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FROM ACYCLIC GROUPS
TO

THE BASS CONJECTURE FOR AMENABLE GROUPS

A. J. BERRICK, I. CHATTERJI AND G. MISLIN

Abstract. We prove that the Bost Conjecture on the `1-assembly
map for countable discrete groups implies the Bass Conjecture. It
follows that all amenable groups satisfy the Bass Conjecture.

1. Introduction

Throughout this paper, let G be a discrete group. For each finitely
generated projective (left) ZG-module P , there exists an idempotent
matrix (mij) = M ∈ Mn(ZG) such that P is isomorphic to the image
under right multiplication ZGn → ZGn byM . Writing [ZG,ZG] for the
additive subgroup of ZG generated by the elements gh−hg (g, h ∈ G),
we identify ZG/[ZG,ZG] with

⊕
[s]∈[G] Z · [s], where [G] is the set of

conjugacy classes of elements of G. The Hattori-Stallings rank rP is
then defined by

rP =
n∑
i=1

mii + [ZG,ZG] =
∑

[s]∈[G]

rP (s)[s] ∈
⊕

[s]∈[G]

Z · [s].

In his seminal paper [1], H. Bass made the following conjecture.

Conjecture 1.1 (Classical Bass Conjecture). For any finitely gener-
ated projective ZG-module P , the values rP (s) ∈ Z of the Hattori-
Stallings rank rP are zero for s ∈ G \ {1}.

One of the striking results of [1] is a proof of this conjecture for
the case of torsion-free linear groups (for the case of arbitrary linear
groups see [29]). Using methods of cyclic homology, Eckmann in [17]
and Emmanouil in [19] proved the conjecture for many more groups
(for a recent survey see Eckmann [18]). The case of solvable groups
was settled only very recently by Farrell and Linnell [20], where they
prove the classical Bass conjecture for all elementary amenable groups.

We show below that groups that satisfy the Bost conjecture sat-
isfy the classical Bass conjecture too, and indeed more general ver-
sions thereof that we call the `1 Bass conjecture (2.2) and CG Bass
conjecture. Combining with known information concerning the Bost
conjecture gives the result of the title.
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Theorem 1.2. Amenable groups satisfy the classical Bass conjecture.

The class of amenable groups includes the class of elementary amen-
able groups, which is the class obtained from finite and abelian groups
by means of subgroups, quotients, extensions and increasing unions.
This inclusion is strict [21].

The proof is obtained via the following chain of deductions, describ-
ing a tour from geometric functional analysis, through operator algebra
K-theory, algebraic topology and combinatorial group theory, and ul-
timately to general linear algebra.

Theorem 1.3 (Lafforgue [28]). For any countable discrete group with
the Haagerup property (for example, any countable amenable group [5]),
the Bost assembly map

βG∗ : KG
∗ (EG)→ Ktop

∗ (`1(G))

is an isomorphism.

We refer to Lafforgue’s work in [28] for the definition of the Bost
assembly map. The Bost conjecture (see [36]) is that the isomorphism
holds for all countable discrete groups.

The brunt of our paper consists in proving the following key link
between these conjectures.

Theorem 1.4. Let G be a countable discrete group for which the Bost
assembly map is rationally an epimorphism in degree 0. Then the `1

Bass conjecture 2.2 holds for G.

The proof of this theorem involves a natural embedding of G in an
acyclic group A(G) that is injective on conjugacy classes, with the
centralizer of any finitely generated abelian subgroup of A(G) acyclic
as well (cf. Theorem 4.9 below). This allows us to control the image
of the universal trace

T 1 : K0(`1(G))→ HH0(`1(G)).

The proof of the classical Bass conjecture is then clinched by an easy
lemma.

Lemma 1.5. (a) The `1 Bass conjecture 2.2 holds for a group G if it
holds for all its countable subgroups.

(b) The `1 Bass conjecture 2.2 implies the CG Bass conjecture 2.1.
(c) The CG Bass conjecture 2.1 implies the classical Bass conjec-

ture.

Theorem 1.4 also provides information concerning the non-existence
of idempotents in CG (Kaplansky conjecture), and indeed an analogous
result for the case of `1(G). Of course, here one needs to assume the
group in question to be torsion-free.
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Corollary 1.6. Let G be a torsion-free countable group and assume
that the Bost assembly map βG0 is rationally surjective. Then `1(G)
contains no idempotent other than 0 and 1.

