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Traces and reduced group C∗-algebras

Indira Chatterji and Guido Mislin

Abstract. We study the universal (Hattori-Stallings) trace on the K-theory

of Banach algebras containing the complex group ring. As a result, we prove
that for a group satisfying the Baum-Connes conjecture, finitely generated
projectives over the reduced group C*-algebra satisfy a condition reminiscent
of the Bass conjecture. An immediate consequence is that in the torsion-free
case, the change of ring map from the reduced group C*-algebra to the von
Neumann algebra of the group induces the zero map at the level of reduced
K-theory.

Introduction

A topological version of the Hattori-Stallings trace, or universal trace for the
reduced C*-algebra of a group G allows to formulate an analogue of the Bass
conjecture [B]. Our main theorem shows that this analogue holds for many groups,
namely we prove the following.

Theorem A. Suppose that a group G satisfies the Baum-Connes conjecture.
Then the Hattori-Stallings trace

HSC
∗
r : K0(C∗rG) −→ HHtop

0 (C∗rG)

maps into the C-vector space spanned by the images of the elements of finite order
of G.

The basics to understand the above result will be given in Section 1, and the
proof will be given in Section 3. As an application, we obtain informations on the
change of ring map from the reduced group C*-algebra to the von Neumann algebra
of a group G. More precisely we show the following.

Corollary B. Let G be a torsion-free group which satisfies the Baum-Connes
conjecture and let P be a finitely generated projective C∗rG-module. Then the in-
duced module NG⊗C∗rG P is a free module, of rank equal the Kaplansky rank of P
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2 INDIRA CHATTERJI AND GUIDO MISLIN

(which is an integer in this case), and the natural map

K̃0(C∗rG) −→ K̃0(NG)

is the zero-map.

Corollary B is reminiscent of some other change of ring statements. For in-
stance, for any group G the map K̃0(ZG) → K̃0(QG) is predicted to be the
zero map ([LR], Remark 3.17). Eckmann proved that for an arbitrary group G,

K̃0(ZG) → K̃0(NG) is the zero map (this follows from Proposition 3 of [E1] in
conjunction with Remark A2 of [E2]); the same result was also proved by Schafer
in [S] and in Lück’s book [LU1] (Theorem 9.62). In [S] it is moreover shown that

if CG is contained in a division ring D ⊂ U(G), then K̃0(CG) → K̃0(NG) is the
zero map (here U(G) denotes the Ore localization of NG with respect to the set
of non-zero divisors; equivalently U(G) is the algebra of densely defined operators
`2(G) → `2(G), affiliated to the von Neumann algebra NG of G, see also Chap-
ter 10 of [LU1]); for a survey on the relationship with Atiyah’s conjecture on the
rationality of `2-Betti numbers of finite complexes, see [MV], pp. 63–64. Another
related result is Theorem 6 of [E3], where Eckmann proves that for any torsion-free

group G, K̃0(CG) → K̃0(NG) maps into the torsion subgroup. Finally, we like to

mention that if the torsion-free group G of Corollary B is abelian, NG = L∞(Ĝ)

with Ĝ the Pontryagin dual of G and as K0(L∞(Ĝ)) = K0(L(Ĝ)) with L(Ĝ) the

algebra of measurable functions on Ĝ, the result boils down to the well-known fact
that continuous vector bundles over a connected compact space are measurably
trivial.

Section 1 is devoted to a review of the algebras involved, as well as common
examples of traces on them. We are mainly interested in the universal (Hattori-
Stallings) trace on Banach algebras containing CG as a subalgebra. In Section 2
we discuss the case of `1G and Section 3 deals with group C*-algebras. Section 4
is a further study of some elements in the image of some traces. As an application,
we consider in Section 5 the C∗maxG-analogue of the following classical conjecture.

Conjecture. Let G be a torsion-free group, P a finitely generated projective
CG module and φ : G → F a homomorphism, where F is a finite group. Then
CF ⊗φ P is a free CF -module.

Remark. Corollary B can also be deduced from a version of the L2-index
theorem, which applies to the center-valued trace and which was proved by Lück
in [LU2]. We thank the referee for pointing this out to us. Lück’s arguments
are analytic in nature, whereas our proof of Corollary B is purely algebraic, using
suitable embeddings of groups into acyclic groups.

We thank Alain Valette for constructive comments.

