ + v2 cos θ + ξθ̇2

u1 = ξ + εθ̇2

u2 =
−1
ξ

(v1 cos θ + v2 sin θ + 2ξ̇θ̇)

and the coordinate change

(x, z, θ, ẋ, ż, θ̇, ξ, ξ̇) �→ (y, ẏ, ÿ, y(3)).

The only singularity of this transformation is ξ = 0, i.e., ÿ2
1 + (ÿ2 + 1)2 = 0.

Notice the PVTOL is not linearizable by static feedback (see section 3.1.2).

2.2 Endogenous feedback

Theorem 2 asserts the existence of a feedback such that

ẋ = f(x, κ(x, z, w))
ż = a(x, z, w).

(14)
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reads, up to a coordinate change,

ẏ = g(y, v), v̇ = v1, . . . , v̇µ = w. (15)

But (15) is trivially equivalent to ẏ = g(y, v) (see the remark after definition 1),
which is itself equivalent to ẋ = f(x, u). Hence, (14) is equivalent to ẋ =
f(x, u). This leads to

Definition 5. Consider the dynamics ẋ = f(x, u). We say the feedback

u = κ(x, z, w)
ż = a(x, z, w)

is endogenous if the open-loop dynamics ẋ = f(x, u) is equivalent to the closed-
loop dynamics

ẋ = f(x, κ(x, z, w))
ż = a(x, z, w).

The word “endogenous” reflects the fact that the feedback variables z and
w are in loose sense “generated” by the original variables x, u (see [33, 36] for
further details and a characterization of such feedbacks)

Remark. It is also possible to consider at no extra cost “generalized” feedbacks
depending not only on w but also on derivatives of w.

We thus have a more precise characterization of equivalence and flatness:

Theorem 3. Two dynamics ẋ = f(x, u) and ẏ = g(y, v) are equivalent if and
only if ẋ = f(x, u) can be transformed by endogenous feedback and coordinate
change into

ẏ = g(y, v), v̇ = v1, . . . , v̇µ = w. (16)

for some large enough integer ν, and vice versa.

Corollary 3. A dynamics is flat if and only if it is linearizable by endogenous
feedback and coordinate change.

Another trivial but important consequence of theorem 2 is that an endoge-
nous feedback can be “unraveled” by another endogenous feedback:

Corollary 4. Consider a dynamics

ẋ = f(x, κ(x, z, w))
ż = a(x, z, w)
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where

u = κ(x, z, w)
ż = a(x, z, w)

is an endogenous feedback. Then it can be transformed by endogenous feedback
and coordinate change into

ẋ = f(x, u), u̇ = u1, . . . , u̇µ = w. (17)

for some large enough integer µ.

This clearly shows which properties are preserved by equivalence: proper-
ties that are preserved by adding pure integrators and coordinate changes, in
particular controllability.

An endogenous feedback is thus truly “reversible”, up to pure integrators.
It is worth pointing out that a feedback which is invertible in the sense of
the standard –but maybe unfortunate– terminology [52] is not necessarily en-
dogenous. For instance the invertible feedback ż = v, u = v acting on the
scalar dynamics ẋ = u is not endogenous. Indeed, the closed-loop dynamics
ẋ = v, ż = v is no longer controllable, and there is no way to change that by
another feedback!

2.3 Tracking: feedback linearization

One of the central problems of control theory is trajectory tracking: given a
dynamics ẋ = f(x, u), we want to design a controller able to track any reference
trajectory t �→

(
xr(t), ur(t)

)
. If this dynamics admits a flat output y = h(x, u),

we can use corollary 2 to transform it by (endogenous) feedback and coordinate
change into the linear dynamics y(µ+1) = w. Assigning then

v := y(µ+1)
r (t)−K∆ỹ

with a suitable gain matrix K, we get the stable closed-loop error dynamics

∆y(µ+1) = −K∆ỹ,

where yr(t) := (xr(t), ur(t)
)
and ỹ := (y, ẏ, . . . , yµ) and ∆ξ stands for ξ− ξr(t).

This control law meets the design objective. Indeed, there is by the definition
of flatness an invertible mapping

Φ(y) = (ϕ(y), α(y), α̇(y), . . . )
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relating the infinite dimension vector fields F (x, u) := (f(x, u), u, u1, . . . ) and
G(y) := (y, y1, . . . ). From the proof of theorem 2, this means in particular

x = ϕ(ỹr(t) + ∆ỹ)
= ϕ(ỹr(t)) +Rϕ(yr(t),∆ỹ).∆ỹ

= xr(t) +Rϕ(yr(t),∆ỹ).∆ỹ

and

u = α(ỹr(t) + ∆ỹ,−K∆ỹ)

= α(ỹr(t)) +Rα(y(µ+1)
r (t),∆ỹ).

(
∆ỹ

−K∆ỹ

)

= ur(t) +Rα(ỹr(t), y(µ+1)
r (t),∆ỹ,∆w).

(
∆ỹ

−K∆ỹ

)
,

where we have used the fundamental theorem of calculus to define

Rϕ(Y,∆Y ) :=
∫ 1

0

Dϕ(Y + t∆Y )dt

Rα(Y,w,∆Y,∆w) :=
∫ 1

0

Dα(Y + t∆Y,w + t∆w)dt.

Since ∆y → 0 as t → ∞, this means x → xr(t) and u → ur(t). Of course
the tracking gets poorer and poorer as the ball of center ỹr(t) and radius ∆y
approaches a singularity of ϕ. At the same time the control effort gets larger
and larger, since the feedback explodes at such a point (see the remark after
theorem 2). Notice the tracking quality and control effort depend only on the
mapping Φ, hence on the flat output, and not on the feedback itself.

We end this section with some comments on the use of feedback lineari-
zation. A linearizing feedback should always be fed by a trajectory generator,
even if the original problem is not stated in terms of tracking. For instance, if
it is desired to stabilize an equilibrium point, applying directly feedback line-
arization without first planning a reference trajectory yields very large control
effort when starting from a distant initial point. The role of the trajectory gen-
erator is to define an open-loop “reasonable” trajectory –i.e., satisfying some
state and/or control constraints– that the linearizing feedback will then track.

2.4 Tracking: singularities and time scaling

Tracking by feedback linearization is possible only far from singularities of the
endogenous transformation generated by the flat output. If the reference tra-
jectory passes through or near a singularity, then feedback linearization cannot
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be directly applied, as is the case for motion planning, see section 1.5. Never-
theless, it can be used after a time scaling, at least in the presence of “simple”
singularities. The interest is that it allows exponential tracking, though in a
new “singular” time.

Example 6. Take a reference trajectory t �→ yr(t) = (σ(t), p(σ(t)) for example 4.
Consider the dynamic time-varying compensator u1 = ξσ̇(t) and ξ̇ = v1σ̇(t).
The closed loop system reads

x′
1 = ξ, x′

2 = u2ξ, x′
3 = x2ξ ξ′ = v1.

where ′ stands for d/dσ, the extended state is (x1, x2, x3, ξ), the new control is
(v1, v2). An equivalent second order formulation is

x′′
1 = v1, x′′

3 = u2ξ
2 + x2v1.

When ξ is far from zero, the static feedback u2 = (v2 − x2v1)/ξ2 linearizes the
dynamics,

x′′
1 = v1, x′′

3 = v2

in σ scale. When the system remains close to the reference, ξ ≈ 1, even if for
some t, σ̇(t) = 0. Take

v1 = 0− sign(σ)a1(ξ − 1)− a2(x1 − σ)
v2 = d2p

dσ2 − sign(σ)a1

(
x2ξ − dp

dσ

)
)− a2(x3 − p) (18)

with a1 > 0 and a2 > 0 , then the error dynamics becomes exponentially stable
in σ-scale (the term sign(σ) is for dealing with σ̇ < 0 ).

Similar computations for trailer systems can be found in [15, 12].

2.5 Tracking: flatness and backstepping

2.5.1 Some drawbacks of feedback linearization

We illustrate on two simple (and caricatural) examples that feedback lineari-
zation may not lead to the best tracking controller in terms of control effort.