For G a torsion-free hyperbolic group, Ji proved already in [22] that
`1(G) does not have any idempotent other than 0 and 1. The analo-
gous result for C∗r (G) was recently proved by Puschnigg [35] as well as
Mineyev and Yu [33]. As pointed out to us by A. Valette, this corol-
lary can easily be deduced using the Atiyah L2-index theorem, but our
proof avoids it, and as a matter of fact our techniques allow a new
proof for this theorem, see [14]. As an application of our methods, we
obtain a new proof of a recent result of Lück [30], which is a bound
for the image of the composite of the Kaplansky trace following the
Baum-Connes assembly map (see Section 6).

For a discussion of other groups to which our argument applies, see
Section 7 below. As well as groups that have the Haagerup property,
they include discrete subgroups of virtually connected semisimple linear
Lie groups, hyperbolic groups and cocompact CAT(0)-groups, to name
a few.

2. Traces on CG and `1(G)

Let A be an algebra over C and M be a C-module. A trace map
over A is a C-linear map t : A → M satisfying t(ab) = t(ba) for any
a, b ∈ A. There is a universal trace

T : A→ HH0(A) = A/[A,A], a 7→ a+ [A,A]

where HH0(A) stands for the 0-th Hochschild homology group, and
[A,A] denotes the C-submodule of A, generated by the elements of the
form ab−ba (for a, b ∈ A). In fact, every trace factors uniquely through
T . From consideration of idempotent matrix representatives as in the
Introduction, any trace gives rise to a well-defined map K0(A) → M ,
where K0(A) is the Grothendieck group of finitely generated projective
A-modules. In particular, the universal trace induces

T : K0(A)→ HH0(A).

We focus on the cases where A is the group algebra CG or the Banach
algebra `1(G) of summable series a =

∑
g∈G agg, with `1-norm ‖a‖1 =∑

g∈G |ag| <∞, for G a discrete group. We sometimes refer to elements

a =
∑

g∈G agg ∈ `1(G) as functions G → C, g 7→ ag. In this way

CG ⊂ `1(G) corresponds to the functions with finite support. For
A = CG or `1(G) we now define the Kaplansky trace

κ : A→ C
a 7→ a1

if a =
∑

g∈G agg and 1 denotes the neutral element in G; note that

indeed κ(ab) = κ(ba). We use the same notation for the induced map
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κ : K0(A) → C. Another example of trace in these cases is given by
the augmentation trace

ε : A→ C

a 7→
∑
g∈G

ag.

The special feature of that trace is that it is an algebra homomorphism,
and thus, K0( ) and HH0( ) being covariant functors from the category
of algebras to the category of abelian groups, we get the following
commutative diagram:

K0(A)
T−−−→ HH0(A)

K0(ε)

y yHH0(ε)

K0(C)
T−−−→ HH0(C) = C.

Since K0(C) = Z, we deduce that the induced map ε : K0(A)→ C has
image Z ⊂ C.

We consider a third trace, which we discuss first for A = CG. We
call as usual Hattori-Stallings trace the map

HS : CG→
⊕
[G]

C

a 7→
∑

[x]∈[G]

ε[x](a)[x]

where [x] stands for the conjugacy class of x ∈ G, [G] the set of con-
jugacy classes of G and ε[x](a) =

∑
g∈[x] ag. This is in fact nothing else

but the universal trace for the case A = CG. The [x]-component HS[x]

of the associated trace

HS : K0(CG)→
⊕
[G]

C

satisfies HS[x]([CG ⊗G P ]) = rP (x), where P denotes a finitely gener-
ated projective ZG-module. We recall that, by a result of Linnell (see
[29], Lemma 4.1), one has rP (x) = 0 for x ∈ G \ {1} of finite order.
Thus we consider the following version of the Bass conjecture.

Conjecture 2.1 (CG Bass Conjecture). The Hattori-Stallings trace

HS : K0(CG)→
⊕
[G]

C

takes its values in the C-vector space spanned by the conjugacy classes
of elements of finite order.

Proof of Lemma 1.5(c). To deduce from the above conjecture the clas-
sical Bass conjecture concerning ZG, one considers the natural map

i∗ : K0(ZG)→ K0(CG)
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and it suffices (because of Linnell’s result) to show that, for [P ] ∈
K0(ZG) and for x ∈ G of infinite order, HS[x](i∗[P ]) = 0. Therefore
Conjecture 2.1 implies the classical Bass conjecture concerning ZG. �

In the case where A = `1(G), per definition, the universal trace T on
K0(`1(G)) takes its values in HH0(`1(G)); the topology on `1(G) does
not enter here. Now consider the Banach space `1([G]), the completion
of the vector space

⊕
[G] C with respect to the `1-norm. Again, we think

of elements
∑

[x]∈[G] a[x][x] in `1([G]) as functions [G] → C, [x] 7→ a[x].