1. Traces and Banach algebras

Our general setup for the sequel is as follows. Let G be a group and let AG = A
denote a Banach algebra containing CG as a subalgebra, with norm ‖ ‖A therefore
verifying ‖f ∗ g‖A ≤ ‖f‖A‖g‖A for all f, g ∈ A (we write f ∗ g for the product,
to indicate that in case f, g ∈ CG, this is just the convolution product). The first
example is `1G, the completion of CG with respect to the `1-norm, where we recall
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that for an element a =
∑
g agg ∈ CG, its `1-norm is given by

‖a‖1 =
∑

g

|ag|.

Similarly one defines `2G, the completion of CG with respect to the `2-norm, which
for an element a =

∑
g agg ∈ CG, is given by

‖a‖2 =

√∑

g

|ag|2.

This is very different from `1G because `2G is not an algebra anymore in most
cases. Indeed, as soon as G is infinite the convolution product ∗ on CG doesn’t
extend to `2G. But `2G is a Hilbert space, with inner product given by

〈a, b〉 =
∑

g∈G
agbg.

Via the right regular representation on `2G, the group algebra CG may be viewed as
a subalgebra of B(`2G), the C*-algebra of bounded operators on `2G. The operator
norm on B(`2G) is then

‖a‖op = sup
‖ξ‖2=1

‖a(ξ)‖2.

The closure of CG for the operator norm as a subalgebra of B(`2G) is called the
reduced C*-algebra of G and is denoted by C∗rG. The von Neumann algebra NG
of G is the double commutant of CG ⊂ B(`2G). It is a C*-algebra, with norm
the operator norm described above, that we denote by ‖ ‖N when taken over NG
(we won’t be considering any other topology on NG); note that the closure of CG
in NG is C∗rG as well. Any unitary representation π of G on a Hilbert space Hπ
extends by linearity to a map π : CG → B(Hπ) into the bounded operators on
Hπ, and the closure of π(CG) for the operator norm is a C*-algebra. The maximal
group C*-algebra C∗maxG is the completion of CG with respect to the norm

‖a‖max = sup{‖π(a)‖op},
the supremum being taken with respect to all unitary representations π of G. The
norms we have discussed satisfy for x ∈ CG,

‖x‖1 ≥ ‖x‖max ≥ ‖x‖op = ‖x‖N
so that there are continuous algebra maps `1G→ C∗maxG→ C∗rG→ NG.

For B any Banach algebra over C, we write [B,B] for the closure of the vector
space [B,B] ⊂ B generated by the elements of the form xy − yx, x, y ∈ B.

Definition 1.1. Let B be a Banach algebra over C. We put

HHtop
0 (B) = B/[B,B]

for its 0-th topological Hochschild homology group; we consider HH top
0 (B) as a

topological C-vector space with respect to the quotient Banach space structure.

Induced by the corresponding maps of Banach algebras, there are natural con-
tinuous maps

HHtop
0 (`1G)→ HHtop

0 (C∗maxG)→ HHtop
0 (C∗rG)→ HHtop

0 (NG)
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which we will use later on. If V is a Hausdorff topological C-vector space, a con-
tinuous trace τ : B → V on the Banach algebra B is a continuous C-linear map
satisfying τ(xy) = τ(yx). The projection HSB : B → HHtop

0 (B) is an example of
such a trace; we call it the Hattori-Stallings trace and it is universal in the sense
that every continuous trace B → V factors uniquely through it. For τ : B → V a
continuous trace, we will denote by same letter the induced map

τ : K0(B)→ V.

For the convenience of the reader we recall its definition: if P is a finitely generated
projective (left) B-module, then P is isomorphic to a B-module of the form Bn ·A for
some matrix A = (aij) ∈Mn(B) satisfying A2 = A. One then puts for [P ] ∈ K0(B)

HSB([P ]) =
∑

aii + [B,B] ∈ HHtop
0 (B),

and τ([P ]) =
∑
τ(aii) ∈ V is the image of HSB([P ]) under the natural map

HHtop
0 (B)→ V induced by the continuous trace τ .