Example 7. Assume we want to track any trajectory t �→
(
xr(t), ur(t)

)
of

ẋ = −x− x3 + u, x ∈ R.

The linearizing feedback

u = x+ x3 − k∆x+ ẋr(t)

= ur(t) + 3xr(t)∆x2 +
(
1 + 3x2

r(t)− k
)
∆x+∆x3
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meets this objective by imposing the closed-loop dynamics ∆ẋ = −k∆x.
But a closer inspection shows the open-loop error dynamics

∆ẋ =−
(
1 + 3x2

r(t)
)
∆x−∆x3 + 3xr(t)∆x2 +∆u

= −∆x
(
1 + 3x2

r(t)− 3xr(t)∆x+∆x2
)
+∆u

is naturally stable when the open-loop control u := ur(t) is applied (indeed
1 + 3x2

r(t) − 3xr(t)∆x + ∆x2 is always strictly positive). In other words, the
linearizing feedback does not take advantage of the natural damping effects.

Example 8. Consider the dynamics

ẋ1 = u1, ẋ2 = u2(1− u1),

for which it is required to track an arbitrary trajectory t �→
(
xr(t), ur(t)

)
(notice ur(t) may not be so easy to define because of the singularity u1 = 1).
The linearizing feedback

u1 = −k∆x1 + ẋ1r(t)

u2 =
−k∆x2 + ẋ2r(t)
1 + k∆x1 − ẋ1r(t)

meets this objective by imposing the closed-loop dynamics ∆ẋ = −k∆x. Un-
fortunately u2 grows unbounded as u1 approaches one. This means we must in
practice restrict to reference trajectories such that |1−u1r(t)| is always “large”
–in particular it is impossible to cross the singularity– and to a “small” gain k.

A smarter control law can do away with these limitations. Indeed, consid-
ering the error dynamics

∆ẋ1 = ∆u1

∆ẋ2 = (1− u1r(t)−∆u1)∆u2 − u2r(t)∆u1,

and differentiating the positive function V (∆x) := 1
2 (∆x2

1 +∆x2
2) we get

V̇ = ∆u1(∆x1 − u2r(t)∆x2) + (1− u1r(t)−∆u1)∆u1∆u2.

The control law

∆u1 = −k(∆x1 − u2r(t)∆x2)
∆u2 = −(1− u1r(t)−∆u1)∆x2

does the job since

V̇ = −
(
∆x1 − u2r(t)∆x2

)2 −
(
(1− u1r(t)−∆u1)∆x2

)2 ≤ 0.
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Moreover, when u1r(t) �= 0, V̇ is zero if and only if ‖∆x‖ is zero. It is thus
possible to cross the singularity –which has been made an unstable equilibrium
of the closed-loop error dynamics– and to choose the gain k as large as desired.
Notice the singularity is overcome by a “truly” multi-input design.

It should not be inferred from the previous examples that feedback linear-
ization necessarily leads to inefficient tracking controllers. Indeed, when the
trajectory generator is well-designed, the system is always close to the refer-
ence trajectory. Singularities are avoided by restricting to reference trajectories
which stay away from them. This makes sense in practice when singularities
do not correspond to interesting regions of operations. In this case, designing
a tracking controller “smarter” than a linearizing feedback often turns out to
be rather complicated, if possible at all.

2.5.2 Backstepping

The previous examples are rather trivial because the control input has the
same dimension as the state. More complicated systems can be handled by
backstepping. Backstepping is a versatile design tool which can be helpful in a
variety of situations: stabilization, adaptive or output feedback, etc ([29] for a
complete survey). It relies on the simple yet powerful following idea: consider
the system

ẋ = f(x, ξ), f(x0, ξ0) = 0

ξ̇ = u,

where (x, ξ) ∈ R
n ×R is the state and u ∈ R the control input, and assume we

can asymptotically stabilize the equilibrium x0 of the subsystem ẋ = f(x, ξ),
i.e., we know a control law ξ = α(x), α(x0) = ξ0 and a positive function V (x)
such that

V̇ = DV (x).f(x, α(x)) ≤ 0.

A key observation is that the “virtual” control input ξ can then “back-
stepped” to stabilize the equilibrium (x0, ξ0) of the complete system. Indeed,
introducing the positive function

W (x, ξ) := V (x) +
1
2
(ξ − α(x))2

and the error variable z := ξ − α(x), we have

Ẇ = DV (x).f(x, α(x) + z) + z
(
u− α̇(x, ξ)

)
= DV (x).

(
f(x, α(x)) +R(x, z).z

)
+ z

(
u−Dα(x).f(x, ξ)

)
= V̇ + z

(
u−Dα(x).f(x, ξ) +DV (x).R(x, z)

)
,
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where we have used the fundamental theorem of calculus to define

R(x, h) :=
∫ 1

0

∂f

∂ξ
(x, x+ th)dt

(notice R(x, h) is trivially computed when f is linear in ξ). As V̇ is negative by
assumption, we can make Ẇ negative, hence stabilize the system, by choosing
for instance

u := −z +Dα(x).f(x, ξ)−DV (x).R(x, z).

2.5.3 Blending equivalence with backstepping

Consider a dynamics ẏ = g(y, v) for which we would like to solve the tracking
problem. Assume it is equivalent to another dynamics ẋ = f(x, u) for which
we can solve this problem, i.e., we know a tracking control law together with
a Lyapunov function. How can we use this property to control ẏ = g(y, v)?
Another formulation of the question is: assume we know a controller for ẋ =
f(x, u). How can we derive a controller for

ẋ = f(x, κ(x, z, v))
ż = a(x, z, v),

where u = κ(x, z, v), ż = a(x, z, v) is an endogenous feedback? Notice back-
stepping answers the question for the elementary case where the feedback in
question is a pure integrator.

By theorem 2, we can transform ẋ = f(x, u) by (dynamic) feedback and
coordinate change into

ẏ = g(y, v), v̇ = v1, . . . , v̇µ = w. (19)

for some large enough integer µ. We can then trivially backstep the control
from v to w and change coordinates. Using the same reasoning as in section 2.3,
it is easy to prove this leads to a control law solving the tracking problem for
ẋ = f(x, u). In fact, this is essentially the method we followed in section 2.3 on
the special case of a flat ẋ = f(x, u). We illustrated in section 2.5.1 potential
drawbacks of this approach.

However, it is often possible to design better –though in general more
complicated– tracking controllers by suitably using backstepping. This point
of view is extensively developed in [29], though essentially in the single-input
case, where general equivalence boils down to equivalence by coordinate change.
In the multi-input case new phenomena occur as illustrated by the following
examples.
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Example 9 (The PVTOL). We know from example 2 that

ẍ = −u1 sin θ + εu2 cos θ
z̈ = u1 cos θ + εu2 sin θ − 1

θ̈ = u2

(20)

is globally equivalent to

ÿ1 = −ξ sin θ, ÿ2 = ξ cos θ − 1,

where ξ = u1+εθ̇2. This latter form is rather appealing for designing a tracking
controller and leads to the error dynamics

∆ÿ1 = −ξ sin θ + ξr(t) sin θr(t)
∆ÿ2 = ξ cos θ − ξr(t) cos θr(t)

Clearly, if θ were a control input, we could track trajectories by assigning

−ξ sin θ = α1(∆y1,∆ẏ1) + ÿ1r(t)
ξ cos θ = α2(∆y2,∆ẏ2) + ÿ2r(t)

for suitable functions α1, α2 and find a Lyapunov function V (∆y,∆ẏ) for the
system. In other words, we would assign

ξ = Ξ
(
∆y,∆ẏ, ÿr(t)

)
:=

√
(α1 + ÿ1r)2 + (α2 + ÿ2r)2

θ = Θ
(
∆y,∆ẏ, ÿr(t)

)
:= arg(α1 + ÿ1r, α2 + ÿ2r).

(21)

The angle θ is a priori not defined when ξ = 0, i.e., at the singularity of the
flat output y. We will not discuss the possibility of overcoming this singularity
and simply assume we stay away from it. Aside from that, there remains a big
problem: how should the “virtual” control law (21) be understood? Indeed, it
seems to be a differential equation: because y depends on θ, hence Ξ and Θ
are in fact functions of the variables

x, ẋ, z, ż, θ, θ̇, yr(t), ẏr(t), ÿr(t).