If we write FC(G) ⊂ [G] for the subset of conjugacy classes [g] ∈ [G]
with g of finite order, we have⊕

FC(G)

C ⊂
⊕
[G]

C ⊂ `1([G]).

For a =
∑

g∈G agg ∈ `1(G), we define ε[x](a) ∈ C by ε[x](a) =
∑

g∈[x] ag,

which is a convergent series because
∑

g∈G |ag| <∞. The map

p : `1(G)→ `1([G])

a 7→
∑

[x]∈[G]

ε[x](a)[x]

is a trace and therefore induces a well-defined map

p : HH0(`1(G))→ `1([G]).

Indeed, any z ∈ [`1(G), `1(G)] has the form

z =
n∑
i=1

(aibi − biai) =
n∑
i=1

∑
g,h∈G

aigb
i
h(gh− hg)

for ai =
∑

g∈G a
i
gg and bi =

∑
h∈G b

i
hh elements in `1(G); thus, since

[gh] = [hghh−1] = [hg], for all x ∈ G the [x]-component of p(z) is
given by the absolutely convergent series

∑n
i=1

∑
gh∈[x] a

i
gb
i
h−aigbih = 0.

Hence the trace p yields an `1-version of the Hattori-Stallings trace

HS1 := p ◦ T : K0(`1(G))→ `1([G])

and leads us to the following `1-version of the Bass conjecture.

Conjecture 2.2 (`1 Bass Conjecture). The `1 Hattori-Stallings trace

HS1 : K0(`1(G))→ `1([G])

takes its values in the subspace
⊕

FC(G) C of functions finitely supported
by the conjugacy classes of elements of finite order.
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Proof of Lemma 1.5(b). With j : CG ↪→ `1(G), the commutative
diagram

K0(CG)
HS−−−→

⊕
[G]

C

j∗

y y
K0(`1(G))

HS1

−−−→ `1([G])

shows that if HS1 maps into
⊕

FC(G) C, then so does HS. �

Certain arguments in the sequel require G to be a countable group.
For our applications to the Bass conjecture, this does not create any
problem, in view of the following.

Proof of Lemma 1.5(a). Notice that an idempotent matrix inMn(`1(G))
representing a finitely generated projective `1(G)-module P involves
only countably many elements from G. So, for some countable sub-
group Gα of G and finitely generated projective `1(Gα)-module Q, P
is of the form `1(G)⊗`1(Gα) Q. Thus the inclusion maps Gα ↪→ G of all
countable subgroups Gα of G induce an epimorphism⊕

α

K0(`1(Gα))→ K0(`1(G)),

and naturality of HS1 finishes the argument. �

Of course, although not needed here, a similar argument also holds
for Conjecture 2.1.

3. KG
0 Λ-discrete spaces

We recall some more terminology (discussed further in, for example,
[34]).

The reduced C*-algebra C∗r (G) is the completion of `1(G) with re-
spect to the operator norm, where `1(G) acts on the Hilbert space `2(G)
of square summable functions via its regular representation. Recall that
C∗r ( ) is not a functor on the category of groups, but for H < G a sub-
group, C∗r (H) is in a natural way a subalgebra of C∗r (G), so that for an
injective group homomorphism one does obtain an induced morphism
of reduced C∗-algebras.

Let KKG
∗ (A,B) denote the equivariant Kasparov K-groups of the

pair of separable G-C∗-algebras A,B (see [25]). Recall that a G-CW-
complex X is said to be proper if the stabilizer of each vertex is finite.
For X a proper G-CW-complex with G a countable group, the equi-
variant K-homology groups RKG

∗ (X) are then defined by

RKG
∗ (X) = colim{Y⊂X|Y cocompact}KK

G
∗ (C0Y, C),

where Y runs over the cocompactG-subcomplexes ofX, C is considered
as a C∗-algebra with trivial G-action, and C0Y denotes the C∗-algebra
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of continuous functions Y → C on the locally compact CW-complex Y
that vanish at infinity.