Common examples of continuous traces include the Kaplansky trace κ : NG→
C, defined by κ(x) = 〈x.δe, δe〉, where δe ∈ `2G is the element with coefficient 1 in
e and 0 otherwise, yielding

κ : K0(NG) −→ C .
We can define the Kaplansky trace κ : AG→ C for any Banach algebra completion
AG of CG such that ‖ ‖A ≥ ‖ ‖N on CG. Indeed, in this case the identity map
on CG extend to a continuous map AG → NG, and composing AG → NG → C
gives rise to κ : K0(AG) → C. For P a finitely generated projective AG module,
κ([P ]) is termed its Kaplansky rank. An enhanced version of the Kaplansky trace
is the center-valued trace, which we describe now. Let Z(NG) denote the center
of NG; it is a commutative C*-subalgebra. The center-valued trace is the unique
continuous trace ctr : NG → Z(NG) which restricts to the identity on Z(NG); it
satisfies ‖ctr(x)‖N ≤ ‖x‖N and is universal in the sense that every continuous trace
NG → V into a Hausdorff topological C-vector space V factors uniquely through
the center-valued trace (for the definition and basic properties of the center-valued
trace on a finite von Neumann algebra, see [KR]). In particular, the Kaplansky
trace factors as NG → Z(NG) → C, and ctr = κ when Z(NG) = C (that is, when
NG is a factor). Again, if AG denotes a Banach algebra completion of CG with
‖ ‖A ≥ ‖ ‖N , there is a continuous map AG→ NG and ctr gives rise to

ctr : K0(AG)→ Z(NG);

this map factors by naturality as K0(AG) → HHtop
0 (AG) → HHtop

0 (NG) →
Z(NG). Because of the universal property of ctr : NG→ Z(NG) one has a natural

isomorphism HHtop
0 (NG) ∼= Z(NG) and can write:

ctr : K0(AG) −→ HHtop
0 (NG) = Z(NG).

More precisely the following holds.

Lemma 1.2. For any group G, [NG,NG] = [NG,NG] ⊂ NG and one has a
natural decomposition as Banach spaces

NG = Z(NG)⊕ [NG,NG].
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The center-valued trace NG→ Z(NG) induces an isomorphism of Banach spaces

HHtop
0 (NG) → Z(NG),

with inverse given by the restriction of the canonical map NG → HH top
0 (NG) to

Z(NG). Under these natural isomorphisms HH top
0 (NG) ∼= Z(NG), the element

HSNG([NG]) corresponds to 1NG ∈ Z(NG).

Proof. Let K and I stand for the kernel and the image of ctr : NG→ Z(NG)
respectively. Since x = ctr(x) + (x− ctr(x)) for x ∈ NG, we see that I +K = NG.
Now let y ∈ I ∩ K. Then 0 = ctr(y) = y, thus NG = I ⊕ K. Note that the
subspaces I = ker(id − ctr) and K = ker(ctr) are closed in NG, each being the
kernel of a continuous map. Obviously, because ctr = id on Z(NG), I = Z(NG)
and it remains to show that K = [NG,NG]. Since ctr is a continuous trace,

[NG,NG] ⊂ K; conversely, if x ∈ K = ker(ctr) then by a result of Fack and de
la Harpe ([FH], Théorème 3.2) x is the sum of 10 commutators in NG so that

x ∈ [NG,NG]. It follows that [NG,NG] = [NG,NG] = K, and thus Z(NG) is

naturally isomorphic to HH top
0 (NG). For the last statement of the lemma, we

observe that [NG] ∈ K0(NG) is represented by the idempotent 1NG; thus by the

definition of the Hattori-Stallings trace one has HSNG([NG]) = 1NG + [NG,NG],
and because ctr : NG→ Z(NG) maps 1NG to 1Z(NG) = 1NG the claim follows. �

The augmentation trace ε : C∗maxG → C is the C∗max-algebra map induced by
G → {e}. On the dense subalgebra CG, this is just the ordinary augmentation
ε(a) =

∑
g ag for a =

∑
g agg, yielding

ε : K0(C∗maxG) −→ C.

More generally, we define the augmentation trace ε : AG → C for any Banach
algebra completion AG of CG as long as ‖ ‖A ≥ ‖ ‖max on CG, by composing in
the obvious way.

To put Theorem A of the Introduction into a more general framework, the
following definition is convenient.

Definition 1.3. Let AG be a Banach algebra containing CG as a subalgebra
and denote by CGf the C-vector space with basis the elements of finite order in G.

(i) A subset S ⊂ HHtop
0 (AG) is called f-supported, if it lies in the image of

CGf ⊂ AG under the natural quotient map AG→ HH top
0 (AG).

(ii) The Banach algebraAG has the f-Trace Property if the image of the Hattori-
Stallings trace

HSA : K0(AG)→ HHtop
0 (AG)

is f-supported.
(iii) A finitely generated projective AG-module P is called f-supported if the

element HSA(P ) ∈ HHtop
0 (AG) is.