Notice ξ is related to the actual control u1 by a relation that also depends on θ̇.
Let us forget this apparent difficulty for the time being and backstep (21)

the usual way. Introducing the error variable κ1 := θ − Θ
(
∆y,∆ẏ, ÿr(t)

)
and

using the fundamental theorem of calculus, the error dynamics becomes

∆ÿ1 = α1(∆y1,∆ẏ1)− κ1 Rsin

(
Θ(∆y,∆ẏ, ÿr(t)), κ1

)
Ξ

(
∆y,∆ẏ, ÿr(t)

)
∆ÿ2 = α2(∆y1,∆ẏ1) + κ1 Rcos

(
Θ(∆y,∆ẏ, ÿr(t)), κ1

)
Ξ

(
∆y,∆ẏ, ÿr(t)

)
κ̇1 = θ̇ − Θ̇

(
κ1,∆y,∆ẏ, ÿr(t), y(3)

r (t)
)
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Notice the functions

Rsin(x, h) = sinx
cosh− 1

h
+ cosx

sinh

h

Rcos(x, h) = cosx
cosh− 1

h
− sinx

sinh

h

are bounded and analytic. Differentiate now the positive function

V1(∆y,∆ẏ, κ1) := V (∆y,∆ẏ) +
1
2
κ2

1

to get

V̇1 =
∂V

∂∆y1
∆ẏ1 +

∂V

∂∆ẏ1
(α1 − κ1RsinΞ)+

∂V

∂∆y2
∆ẏ2 +

∂V

∂∆ẏ2
(α2 + κ1RcosΞ) + κ1 (θ̇ − Θ̇)

= V̇ + κ1

(
θ̇ − Θ̇ + κ1

(
Rcos

∂V

∂∆y1
−Rsin

∂V

∂∆y2

)
Ξ

)
,

where we have omitted arguments of all the functions for the sake of clarity. If
θ̇ were a control input, we could for instance assign

θ̇ := −κ1 + Θ̇− κ1

(
Rcos

∂V

∂∆y1
−Rsin

∂V

∂∆y2

)
Ξ

:= Θ1

(
κ1,∆y,∆ẏ, ÿr(t), y(3)

r (t)
)
,

to get V̇1 = V̇ − κ2
1 ≤ 0. We thus backstep this “virtual” control law: we

introduce the error variable

κ2 := θ̇ −Θ1

(
κ1,∆y,∆ẏ, ÿr(t), y(3)

r (t)
)

together with the positive function

V2(∆y,∆ẏ, κ1, κ2) := V1(∆y,∆ẏ, κ1) +
1
2
κ2

2.

Differentiating

V2 = V̇ + κ1(−κ1 + κ2) + κ2(v2 − Θ̇1)

= V̇1 + κ2(u2 − Θ̇1 + κ2),

and we can easily make V̇1 negative by assigning

u2 := Θ2

(
κ1, κ2,∆y,∆ẏ, ÿr(t), y(3)

r (t), y(4)
r (t)

)
(22)
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for some suitable function Θ2.
A key observation is that Θ2 and V2 are in fact functions of the variables

x, ẋ, z, ż, θ, θ̇, yr(t), . . . , y(4)
r (t),

which means (22) makes sense. We have thus built a static control law

u1 = Ξ
(
x, ẋ, z, ż, θ, θ̇, yr(t), ẏr(t), ÿr(t)

)
+ εθ̇2

u2 = Θ2

(
x, ẋ, z, ż, θ, θ̇, yr(t), . . . , y(4)

r (t)
)

that does the tracking for (20). Notice it depends on yr(t) up to the fourth
derivative.
Example 10. The dynamics

ẋ1 = u1, ẋ2 = x3(1− u1), ẋ3 = u2,

admits (x1, x2) as a flat output. The corresponding endogenous transformation
is singular, hence any linearizing feedback blows up, when u1 = 1. However,
it is easy to backstep the controller of example 8 to build a globally tracking
static controller
Remark. Notice that none the of two previous examples can be linearized by
static feedback (see section 3.1.2). Dynamic feedback is necessary for that.
Nevertheless we were able to derive static tracking control laws for them. An
explanation of why this is possible is that a flat system can in theory be lin-
earized by a quasistatic feedback [10] –provided the flat output does not depend
on derivatives of the input–.

2.5.4 Backstepping and time-scaling

Backstepping can be combined with linearization and time-scaling, as illus-
trated in the following example.
Example 11. Consider example 4 and its tracking control defined in example 6.
Assume, for example, that σ̇ ≥ 0. With the dynamic controller

ξ̇ = v1σ̇, u1 = ξσ̇, u2 = (v2 − x2v1)/ξ2

where v1 and v2 are given by equation (18), we have, for the error e = y − yr,
a Lyapunov function V (e, de/dσ) satisfying

dV/dσ ≤ −aV (23)

with some constant a > 0. Remember that de/dσ corresponds to (ξ − 1, x2ξ −
dp/dσ). Assume now that the real control is not (u1, u2) but (u̇1 := w1, u2).
With the extended Lyapunov function

W = V (e, de/dσ) +
1
2
(u1 − ξσ̇)2
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we have
Ẇ = V̇ + (w1 − ξ̇σ̇ − ξσ̈)((u1 − ξσ̇).

Some manipulations show that

V̇ = (u1 − σ̇ξ)
(
∂V

∂e1
+

∂V

∂e2
x2 +

∂V

∂e′2
u2ξ

)
+ σ̇

dV

dσ

(remember ξ̇ = v1σ̇ and (v1, v2) are given by (18)). The feedback (b > 0)

w1 = −
(
∂V

∂e1
+

∂V

∂e2
x2 +

∂V

∂e′2
u2ξ

)
+ ξ̇σ̇ + ξσ̈ − b(u1 − ξσ̇)

achieves asymptotic tracking since Ẇ ≤ −aσ̇V − b(u1 − ξσ̇)2.

2.5.5 Conclusion

It is possible to generalize the previous examples to prove that a control law
can be backstepped “through” any endogenous feedback. In particular a flat
dynamics can be seen as a (generalized) endogenous feedback acting on the
flat output; hence we can backstep a control law for the flat output through
the whole dynamics. In other words the flat output serves as a first “virtual”
control in the backstepping process. It is another illustration of the fact that
a flat output “summarizes” the dynamical behavior.

Notice also that in a tracking problem the knowledge of a flat output is
extremely useful not only for the tracking itself (i.e., the closed-loop problem)
but also for the trajectory generation (i.e., the open-loop problem)

3 Open problems and new perspectives

3.1 Checking flatness: an overview

3.1.1 The general problem

Devising a general computable test for checking whether ẋ = f(x, u), x ∈
R
n, u ∈ R

m is flat remains up to now an open problem. This means there are no
systematic methods for constructing flat outputs. This does not make flatness
a useless concept: for instance Lyapunov functions and uniform first integrals
of dynamical systems are extremely helpful notions both from a theoretical and
practical point of view though they cannot be systematically computed.

The main difficulty in checking flatness is that a candidate flat output y =
h(x, u, . . . , u(r)) may a priori depend on derivatives of u of arbitrary order r.
Whether this order r admits an upper bound (in terms of n and m) is at the
moment completely unknown. Hence we do not know whether a finite bound
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exists at all. In the sequel, we say a system is r-flat if it admits a flat output
depending on derivatives of u of order at most r.

To illustrate this upper bound might be at least linear in the state dimen-
sion, consider the system

x
(α1)
1 = u1, x

(α2)
2 = u2, ẋ3 = u1u2

with α1 > 0 and α2 > 0. It admits the flat output

y1 = x3 +
α1∑
i=1

(−1)ix(α1−i)
1 u

(i−1)
2 , y2 = x2,

hence is r-flat with r := min(α1, α2)− 1. We suspect (without proof) there is
no flat output depending on derivatives of u of order less than r − 1.