For the reduced C*-algebra C∗rG to have the f-Trace Property can be viewed as
an analogue of the Bass conjecture for CG, which asserts that the Hattori-Stallings
trace K0(CG) → HH0(CG) maps into the subspace spanned by the images of
the elements of finite order in G (cf. [B]). Theorem A of the Introduction has the
following equivalent formulation.
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Theorem 1.4. Suppose that G satisfies the Baum-Connes conjecture. Then
C∗rG has the f-Trace Property.

The proof will be given in Section 3. Theorem 1.4 gives evidences that C∗rG
should have the f-Trace Property for any group G. The situation is quite different
for the maximal C*-algebra: in Section 3 we will show that for infinite groups with
Kazhdan’s property (T), the algebra C∗maxG does not have the f-Trace Property.

2. The `1 case and the Bass conjecture

In case of the Banach algebra `1G, one has the following simple description of
HHtop

0 (`1G). We write `1[G] for the Banach space of `1-function [G] → C, where
[G] stands for the set of conjugacy classes of G; the Banach space structure is given
by the `1-norm. There is a natural projection θ : `1G→ `1[G] obtained by summing
over conjugacy classes, which is a continuous trace (see below), so that θ factors

through HHtop
0 (`1G).

Lemma 2.1. For any group G, the natural map θ : `1G → `1[G] induces an
isomorphism of Banach spaces

θ∗ : HHtop
0 (`1G)→ `1[G].

Proof. The projection θ : `1G → `1[G] is continuous, because it is norm
decreasing. Let us first show that [`1G, `1G] is contained in ker(θ). For any element
f =

∑
fgg ∈ `1G, we write

θ[g]f :=
∑

x∈[g]

fx ∈ C

for the [g]-coefficient of θ(f). The elements of [`1G, `1G] are finite linear combina-
tions of commutators ab−ba, with a, b ∈ `1G. So, for an element ab−ba, if we write
a =

∑
axx, b =

∑
byy and ab =

∑
cgg ∈ `1G, then we have that cg =

∑
xy=g axby,

so that
θ[g](ab) =

∑

z∈[g]

∑

xy=z

axby

which is equal to θ[g](ba), because ba =
∑
h∈G(

∑
uv=h buav)h and

∑
uv=h buav=∑

vu=u−1hu avbu. It follows that [`1G, `1G] lies in ker(θ) and therefore its clo-
sure as well since θ is continuous. Thus θ induces a continuous surjection θ∗ :
HHtop

0 (`1G)→ `1[G].
To see that θ∗ is injective, take a ∈ `1G and assume that θ(a) = 0. We write

a =
∑
a[g], where a[g] ∈ `1G is supported on the conjugacy class [g] ⊂ G. Since

θ[g](a) = θ[g](a[g]), we see that θ[g](a[g]) = 0 as well. Now a[g] can be written as
lim sn with sn ∈ CG, and sn having its support in [g]. Let en := θ[g](sn) ∈ C.
Clearly lim en = 0 ∈ C. We now choose an element g0 ∈ [g] and write

rn := sn − eng0,

which is an element in CG with its support in [g]; because its augmentation is zero
and it is supported on a single conjugacy class, the element maps to 0 in HH0(CG)
and is therefore a finite sum of commutators in CG:

rn =
∑

i

qn,iwn,i − wn,iqn,i
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and, in `1G, lim rn = lim sn − lim eng0 = a[g] − 0 so that a[g] lies in the closure of

[CG,CG] in `1G. It then follows that
∑

[g] a[g] = a lies in the closure of [CG,CG]

as well.
The inverse of θ∗ is given as follows. One picks for every [g] a representative

g̃ ∈ G and puts

θ−1
∗ (
∑

c[g][g]) :=
∑

c[g]g̃ + [`1G, `1G],

which defines a norm preserving inverse to θ∗, concluding the proof. �

Remark 2.2. The argument shows that in `1G, the closure of [CG,CG] equals
the closure of [`1G, `1G]; we do not know whether [`1G, `1G] is already closed in
`1G.

In [BCM] we worked with the trace θ : `1G→ `1[G] and we factored it through
the algebraic HH0(`1G) = `1G/[`1G, `1G]. In view of the previous lemma, the “`1

Bass Conjecture for G” in the sense of Conjecture 2.2 of [BCM] is precisely the
“f-Trace Property for `1G” in the sense of our Definition 1.3. The main result of
[BCM] can therefore be reformulated as follows.

Theorem 2.3. For an arbitrary group G, the image of the composite map

KG
0 (EG)→ K0(`1G)→ HHtop

0 (`1G)

is f-supported. If G satisfies the Bost conjecture then the image of the Hattori-
Stallings trace

HS`
1

: K0(`1G)→ HHtop
0 (`1G) = `1[G]

is f-supported, i.e. `1G has the f-Trace Property.