If such a bound κ(n,m) were known, the problem would amount to checking
p-flatness for a given p ≤ κ(n,m) and could be solved in theory. Indeed, it
consists [33] in finding m functions h1, . . . , hm depending on (x, u, . . . , u(p))
such that

dim span
{
dx1, . . . , dxn, du1, . . . , dum, dh

(µ)
1 , . . . , dh(µ)

m

}
0≤µ≤ν

= m(ν + 1),

where ν := n+ pm. This means checking the integrability of the partial differ-
ential system with a transversality condition

dxi ∧ dh ∧ . . . ∧ dh(ν) = 0, i = 1, . . . , n

duj ∧ dh ∧ . . . ∧ dh(ν) = 0, j = 1, . . . ,m

dh ∧ . . . ∧ dh(ν) �= 0,

where dh(µ) stands for dh
(µ)
1 ∧ . . . ∧ dh

(µ)
m . It is in theory possible to conclude

by using a computable criterion [3, 58], though this seems to lead to practically
intractable calculations. Nevertheless it can be hoped that, due to the special
structure of the above equations, major simplifications might appear.

3.1.2 Known results

Systems linearizable by static feedback. A system which is linearizable
by static feedback and coordinate change is clearly flat. Hence the geometric
necessary and sufficient conditions in [26, 25] provide sufficient conditions for
flatness. Notice a flat system is in general not linearizable by static feedback
(see for instance example 3), with the major exception of the single-input case.

Single-input systems. When there is only one control input flatness reduces
to static feedback linearizability [8] and is thus completely characterized by the
test in [26, 25].
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Affine systems of codimension 1. A system of the form

ẋ = f0(x) +
n−1∑
j=1

ujgj(x), x ∈ R
n,

i.e., with one input less than states and linear w.r.t. the inputs is 0-flat as soon
as it is controllable [8] (more precisely strongly accessible for almost every x).

The picture is much more complicated when the system is not linear w.r.t.
the control, see [34] for a geometric sufficient condition.

Affine systems with 2 inputs and 4 states. Necessary and sufficient con-
ditions for 1-flatness of the system can be found in [56]. They give a good idea
of the complexity of checking r-flatness even for r small.

Driftless systems. For driftless systems of the form ẋ =
∑m

i=1 fi(x)ui ad-
ditional results are available.

Theorem 4 (Driftless systems with two inputs [38]). The system

ẋ = f1(x)u1 + f2(x)u2

is flat if and only if the generic rank of Ek is equal to k+2 for k = 0, . . . , n−2n
where E0 := span{f1, f2}, Ek+1 := span{Ek, [Ek, Ek]}, k ≥ 0.

A flat two-input driftless system is always 0-flat. As a consequence of a
result in [46], a flat two-input driftless system satisfying some additional regu-
larity conditions can be put by static feedback and coordinate change into the
chained system [47]

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1, . . . , ẋn = xn−1u1.

Theorem 5 (Driftless systems, n states, and n− 2 inputs [39, 40]).

ẋ =
n−2∑
i=1

uifi(x), x ∈ R
n

is flat as soon as it is controllable (i.e., strongly accessible for almost every x).
More precisely it is 0-flat when n is odd, and 1-flat when n is even.

All the results mentioned above rely on the use of exterior differential sys-
tems. Additional results on driftless systems, with applications to nonholono-
mic systems, can be found in [74, 73, 70].
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Mechanical systems. For mechanical systems with one control input less
than configuration variables, [62] provides a geometric characterization, in
terms of the metric derived form the kinetic energy and the control codis-
tribution, of flat outputs depending only on the configuration variables.

A necessary condition. Because it is not known whether flatness can be
checked with a finite test, see section 3.1.1, it is very difficult to prove that a
system is not flat. The following result provides a simple necessary condition.

Theorem 6 (The ruled-manifold criterion [65, 16]). Assume ẋ = f(x, u)
is flat. The projection on the p-space of the submanifold p = f(x, u), where x
is considered as a parameter, is a ruled submanifold for all x.

The criterion just means that eliminating u from ẋ = f(x, u) yields a set
of equations F (x, ẋ) = 0 with the following property: for all (x, p) such that
F (x, p) = 0, there exists a ∈ R

n, a �= 0 such that

∀λ ∈ R, F (x, p+ λa) = 0.

F (x, p) = 0 is thus a ruled manifold containing straight lines of direction a.
The proof directly derives from the method used by Hilbert [23] to prove the

second order Monge equation d2z
dx2 =

(
dy
dx

)2

is not solvable without integrals.
A restricted version of this result was proposed in [71] for systems lineariz-

able by a special class of dynamic feedbacks.
As crude as it may look, this criterion is up to now the only way –except

for two-input driftless systems– to prove a multi-input system is not flat.

Example 12. The system

ẋ1 = u1, ẋ2 = u2, ẋ3 = (u1)2 + (u2)3

is not flat, since the submanifold p3 = p2
1 + p3

2 is not ruled: there is no a ∈ R
3,

a �= 0, such that

∀λ ∈ R, p3 + λa3 = (p1 + λa1)2 + (p2 + λa2)3.

Indeed, the cubic term in λ implies a2 = 0, the quadratic term a1 = 0 hence
a3 = 0.

Example 13. The system ẋ3 = ẋ2
1 + ẋ2

2 does not define a ruled submanifold of
R

3: it is not flat in R. But it defines a ruled submanifold in C
3: in fact it is

flat in C, with the flat output

y =
(
x3 − (ẋ1 − ẋ2

√
−1)(x1 + x2

√
−1), x1 + x2

√
−1

)
.
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Example 14 (The ball and beam [21]). We now prove by the ruled manifold
criterion that

r̈ = −Bg sin θ +Brθ̇2

(mr2 + J + Jb)θ̈ = τ − 2mrṙθ̇ −mgr cos θ,

where (r, ṙ, θ, θ̇) is the state and τ the input, is not flat (as it is a single-
input system, we could also prove it is not static feedback linearizable, see
section 3.1.2). Eliminating the input τ yields

ṙ = vr, v̇r = −Bg sin θ +Brθ̇2, θ̇ = vθ

which defines a ruled manifold in the (ṙ, v̇r, θ̇, v̇θ)-space for any r, vr, θ, vθ, and
we cannot conclude directly. Yet, the system is obviously equivalent to

ṙ = vr, v̇r = −Bg sin θ +Brθ̇2,

which clearly does not define a ruled submanifold for any (r, vr, θ). Hence the
system is not flat.

3.2 Infinite dimension “flat” systems

The idea underlying equivalence and flatness –a one-to-one correspondence be-
tween trajectories of systems– is not restricted to control systems described by
ordinary differential equations. It can be adapted to delay differential systems
and to partial differential equations with boundary control. Of course, there
are many more technicalities and the picture is far from clear. Nevertheless,
this new point of view seems promising for the design of control laws. In this
section, we sketch some recent developments in this direction.

3.2.1 Delay systems

Consider for instance the simple differential delay system

ẋ1(t) = x2(t), ẋ2(t) = x1(t)− x2(t) + u(t− 1).

Setting y(t) := x1(t), we can clearly explicitly parameterize its trajectories by

x1(t) = y(t), x2(t) = ẏ(t), u(t) = ÿ(t+ 1) + ẏ(t+ 1)− y(t+ 1).

In other words, y(t) := x1(t) plays the role of a“flat” output. This idea is
investigated in detail in [42], where the class of δ-free systems is defined (δ
is the delay operator). More precisely, [42] considers linear differential delay
systems

M(d/dt, δ)w = 0
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where M is a (n −m) × n matrix with entries polynomials in d/dt and δ and
w = (w1, . . . , wn) are the system variables. Such a system is said to be δ-free if
it can be related to the “free” system y = (y1, . . . , ym) consisting of arbitrary
functions of time by

w = P (d/dt, δ, δ−1)y

y = Q(d/dt, δ, δ−1)w,

where P (resp. Q) is a n × m (resp. m × n ) matrix the entries of which are
polynomial in d/dt, δ and δ−1.

Many linear delay systems are δ-free. For example, ẋ(t) = Ax(t)+Bu(t−1),
(A,B) controllable, is δ-free, with the Brunovski output of ẋ = Ax + Bv as a
“δ-free” output.