3. Some C∗-algebra cases

To prove Theorem A of the introduction we actually prove a more general result.
We write µ`1 : KG

0 (EG) → K0(`1G) for the Bost assembly map (see Lafforgue [L]
for its definition). More generally, for AG a Banach algebra completion of CG
satisfying ‖ ‖1 ≥ ‖ ‖A, we write µA : KG

0 (EG) → K0(AG) for the composite map
i∗◦µ`1 , where i∗ : K0(`1G)→ K0(AG) is induced by the natural map i : `1G→ AG.
It is proved in [L] that in this notation, µC∗r agrees with the Baum-Connes assembly
map.

Proposition 3.1. Let G be a countable group and AG a Banach algebra com-
pletion of CG such that ‖x‖1 ≥ ‖x‖A for all x ∈ CG. If the assembly map

µA : KG
0 (EG)→ K0(AG)

is surjective, then AG has the f-Trace Property.

Proof. The assumption on ‖ ‖A implies that there is a continuous map of
completions `1G→ AG. By Theorem 2.3 the image of

KG
0 (EG)→ K0(`1G)→ HHtop

0 (`1G)
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is f-supported. Our claim then follows by a diagram chase in the following commu-
tative diagram

K0(`1G)

��

HS`
1

// HHtop
0 (`1G)

��

KG
0 (EG)

µ`1

99rrrrrrrrrr

µA

%%LLLLLLLLLL
CGf

eeLLLLLLLLLL

yyrrrrrrrrrr

K0(AG)
HSA // HHtop

0 (AG) .

�

Proof of Theorem A and Theorem 1.4. Since the operator norm on CG
is always bounded by the `1-norm, there is a natural continuous map `1G→ C∗rG.
The assumption in Theorem A (resp. Theorem 1.4) guarantee that the assembly
map in question is surjective and we can apply Proposition 3.1 with AG = C∗rG to
conclude the proof.

�

All we actually do concerns elements lying in the image of the assembly map.
For elements which do not lie in the image of the assembly map, the situation can
be very different, as we show now.

A group G is called a-(T)-menable if it admits a metrically proper affine action
on a Hilbert space, see [CCJJV] for an introduction. A group G has Kazhdan’s
property (T) if any affine action on a Hilbert space has a globally fixed point, see
[HV] for an introduction. For a list of groups in these classes see [MV], [CCJJV]
and [V2].

Proposition 3.2. (a) Let G be a torsion-free infinite, countable group with
property (T). Then C∗maxG does not have the f-Trace Property.

(b) Let G be an a-(T)-menable group. Then C∗maxG has the f-Trace Property.

Proof. (a) Let G be a torsion-free group with Kazhdan’s property (T). Then
there exist an idempotent π ∈ C∗maxG (the Kazhdan projection) which, on a unitary
representation of G acts via the projection onto the G-invariant subspace; for a
construction of π, see [V1] or 3.9.17 of [HR]. Thus it acts via id on the the trivial
representation and as the zero operator on `2G (we use here the fact that G is an
infinite group and therefore the G-invariant subspace of `2G equals {0}). It follows
that ε(π) = 1 ∈ C and κ(π) = 0 ∈ C . Because for the unit element e ∈ C∗maxG one
has κ(e) = ε(e) = 1 and by considering the projective modules [C∗maxG · π] resp.
[C∗maxG] corresponding to the idempotents π, e ∈ C∗maxG, we see that the C-vector

space spanned by the image of the Hattori-Stallings trace HSC
∗
max : K0(C∗maxG)→

HHtop
0 (C∗maxG) must be at least 2-dimensional. Therefore, C∗maxG does not have

the f-Trace Property.
(b) According to [HK], the assumptions imply that the assembly map µC∗max

is surjective so that the hypothesis of Proposition 3.1 is satisfied for AG = C∗maxG,
yielding the conclusion of (b). �



TRACES AND REDUCED GROUP C∗-ALGEBRAS 9

4. Properties of f-supported elements

LetAG be a Banach algebra completion of CG such that ‖ ‖A ≥ ‖ ‖N . Then the

Kaplansky trace is defined on AG, as explained earlier. Let ιG : C→ HHtop
0 (AG)

be the injective map λ 7→ λ ·HSA([AG]). We write κ̃ for the continuous trace given
by the composite map

κ̃ : AG κ−→ C ιG−→ HHtop
0 (AG),

and, following our convention, we use the same notation for the induced maps on
K-theory

κ̃ : K0(AG) → HHtop
0 (AG), [P ] 7→ κ([P ]) ·HSA([AG]).