The following systems, commonly used in process control,

zi(s) =
m∑
j=1

{
Kj

i exp(−sδji )
1 + τ ji s

}
uj(s), i = 1, . . . p

(s Laplace variable, gains Kj
i , delays δji and time constants τ ji between uj

and zi) are δ-free [54]. Other interesting examples of δ-free systems arise from
partial differential equations:

Example 15 (Torsion beam system). The torsion motion of a beam (figure 1)
can be modeled in the linear elastic domain by

∂2
t θ(x, t) = ∂2

xθ(x, t), x ∈ [0, 1]
∂xθ(0, t) = u(t)

∂xθ(1, t) = ∂2
t θ(1, t),

where θ(x, t) is the torsion of the beam and u(t) the control input. From
d’Alembert’s formula, θ(x, t) = φ(x+ t) + ψ(x− t), we easily deduce

2θ(t, x) = ẏ(t+ x− 1)− ẏ(t− x+ 1) + y(t+ x− 1) + y(t− x+ 1)
2u(t) = ÿ(t+ 1) + ÿ(t− 1)− ẏ(t+ 1) + ẏ(t− 1),

where we have set y(t) := θ(1, t). This proves the system is δ-free with θ(1, t)
as a “δ-flat” output. See [43, 17] for details and an application to motion
planning.

3.2.2 Distributed parameters systems

For partial differential equations with boundary control and mixed systems of
partial and ordinary differential equations, it seems possible to describe the
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u(t)

θ(x, t)
y (t) = θ(1, t)

0

1

x

Figure 1: torsion of a flexible beam

one-to-one correspondence via series expansion, though a sound theoretical
framework is yet to be found. We illustrate this original approach to control
design on the following two “flat” systems.

Example 16 (Heat equation). Consider the linear heat equation

∂tθ(x, t) = ∂2
xθ(x, t), x ∈ [0, 1] (24)

∂xθ(0, t) = 0 (25)
θ(1, t) = u(t), (26)

where θ(x, t) is the temperature and u(t) is the control input. We claim that

y(t) := θ(0, t)

is a “flat” output. Indeed, the equation in the Laplace variable s reads

sθ̂(x, s) = θ̂′′(x, s) with θ̂′(0, s) = 0, θ̂(1, s) = û(s)

( ′ stands for ∂x and ˆ for the Laplace transform), and the solution is clearly
θ̂(x, s) = cosh(x

√
s)û(s)/ cosh(

√
s). As θ̂(0, s) = û(s)/ cosh(

√
s), this implies

û(s) = cosh(
√
s) ŷ(s) and θ̂(x, s) = cosh(x

√
s) ŷ(s).

Since cosh
√
s =

∑+∞
i=0 si/(2i)!, we eventually get

θ(x, t) =
+∞∑
i=1

x2i y(i)(t)
(2i)!

(27)

u(t) =
+∞∑
i=1

y(i)(t)
(2i)!

. (28)

In other words, whenever t �→ y(t) is an arbitrary function (i.e., a trajectory of
the trivial system y = v), t �→

(
θ(x, t), u(t)

)
defined by (27)-(28) is a (formal)
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trajectory of (24)–(26), and vice versa. This is exactly the idea underlying our
definition of flatness in section 1.3. Notice these calculations have been known
for a long time, see [75, pp. 588 and 594].

To make the statement precise, we now turn to convergence issues. On the
one hand, t �→ y(t) must be a smooth function such that

∃ K,M > 0, ∀i ≥ 0,∀t ∈ [t0, t1], |y(i)(t)| ≤ M(Ki)2i

to ensure the convergence of the series (27)-(28).
On the other hand t �→ y(t) cannot in general be analytic. Indeed, if the

system is to be steered from an initial temperature profile θ(x, t0) = α0(x) at
time t0 to a final profile θ(x, t1) = α1(x) at time t1, equation (24) implies

∀t ∈ [0, 1],∀i ≥ 0, y(i)(t) = ∂itθ(0, t) = ∂2i
x θ(0, t),

and in particular

∀i ≥ 0, y(i)(t0) = ∂2i
x α0(0) and y(i)(t1) = ∂2i

x α1(1).

If for instance α0(x) = c for all x ∈ [0, 1] (i.e., uniform temperature profile),
then y(t0) = c and y(i)(t0) = 0 for all i ≥ 1, which implies y(t) = c for all t
when the function is analytic. It is thus impossible to reach any final profile
but α1(x) = c for all x ∈ [0, 1].

Smooth functions t ∈ [t0, t1] �→ y(t) that satisfy

∃ K,M > 0, ∀i ≥ 0, |y(i)(t)| ≤ M(Ki)σi

are known as Gevrey-Roumieu functions of order σ [61] (they are also closely
related to class S functions [20]). The Taylor expansion of such functions is
convergent for σ ≤ 1 and divergent for σ > 1 (the larger σ is, the “more
divergent” the Taylor expansion is ). Analytic functions are thus Gevrey-
Roumieu of order ≤ 1.

In other words we need a Gevrey-Roumieu function on [t0, t1] of order > 1
but ≤ 2, with initial and final Taylor expansions imposed by the initial and final
temperature profiles. With such a function, we can then compute open-loop
control steering the system from one profile to the other by the formula (27).

For instance, we steered the system from uniform temperature 0 at t = 0
to uniform temperature 1 at t = 1 by using the function

R � t �→ y(t) :=



0 if t < 0
1 if t > 1∫ t

0
exp

(
−1/(τ(1− τ))γ

)
dτ∫ 1

0
exp

(
−1/(τ(1− τ))γ

)
dτ

if t ∈ [0, 1],
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Figure 2: evolution of the temperature profile for t ∈ [0, 1].

with γ = 1 (this function is Gevrey-Roumieu functions of order 1 + 1/γ). The
evolution of the temperature profile θ(x, t) is displayed on figure 2 (the Matlab
simulation is available upon request at rouchon@cas.ensmp.fr).

Similar but more involved calculations with convergent series corresponding
to Mikunsiński operators are used in [18] to control a flexible rod modeled by an
Euler-Bernoulli equation. For nonlinear systems, convergence issues are more
involved and are currently under investigation. Yet, it is possible to work –at
least formally– along the same line.

Example 17 (Flexion beam system). Consider with [30] the mixed system

ρ∂2
t u(x, t) = ρω2(t)u(x, t)− EI∂4

xu(x, t), x ∈ [0, 1]

ω̇(t) =
Γ3(t)− 2ω(t) <u, ∂tu>(t)

Id+ <u, u>(t)

with boundary conditions

u(0, t) = ∂xu(0, t) = 0, ∂2
xu(1, t) = Γ1(t), ∂3

xu(1, t) = Γ2(t),

where ρ,EI, Id are constant parameters, u(x, t) is the deformation of the beam,
ω(t) is the angular velocity of the body and <f, g>(t) :=

∫ 1

0
ρf(x, t)g(x, t)dx.

The three control inputs are Γ1(t), Γ2(t), Γ3(t). We claim that

y(t) :=
(
∂2
xu(0, t), ∂3

xu(0, t), ω(t)
)

is a “flat” output. Indeed, ω(t), Γ1(t), Γ2(t) and Γ3(t) can clearly be expressed
in terms of y(t) and u(x, t), which transforms the system into the equivalent
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Cauchy-Kovalevskaya form

EI∂4
xu(x, t) = ρy2

3(t)u(x, t)− ρ∂2
t u(x, t) and




u(0, t) = 0
∂xu(0, t) = 0

∂2
xu(0, t) = y1(t)

∂3
xu(0, t) = y2(t).

Set then formally u(x, t) =
∑+∞

i=0 ai(t)x
i

i! , plug this series into the above system
and identify term by term. This yields

a0 = 0, a1 = 0, a2 = y1, a3 = y2,

and the iterative relation ∀i ≥ 0, EIai+4 = ρy2
3ai − ρäi. Hence for all i ≥ 1,

a4i = 0 a4i+2 =
ρ

EI
(y2

3a4i−2 − ä4i−2)

a4i+1 = 0 a4i+3 =
ρ

EI
(y2

3a4i−1 − ä4i−1).