In the torsion-free case, the f-Trace Property forAG implies that HSA : K0(AG)→
HHtop

0 (AG) maps into the one-dimensional subspace ιG(C) spanned byHSA([AG]).
This is used in the following.

Proposition 4.1. Let G be a torsion-free group and AG a Banach algebra
completion of CG satisfying ‖ ‖A ≥ ‖ ‖N . For P a finitely generated projective and
f-supported AG-module,

HSA([P ]) = κ([P ]) ·HSA([AG]) = κ̃([P ]).

In particular, if AG has the f-Trace Property, then

HSA = κ̃ : K0(AG) → HHtop
0 (AG).

Proof. Because ‖ ‖A ≥ ‖ ‖N , the Kaplansky trace κ : AG → C is defined

and it factors through HH top
0 (AG), yielding a commutative diagram

AG κ //

HSA %%LLLLLLLLLL C

HHtop
0 (AG).

κ

99ssssssssss

Let P be a finitely generated projective AG-module. Since G is torsion-free and P
is f-supported one has HSA([P ]) = λ([P ]) ·HSA([AG]) for some λ([P ]) ∈ C. By
applying κ, we find

κ(HSA([P ])) = κ([P ])

and, because HSA([P ]) = λ([P ]) ·HSA([AG]),

κ
(
HSA([P ])

)
= κ

(
λ([P ]) ·HSA([AG])

)
= λ([P ]).

It follows that λ([P ]) = κ([P ]) and therefore HSA([P ]) = κ([P ]) · HSA([AG])=
κ̃([P ]) as claimed. �

The following is reminiscent of the weak Bass conjecture for CG, and implies
it in certain cases.
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Corollary 4.2. Let G be a torsion-free group and AG a Banach algebra
completion of CG satisfying ‖ ‖1 ≥ ‖ ‖A ≥ ‖ ‖max. If P denotes a finitely generated
projective AG-module that is in the image of the assembly map µA then ε([P ]) =
κ([P ]). In particular, if µA is surjective, then

ε = κ : K0(AG)→ C.

Proof. Since ‖ ‖A ≥ ‖ ‖max the augmentation trace ε : AG → C is defined

and factors through HH top
0 (AG), yielding a commutative diagram

AG ε //

HSA %%LLLLLLLLLL C

HHtop
0 (AG)

ε

99tttttttttt

so that

ε(HSA([P ])) = ε([P ]).

Because ‖ ‖1 ≥ ‖ ‖A the assembly map µA is defined and we know from Proposi-
tion 3.1 that the surjectivity of µA implies thatAG has the f-Trace Property. Hence,
as ‖ ‖A ≥ ‖ ‖max ≥ ‖ ‖N , we can apply the previous proposition to conclude that

HSA([P ]) = κ([P ]) ·HSA([AG])

so that

ε([P ]) = ε
(
HSA([P ])

)
= κ([P ]) · ε

(
HSA([AG])

)
= κ([P ]),

yielding the result claimed. �

The following is a particular case of Corollary 4.2 for the maximal C∗-algebra
C∗maxG, which will be used later on.

Corollary 4.3. Let G be a torsion-free group. Then for any finitely generated
projective C∗maxG-module P with [P ] ∈ K0(C∗maxG) in the image of the assembly
map,

HSC
∗
max([P ]) = κ([P ]) ·HSC∗max([C∗maxG]) ∈ HHtop

0 (C∗maxG)

and

κ([P ]) = ε([P ]).

Another application concerns the center-valued trace.

Proposition 4.4. Let G be a torsion-free group and assume that C∗rG has the
f-Trace Property. Then the center-valued trace

ctr : K0(C∗rG)→ Z(NG)

satisfies ctr([P ]) = κ([P ]) · 1NG for any finitely generated projective C∗rG-module
P , where 1NG ∈ NG is the unit element.
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Proof. As explained in Section 1, the center-valued trace is defined onK0(C∗rG)
as the composite map

ctr : K0(C∗rG)→ K0(NG) → HHtop
0 (NG) = Z(NG)

and, by naturality, can be factored as

K0(C∗rG)→ HHtop
0 (C∗rG)

i∗−→ HHtop
0 (NG) = Z(NG),

with i∗ induced by the inclusion C∗rG ⊂ NG. It follows from Proposition 4.1 that

ctr([P ]) = i∗(κ[P ] · HSC∗rG([C∗rG])), and under our identification of HH top
0 (NG)

with Z(NG), i∗(HSC
∗
rG([C∗rG])) = HSNG([NG]) corresponds by Lemma 1.2 to

1NG ∈ Z(NG). It follows that for [P ] ∈ K0(C∗rG), ctr([P ]) = κ([P ]) · 1NG. �

We now prove Corollary B of the Introduction. Recall that for a ring R with
1 the reduced group K̃0(R) is defined as the cokernel of the natural map K0(Z)→
K0(R).

Proof of Corollary B. It is a basic fact that for any group G, the center-
valued trace ctr : K0(NG) −→ Z(NG) is injective (this follows from Theorems 8.4.3
and 8.4.4 of [KR]). Since G is assumed to satisfy the Baum-Connes conjecture and
is torsion-free, the finitely generated projective C∗rG-module P has κ(P ) ∈ N (for
a direct proof of this fact, not using Atiyah’s L2- Index Theorem, see [MV]). By
Proposition 4.4 we infer that ctr([P ]) = ctr([C∗rG

n]), where n = κ([P ]). Passing to
K0(NG) we conclude that NG⊗C∗rG P is stably isomorphic to NGn and it follows

that the change of ring map K̃0(C∗rG) → K̃0(NG) is trivial. Because two sta-
bly isomorphic finitely generated projective NG-modules are isomorphic (cf. [KR]
loc. cit.), it follows that for P finitely generated projective over C∗rG, the module
NG⊗C∗rG P is not only stably free, but free of rank κ([P ]). �

The following variation of Corollary B is easier to prove and applies also to
not necessarily torsion-free groups. We recall that NG is a factor if and only if
Z(NG) = C, which is known to be equivalent with saying that for every g ∈ G\{e}
the centralizer of g in G has infinite index; such groups are also known as ICC-
groups (for a survey on group von Neumann algebras see Lück’s book [LU1]).

Corollary 4.5. Let G be a group satisfying the Baum-Connes conjecture and
assume that NG is a factor. Then

K̃0(C∗rG) −→ K̃0(NG)

maps into the torsion subgroup.

Proof. Since NG is a factor, ctr = κ (see Section 1). By assumption, the
group G satisfies the Baum-Connes conjecture, and hence according to [LU2] the
Kaplansky trace κ : K0(C∗rG) → C maps into Q (see also [BCM] for an alternate
proof). It follows that if P is a finitely generated projective C∗rG-module with
κ([P ]) = m/n for some m,n ∈ N, (NG ⊗C∗rG P )n is isomorphic to NGm, showing

that the image [NG⊗C∗rG P ] in K̃0(NG) is a torsion element. �

We want to give an example to illustrates that the Hattori-Stallings trace

HSC
∗
r : K0(C∗rG)→ HHtop

0 (C∗rG)
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detects in general more K-theory classes than the center-valued trace

ctr : K0(C∗rG)→ Z(NG).

To this end, we recall that the center-valued trace ctr : NG → Z(NG) has the
following two basic properties: first, for x ∈ Z(NG) and y ∈ NG one has ctr(xy) =
x · ctr(y), and second, because of the universal property of ctr, κ(ctr(x)) = κ(x) for
any x ∈ NG. As a consequence, the following Lemma holds (see also Emmanouil
[EM] for a different proof).

Lemma 4.6. Let g ∈ G with [G : CG(g)] = ∞. Then the center-valued trace
ctr : NG→ Z(NG) satisfies ctr(g)=0.

Proof. Using the usual embedding NG→ `2G, we can write ctr(g) =
∑
cuu.

Since κ(u−1ctr(g)) = cu, we need to show that κ(h · ctr(g)) = 0 for all h ∈ G. This
is certainly so if the cardinality of the conjugacy class of h, [G : CG(h)] is infinite,
because v · ctr(g) = ctr(g) · v for all v ∈ G so that cu = cv−1uv and thus cu = 0 if
u has infinitely many distinct conjugates. In case [G : CG(h)] < ∞, we have with
hµ := 1

[G:CG(h)]

∑
t∈[h] t ∈ Z(NG):

κ(h · ctr(g)) = κ(hµ · ctr(g)) = κ(ctr(hµg)) = κ(hµg) = 0

because for t ∈ [h], tg 6= e, otherwise g would have only finitely many conjugates.
�

Example 4.7. Let D∞ denote the infinite dihedral group. Then one has
K0(C∗rD∞) ∼= Z3 and the image of ctr : K0(C∗rD∞)→ Z(NG) is isomorphic to Z,

generated by 1
2 · 1NG. On the other hand, HSC

∗
r : K0(C∗rD∞)→ HHtop

0 (C∗rD∞) is
injective.