There is thus a 1–1 correspondence between (formal) solutions of the system
and arbitrary mappings t �→ y(t): the system is formally flat.

3.3 State constraints and optimal control

3.3.1 Optimal control

Consider the standard optimal control problem

min
u

J(u) =
∫ T

0

L(x(t), u(t))dt

together with ẋ = f(x, u), x(0) = a and x(T ) = b, for known a, b and T .
Assume that ẋ = f(x, u) is flat with y = h(x, u, . . . , u(r)) as flat output,

x = ϕ(y, . . . , y(q)), u = α(y, . . . , y(q)).

A numerical resolution of minu J(u) a priori requires a discretization of the state
space, i.e., a finite dimensional approximation. A better way is to discretize
the flat output space. As in section 1.4, set yi(t) =

∑N
1 Aijλj(t). The initial

and final conditions on x provide then initial and final constraints on y and
its derivatives up to order q. These constraints define an affine sub-space V of
the vector space spanned by the the Aij ’s. We are thus left with the nonlinear
programming problem

min
A∈V

J(A) =
∫ T

0

L(ϕ(y, . . . , y(q)), α(y, . . . , y(q)))dt,
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where the yi’s must be replaced by
∑N

1 Aijλj(t).
This methodology is used in [50] for trajectory generation and optimal con-

trol. It should also be very useful for predictive control. The main expected
benefit is a dramatic improvement in computing time and numerical stability.
Indeed the exact quadrature of the dynamics –corresponding here to exact dis-
cretization via well chosen input signals through the mapping α– avoids the
usual numerical sensitivity troubles during integration of ẋ = f(x, u) and the
problem of satisfying x(T ) = b.

3.3.2 State constraints

In the previous section, we did not consider state constraints. We now turn
to the problem of planning a trajectory steering the state from a to b while
satisfying the constraint k(x, u, . . . , u(p)) ≤ 0. In the flat output “coordinates”
this yields the following problem: find T > 0 and a smooth function [0, T ] �
t �→ y(t) such that (y, . . . , y(q)) has prescribed value at t = 0 and T and such
that ∀t ∈ [0, T ], K(y, . . . , y(ν))(t) ≤ 0 for some ν. When q = ν = 0 this
problem, known as the piano mover problem, is already very difficult.

Assume for simplicity sake that the initial and final states are equilibrium
points. Assume also there is a quasistatic motion strictly satisfying the con-
straints: there exists a path (not a trajectory) [0, 1] � σ �→ Y (σ) such that
Y (0) and Y (1) correspond to the initial and final point and for any σ ∈ [0, 1],
K(Y (σ), 0, . . . , 0) < 0. Then, there exists T > 0 and [0, T ] � t �→ y(t) solution
of the original problem. It suffices to take Y (η(t/T )) where T is large enough,
and where η is a smooth increasing function [0, 1] � s �→ η(s) ∈ [0, 1], with
η(0) = 0, η(1) = 1 and diη

dsi (0, 1) = 0 for i = 1, . . . ,max(q, ν).
In [64] this method is applied to a two-input chemical reactor. In [60] the

minimum-time problem under state constraints is investigated for several me-
chanical systems. [68] considers, in the context of non holonomic systems, the
path planning problem with obstacles. Due to the nonholonomic constraints,
the above quasistatic method fails: one cannot set the y-derivative to zero since
they do not correspond to time derivatives but to arc-length derivatives. How-
ever, several numerical experiments clearly show that sorting the constraints
with respect to the order of y-derivatives plays a crucial role in the computing
performance.

3.4 Symmetries

3.4.1 Symmetry preserving flat output

Consider the dynamics ẋ = f(x, u), (x, u) ∈ X × U ⊂ R
n × R

m. Accord-
ing to section 1 it generates a system (F,M), where M := X × U × R

∞
m and
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F (x, u, u1, . . . ) := (f(x, u), u1, u2, . . . ). At the heart of our notion of equiv-
alence are endogenous transformations, which map solutions of a system to
solutions of another system. We single out here the important class of trans-
formations mapping solutions of a system onto solutions of the same system:

Definition 6. An endogenous transformation Φg : M �−→ M is a symmetry of
the system (F,M) if

∀ξ := (x, u, u1, . . . ) ∈ M, F (Φg(ξ)) = DΦg(ξ) · F (ξ).

More generally, we can consider a symmetry group, i.e., a collection
(
Φg

)
g∈G

of symmetries such that ∀g1, g2 ∈ G,Φg1 ◦Φg2 = Φg1∗g2 , where (G, ∗) is a group.
Assume now the system is flat. The choice of a flat output is by no means

unique, since any endogenous transformation on a flat output gives rise to
another flat output.

Example 18 (The kinematic car). The system generated by

ẋ = u1 cos θ, ẏ = u1 sin θ, θ̇ = u2,

admits the 3-parameter symmetry group of planar (orientation-preserving)
isometries: for all translation (a, b)′ and rotation α , the endogenous mapping
generated by

X = x cosα− y sinα+ a

Y = x sinα+ y cosα+ b

Θ = θ + α

U1 = u1

U2 = u2

is a symmetry, since the state equations remain unchanged,

Ẋ = U1 cosΘ, Ẏ = U1 sinΘ, Θ̇ = U2.

This system is flat z := (x, y) as a flat output. Of course, there are infinitely
many other flat outputs, for instance z̃ := (x, y+ ẋ). Yet, z is obviously a more
“natural” choice than z̃, because it “respects” the symmetries of the system.
Indeed, each symmetry of the system induces a transformation on the flat
output z (

z1

z2

)
�−→

(
Z1

Z2

)
=

(
X
Y

)
=

(
z1 cosα− z2 sinα+ a
z1 sinα+ z2 cosα+ b

)

which does not involve derivatives of z, i.e., a point transformation. This
point transformation generates an endogenous transformation (z, ż, . . . ) �→
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(Z, Ż, . . . ). Following [19], we say such an endogenous transformation which is
the total prolongation of a point transformation is holonomic.

On the contrary, the induced transformation on z̃(
z̃1

z̃2

)
�−→

(
Z̃1

Z̃2

)
=

(
X

Y + Ẋ

)
=

(
z̃1 cosα+ ( ˙̃z1 − z̃2) sinα+ a

z̃1 sinα+ z̃2 cosα+ ( ¨̃z1 − ˙̃z2) sinα+ b

)

is not a point transformation (it involves derivatives of z̃) and does not give to
a holonomic transformation.

Consider the system (F,M) admitting a symmetry Φg (or a symmetry group(
Φg

)
g∈G). Assume moreover the system is flat with h as a flat output and

denotes by Ψ := (h, ḣ, ḧ, . . . ) the endogenous transformation generated by h.
We then have:

Definition 7 (Symmetry-preserving flat output). The flat output h pre-
serves the symmetry Φg if the composite transformation Ψ ◦Φg ◦Ψ−1 is holo-
nomic.

This leads naturally to a fundamental question: assume a flat system admits
the symmetry group

(
Φg

)
g∈G. Is there a flat output which preserves

(
Φg

)
g∈G?

This question can in turn be seen as a special case of the following problem:
view a dynamics ẋ− f(x, u) = 0 as an underdetermined differential system and
assume it admits a symmetry group; can it then be reduced to a “smaller”
differential system? Whereas this problem has been studied for a long time
and received a positive answer in the determined case, the underdetermined
case seems to have been barely untouched [53].

3.4.2 Flat outputs as potentials and gauge degree of freedom

Symmetries and the quest for potentials are at the heart of physics. To end
the paper, we would like to show that flatness fits into this broader scheme.

Maxwell’s equations in an empty medium imply that the magnetic field H
is divergent free, ∇ ·H = 0. In Euclidian coordinates (x1, x2, x3), it gives the
underdetermined partial differential equation

∂H1

∂x1
+

∂H2

∂x2
+

∂H3

∂x3
= 0

A key observation is that the solutions to this equation derive from a vector
potential H = ∇ × A : the constraint ∇ · H = 0 is automatically satisfied
whatever the potential A. This potential parameterizes all the solutions of the
underdetermined system ∇ ·H = 0, see [59] for a general theory. A is a priori
not uniquely defined, but up to an arbitrary gradient field, the gauge degree
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of freedom. The symmetries of the problem indicate how to use this degree of
freedom to fix a “natural” potential.

The picture is similar for flat systems. A flat output is a “potential” for
the underdetermined differential equation ẋ− f(x, u) = 0. Endogenous trans-
formations on the flat output correspond to gauge degrees of freedom. The
“natural” flat output is determined by symmetries of the system. Hence con-
trollers designed from this flat output can also preserve the physics.

A slightly less esoteric way to convince the reader that flatness is an inter-
esting notion is to take a look at the following small catalog of flat systems.

4 A catalog of flat systems

We give here a (partial) list of flat systems encountered in applications.

4.1 Holonomic mechanical systems

Example 19 (Fully actuated holonomic systems). The dynamics of a holonomic
system with as many independent inputs as configuration variables is

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
= M(q)u+D(q, q̇),

with M(q) invertible. It admits q as a flat output –even when ∂2L
∂q̇2 is singular–:

indeed, u can be expressed in function of q, q̇ by the computed torque formula

u = M(q)−1

(
d
dt

(
∂L

∂q̇

)
− ∂L

∂q
−D(q, q̇)

)
.

If q is constrained by c(q) = 0 the system remains flat, and the flat output
corresponds to the configuration point in c(q) = 0.

Example 20 (Planar rigid body with forces). Consider a planar rigid body mov-
ing in a vertical plane under the influence of gravity and controlled by two forces
having lines of action that are fixed with respect to the body and intersect at
a single point (see figure 3). Let (x, y) represent the horizontal and vertical
coordinates of center of mass G of the body with respect to a stationary frame,
and let θ be the counterclockwise orientation of a body fixed line through the
center of mass. Take m as the mass of the body and J as the moment of inertia.
Let g ≈ 9.8 m/sec2 represent the acceleration due to gravity.

Without loss of generality, we will assume that the lines of action for F1 and
F2 intersect the y axis of the rigid body and that F1 and F2 are perpendicular.
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Px

y

θ

Figure 3: A rigid body controlled by two body fixed forces.

The equations of motion for the system can be written as

mẍ = F1 cos θ − F2 sin θ

mÿ = F1 sin θ + F2 cos θ −mg

Jθ̈ = rF1.

The flat output of this system corresponds to Huyghens center of oscillation [16]

(x− J

mr
sin θ, y +

J

mr
cos θ).

This example has some practical importance. The PVTOL system, the
gantry crane and the robot 2kπ (see below) are of this form, as is the simplified
planar ducted fan [49]. Variations of this example can be formed by changing
the number and type of the inputs [45].

Example 21 (PVTOL aircraft). A simplified Vertical Take Off and Landing
aircraft moving in a vertical Plane [22] can be described by

ẍ = −u1 sin θ + εu2 cos θ
z̈ = u1 cos θ + εu2 sin θ − 1

θ̈ = u2.

A flat output is y = (x − ε sin θ, z + ε cos θ), see [37] more more details and a
discussion in relation with unstable zero dynamics.

Example 22 (The robot 2kπ of Ecole des Mines). It is a robot arm carrying a
pendulum, see figure 4. The control objective is to flip the pendulum from its
natural downward rest position to the upward position and maintains it there.
The first three degrees of freedom (the angles θ1, θ2, θ3) are actuated by electric
motors, while the two degrees of freedom of the pendulum are not actuated.
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Figure 4: The robot 2kπ carrying its pendulum.

The position P = (x, y, z) of the pendulum oscillation center is a flat output.
Indeed, it is related to the position S = (a, b, c) of the suspension point by

(x− a)(z̈ + g) = ẍ(z − c)
(y − b)(z̈ + g) = ÿ(z − c)

(x− a)2 + (y − b)2 + (z − c)2 = l2,

where l is the distance between S and P . On the other hand the geometry of
the robot defines a relation (a, b, c) = T (θ1, θ2, θ3) between the position of S
and the robot configuration. This relation is locally invertible for almost all
configurations but is not globally invertible.
Example 23 (Gantry crane [16]). A direct application of Newton’s laws pro-
vides the implicit equations of motion

mẍ = −T sin θ x = R sin θ +D

mz̈ = −T cos θ +mg z = R cos θ,

where x, z, θ are the configuration variables and T is the tension in the cable.
The control inputs are the trolley position D and the cable length R. This
system is flat, with the position (x, z) of the load as a flat output.
Example 24 (Conventional aircraft). A conventional aircraft is flat, provided
some small aerodynamic effects are neglected, with the coordinates of the center
of mass and side-slip angle as a flat output. See [33] for a detailed study.
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Figure 5: Towed cable system and finite link approximate model.

Example 25 (Towed cable system). Consider the dynamics of a system consist-
ing of an aircraft flying in a circular pattern while towing a cable with a tow
body (drogue) attached at the bottom. Under suitable conditions, the cable
reaches a relative equilibrium in which the cable maintains its shape as it ro-
tates. By choosing the parameters of the system appropriately, it is possible
to make the radius at the bottom of the cable much smaller than the radius
at the top of the cable. This is illustrated in Figure 5. The motion of the
towed cable system can be approximately represented using a finite element
model in which segments of the cable are replaced by rigid links connected
by spherical joints. The forces acting on the segment (tension, aerodynamic
drag and gravity) are lumped and applied at the end of each rigid link. In
addition to the forces on the cable, we must also consider the forces on the
drogue and the towplane. The drogue is modeled as a sphere and essentially
acts as a mass attached to the last link of the cable, so that the forces acting
on it are included in the cable dynamics. The external forces on the drogue
again consist of gravity and aerodynamic drag. The towplane is attached to the
top of the cable and is subject to drag, gravity, and the force of the attached
cable. For simplicity, we simply model the towplane as a pure force applied at
the top of the cable. Our goal is to generate trajectories for this system that
allow operation away from relative equilibria as well as transition between one
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equilibrium point and another. Due to the high dimension of the model for the
system (128 states is typical), traditional approaches to solving this problem,
such as optimal control theory, cannot be easily applied. However, it can be
shown that this system is differentially flat using the position of the bottom of
the cable as the differentially flat output. Thus all feasible trajectories for the
system are characterized by the trajectory of the bottom of the cable. See [44]
for a more complete description and additional references.

We end this section with a system which is not known to be flat for generic
parameter value but still enjoys the weaker property of being orbitally flat [14].

Example 26 (Satellite with two controls). Consider with [4] a satellite with two
control inputs u1, u2 described by

ω̇1 = u1

ω̇2 = u2

ω̇3 = aω1ω2

ϕ̇ = ω1 cos θ + ω3 sin θ

θ̇ = (ω1 sin θ − ω3 cos θ) tanϕ+ ω2

ψ̇ =
(ω3 cos θ − ω1 sin θ)

cosϕ
,

(29)

where a = (J1−J2)/J3 (Ji are the principal moments of inertia); physical sense
imposes |a| ≤ 1. Eliminating u1, u2 and ω1, ω2 by

ω1 =
ϕ̇− ω3 sin θ

cos θ
and ω2 = θ̇ + ψ̇ sinϕ

yields the equivalent system

ω̇3 = a(θ̇ + ψ̇ sinϕ)
ϕ̇− ω3 sin θ

cos θ
(30)

ψ̇ =
ω3 − ϕ̇ sin θ

cosϕ cos θ
. (31)

But this system is in turn equivalent to

cos θ
(
ψ̈ cosϕ− (1 + a)ψ̇ϕ̇ sinϕ

)
+ sin θ

(
ϕ̈+ aψ̇2 sinϕ cosϕ

)
+ θ̇(1− a)(ϕ̇ cos θ − ψ̇ sin θ cosϕ) = 0

by substituting ω3 = ψ̇ cosϕ cos θ + ϕ̇ sin θ in (30).
When a = 1, θ can clearly be expressed in function of ϕ,ψ and their deriva-

tives. We have proved that (29) is flat with (ϕ,ψ) as a flat output. A similar
calculation can be performed when a = −1.
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Figure 6: n-trailer system (left) and 1-trailer system with kingpin hitch (right).