Proof. Let D∞ = 〈x〉 ∗ 〈y〉, generated by the two involutions x, y. Then by
using the formula for the K-theory of the reduced group C*-algebra of a free product
of groups (a special case of the Pimsner sequence for groups acting on trees [P]),
and using that for a finite groups G one has C∗r (G) = CG and K0(CG) = RC(G),
the complex representation ring, we have a surjective map RC(〈x〉) ⊕ RC(〈y〉) →
K0(C∗rD∞) inducing K̃0(C〈x〉) ⊕ K̃0(C〈y〉) ∼= K̃0(C∗rD∞) ∼= Z2 . A Z-basis for
K0(C∗rD∞) is then given by [C∗rD∞], [P ] and [Q], where P and Q are the projective
modules induced up from the trivial C〈x〉-module C, resp. the trivial C〈y〉-module
C. Because P = C∗rD∞ · eP with eP the idempotent 1

2 (1 + x) in C∗rD∞ and
because the centralizer of x ∈ D∞ has infinite index, we conclude from Lemma
4.6 that ctr([P ]) = ( 1

2 + 0) · 1N ∈ Z(ND∞) and similarly for [Q]. As a result,
ctr([P ] − [Q]) = 0 so that ctr : K0(C∗rD∞) → Z(ND∞) is not injective and the
image is a free abelian group generated by 1

2 · 1NG as claimed. On the other hand,
the projection p : D∞ → 〈x〉 ⊕ 〈y〉 yields a trace tp : C∗rD∞ → C(〈x〉 ⊕ 〈y〉), resp.
tp : K0(C∗rD∞)→ C(〈x〉 ⊕ 〈y〉), satisfying

tp([P ]) = (1 + x)/2, tp([Q]) = (1 + y)/2, tp([C
∗
rD∞]) = 1.

This shows that the images under HSC
∗
r : K0(C∗rD∞) → HHtop

0 (C∗rD∞) of the

three elements [C∗rD∞], [P ] and [Q] are C-linearly independent in HH top
0 (C∗rD∞).

It follows that HSC
∗
r : K0(C∗rD∞)→ HHtop

0 (C∗rD∞) is injective. �
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5. Another result

The following is a partial result on an analogue, in the setting of the maximal
C∗-algebra C∗maxG of a group G, of the Conjecture stated in the Introduction.

Theorem 5.1. Let G be a torsion-free group and φ : G→ F a homomorphism,
with F a finite group. Let P be a finitely generated projective C∗maxG-module such
that [P ] ∈ K0(C∗maxG) lies in the image of the assembly map

µC∗max : K0(BG) = KG
0 (EG)→ K0(C∗maxG).

Then CF ⊗φ P is a free CF -module of rank ε([P ]) = κ([P ]).

Proof. The induced map φ∗ : C∗maxG → C∗maxF = CF , composed with the
universal trace HSC : CF → HH0(CF ) defines a continuous trace

T = HSC ◦ φ∗ : C∗maxG→ HH0(CF )

and hence induces
T : K0(C∗maxG)→ HH0(CF )

satisfying T ([P ]) = HSC(CF ⊗φ P ) ∈ HH0(CF ). According to Corollary 4.3,
this trace value has the form κ([P ]) · HSC([CF ]); note also that κ = ε on the
image of the assembly map µC∗max so ε([P ]) = κ([P ]). Because F is finite, two
finitely generated projective CF -modules A and B are isomorphic if and only if
HSC([A]) = HSC([B]). Since

κ([P ]) ·HSC([CF ]) = HSC([(CF )κ([P ])]) = HSC([CF ⊗φ P ])

we conclude that CF ⊗φ P is free, of rank κ([P ]) = ε([P ]). �

Remarks 5.2. (1) If G is a torsion-free group which satisfies the Bass Con-
jecture over C and M is a finitely generated projective CG-module, then – by
considering the classical Hattori-Stallings trace – the CF -module CF ⊗φM is free,
of rank κ(M) = ε(M).

(2) The condition in Theorem 5.1 that [P ] lies in the image of the assembly map
cannot be dropped: Take a torsion-free infinite group with property (T) and let
P be the projective C∗maxG-module corresponding to the “Kazhdan Projection”.
Assume that G admits a homomorphism onto a finite group F 6= {e}. Then P
maps to the trivial representation C = CF ⊗φ P of F , and not to a multiple of the
regular representation.
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