When |a| < 1, whether (29) is flat is unknown. Yet, it is orbitally flat [63].
To see that, rescale time by σ̇ = ω3; by the chain rule ẋ = σ̇x′ whatever the
variable x, where ′ denotes the derivation with respect to σ. Setting then

ω̄1 := ω1/ω3, ω̄2 := ω2/ω3, ω̄3 := −1/aω3,

and eliminating the controls transforms (29) into

ω′
3 = ω̄1ω̄2

ϕ′ = ω̄1 cos θ + sin θ

θ′ = (ω̄1 sin θ − cos θ) tanϕ+ ω̄2

ψ′ =
(cos θ − ω̄1 sin θ)

cosϕ
.

The equations are now independent of a. This implies the satellite with a �= 1
is orbitally equivalent to the satellite with a = 1. Since it is flat when a = 1 it
is orbitally flat when a �= 1, with (ϕ,ψ) as an orbitally flat output.

4.2 Nonholonomic mechanical systems

Example 27 (Kinematics generated by two nonholonomic constraints). Such
systems are flat by theorem 5 since they correspond to driftless systems with
n states and n − 2 inputs. For instance the rolling disc (p. 4), the rolling
sphere (p. 96) and the bicycle (p. 330) considered in the classical treatise on
nonholonomic mechanics [48] are flat.

Example 28 (Mobile robots). Many mobile robots modeled by rolling without
sliding constraints, such as those considered in [5, 47, 74] are flat. In particular,
the n-trailer system (figure 6) has for flat output the mid-point Pn of the last
trailer axle [67, 16]. The 1-trailer system with kingpin hitch is also flat, with
a rather complicated flat output involving elliptic integrals [66, 12], but by
theorem 4 the system is not flat when there is more than one trailer.
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Example 29 (The rolling penny). The dynamics of this Lagrangian system
submitted to a nonholonomic constraint is described by

ẍ = λ sinϕ+ u1 cosϕ
ÿ = −λ cosϕ+ u1 sinϕ

ϕ̈ = u2

ẋ sinϕ = ẏ cosϕ

where x, y, ϕ are the configuration variables, λ is the Lagrange multiplier of
the constraint and u1, u2 are the control inputs. A flat output is (x, y): indeed,
parameterizing time by the arclength s of the curve t �→ (x(t), y(t)) we find

cosϕ =
dx
ds

, sinϕ =
dy
ds

, u1 = ṡ, u2 = κ(s) s̈+
dκ
ds

ṡ2,

where κ is the curvature. These formulas remain valid even if u1 = u2 = 0.
This example can be generalized to any mechanical system subject to m flat

nonholonomic constraints, provided there are n−m control forces independent
of the constraint forces (n the number of configuration variables), i.e., a “fully-
actuated” nonholonomic system as in [5].

All these flat nonholonomic systems have a controllability singularity at
rest. Yet, it is possible to “blow up” the singularity by reparameterizing time
with the arclength of the curve described by the flat output, hence to plan and
track trajectories starting from and stopping at rest as explained in sections
1.5 and 2.4, see [16, 67, 12] for more details.

4.3 Electromechanical systems

Example 30 (DC-to-DC converter). A Pulse Width Modulation DC-to-DC con-
verter can be modeled by

ẋ1 = (u− 1)
x2

L
+

E

L
, ẋ2 = (1− u)

x1

LC
− x2

RC
,

where the duty ratio u ∈ [0, 1] is the control input. The electrical stored energy

y :=
x2

1

2C
+

x2
2

2L
is a flat output [69, 27].

Example 31 (Magnetic bearings). A simple flatness-based solution to motion
planning and tracking is proposed in [32]. The control law ensures that only
one electromagnet in each actuator works at a time and permits to reduce the
number of electromagnets by a better placement of actuators.
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Example 32 (Induction motor). The standard two-phase model of the induction
motor reads in complex notation (see [31] for a complete derivation)

Rsis + ψ̇s = us ψs = Lsis +Mejnθir

Rrir + ψ̇r = 0 ψr = Me−jnθis + Lrir,

where ψs and is (resp. ψr and ir) are the complex stator (resp. rotor) flux and
current, θ is the rotor position and j =

√
−1. The control input is the voltage

us applied to the stator. Setting ψr = ρejα, the rotor motion is described by

J
d2θ

dt2
=

n

Rr
ρ2α̇− τL(θ, θ̇),

where τL is the load torque.
This system is flat with the two angles (θ, α) as a flat output [41] (see [9]

also for a related result).

4.4 Chemical systems

Example 33 (CSTRs). Many simple models of Continuous Stirred Tank Re-
actors (CSTRs) admit flats outputs with a direct physical interpretation in
terms of temperatures or product concentrations [24, 1], as do closely related
biochemical processes [2, 11]. In [64] flatness is used to steer a reactor model
from a steady state to another one while respecting some physical constraints.

A basic model of a CSTR with two chemical species and any number of
exothermic or endothermic reactions is

ẋ1 = f1(x1, x2) + g1(x1, x2)u
ẋ2 = f2(x1, x2) + g2(x1, x2)u,

where x1 is a concentration, x2 a temperature and u the control input (feedflow
or heat exchange). It is obviously linearizable by static feedback, hence flat.

When more chemical species are involved, a single-input CSTR is in general
not flat, see [28]. Yet, the addition of another manipulated variable often
renders it flat, see [1] for an example on a free-radical polymerization CSTR.
For instance basic model of a CSTR with three chemical species, any number
of exothermic or and two control inputs is

ẋ1 = f1(x) + g1
1(x)u1 + g2

1(x)u2

ẋ2 = f2(x) + g1
2(x)u1 + g2

2(x)u2

ẋ3 = f3(x) + g1
3(x)u1 + g2

3(x)u2,

where x1, x2 are concentrations and x3 is a temperature temperature and u1, u2

are the control inputs (feed-flow, heat exchange, feed-composition,. . . ). Such a
system is always flat, see section 3.1.2.
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Example 34 (Polymerization reactor). Consider with [72] the reactor

Ċm =
Cmms

τ
−

(
1 + ε

µ1

µ1 +MmCm

)
Cm

τ
+Rm(Cm, Ci, Cs, T )

Ċi = −ki(T )Ci + u2

Ciis

V
−

(
1 + ε

µ1

µ1 +MmCm

)
Ci

τ

Ċs = u2

Csis

V
+

Csms

τ
−

(
1 + ε

µ1

µ1 +MmCm

)
Cs

τ

µ̇1 = −MmRm(Cm, Ci, Cs, T )−
(
1 + ε

µ1

µ1 +MmCm

)
µ1

τ

Ṫ = φ(Cm, Ci, Cs, µ1, T ) + α1Tj

Ṫj = f6(T, Tj) + α4u1,

where u1, u2 are the control inputs and Cmms
, Mm, ε, τ, Ciis

, Csms
, Csis

, V ,
α1, α4 are constant parameters. The functions Rm, ki, φ and f6 are not well-
known and derive from experimental data and semi-empirical considerations,
involving kinetic laws, heat transfer coefficients and reaction enthalpies.

The polymerization reactor is flat whatever the functions Rm, ki, φ, f6 and
admits (Csis

Ci − Ciis
Cs, MmCm + µ1) as a flat output [65].
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Proc. “Élasticité, viscolélasticité et contrôle optimal”, 8ème entretiens du centre
Jacques Cartier, Lyon, pages 157–168, 1996.

[19] M. Gromov. Partial Differential Relations. Springer-Verlag, 1986.

[20] I.M. Guelfand and G.E. Chilov. Les Distributions, tome 3. Dunod, Paris, 1964.

[21] J. Hauser, S. Sastry, and P. Kokotović. Nonlinear control via approximated
input-output linearization: the ball and beam example. IEEE Trans. Automat.
Contr., 37:392–398, 1992.

[22] J. Hauser, S. Sastry, and G. Meyer. Nonlinear control design for slightly nonmin-
imum phase systems: Application to V/STOL aircraft. Automatica, 28(4):665–
679, 1992.

260
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