These homology groups RKG
∗ turn out to be representable in the

following sense. We write O(G) for the orbit category of G (the objects
are the cosets G/H and morphisms are G-maps). There exists an
O(G)-spectrum representing a homology theory KG

∗ on the category of
all G-CW-complexes such that for H < G one has

KG
∗ (G/H) = Ktop

∗ (C∗rH),

where Ktop
∗ (C∗rH) is the (topological) algebraic K-theory of the Banach

algebra C∗rH (note that Ktop
0 (C∗rG) = K0(C∗rG), the projective class

group of the ring C∗rG – the topology does not enter in this case, see
[24]). Moreover, the homology theory KG

∗ is such that for all proper
G-CW-complexes X and countable groups G one has a natural isomor-
phism

KG
∗ (X) ∼= RKG

∗ (X).

We emphasize that the right-hand side is defined only in case G is
countable, whereas the left-hand side is defined for any discrete group
G. Note that, because KG

∗ is defined by a spectrum, it is fully additive:

KG
∗ (
∐

Xα) '
⊕

KG
∗ (Xα).

For details concerning the O(G)-spectrum representing equivariant K-
homology, the reader is referred to Davis and Lück [16].

Definition 3.1. Let Λ be a (unital) subring of C. A proper G-CW-
complex X is called KG

0 Λ-discrete if the natural map induced by the
inclusion ι : X0 ↪→ X of the 0-skeleton

ι∗ : KG
0 (X0)→ KG

0 (X)

is an epimorphism after tensoring with Λ.

Clearly, being KG
0 Λ-discrete depends only on the G-homotopy type

of the G-CW-complex X.

Remark 3.2. If X is a proper G-CW-complex, then X0 =
∐
G/Fα

for some set of finite subgroups Fα ⊂ G. Therefore

KG
0 (X0) = KG

0 (
∐

G/Fα) =
⊕

KG
0 (G/Fα)

and, since G/Fα is the G-space induced from the proper Fα-space {pt},

KG
0 (G/Fα) ∼= KFα

0 ({pt}) ∼= RC(Fα),

where RC(Fα) is the complex representation ring of the finite group Fα.
Thus one has a natural isomorphism of abelian groups

β : KG
0 (X0)→

⊕
RC(Fα).
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Recall that a group G is called acyclic if the classifying space K(G, 1)
= BG satisfies H∗(BG; Z) = 0 for ∗ > 0. Equivalently, G is acyclic if
the suspension ΣBG of BG is contractible. As usual, we write EG for
the universal cover of BG. It is a free G-CW-complex, and so proper.

Lemma 3.3. If G is acyclic, then EG is KG
0 Z-discrete.

Proof. Using a suitable model for EG we may assume that EG0 = G
as a discrete G-space, and therefore

KG
0 (EG0) = KG

0 (G) = K0({pt}) ∼= Z.

On the other hand, KG
0 (EG) ∼= K0(BG) and, as here the suspension

ΣBG is contractible, the inclusion {pt} ↪→ BG induces an isomorphism

KG
0 (EG0) ∼= K0({pt}) ∼= K0(BG) ∼= KG

0 (EG),

showing that EG is KG
0 Z-discrete. �

The universal proper G-CW-complex EG is characterized up to G-
homotopy by the property that

(EG)H '
{
{pt} if |H| <∞
∅ otherwise.

This implies that for any finite subgroup H < G, with centralizer
CG(H) < G, the CG(H)-CW-complex (EG)H is a model for ECG(H).
For a discussion of EG and its properties, see for instance [27]. If G is
torsion-free, then EG is a model for EG, so that EG is KG

0 Z-discrete
when G is also acyclic. In the context of the Bost conjecture or Baum-
Connes conjecture (6.2 below), we are interested in EG, which differs
from EG as soon as G is not torsion-free. So, to deal with groups with
torsion, we need a stronger version of acyclicity, which in particular
takes into account the centralizers of finite order elements in the group.

Definition 3.4. A group G is called pervasively acyclic, if for every
finitely generated abelian subgroup A < G the centralizer CG(A) is an
acyclic group.

We also need a way of keeping track of the torsion in G.

Definition 3.5. For any group G, ΛG denotes the subring of Q gener-
ated by the elements 1/|H|, where H runs over the finite subgroups of
G.

The following lemma is useful later.

Lemma 3.6. For a group G, the G-map EG → EG induces an iso-
morphism

H∗(EG/G; Λ)→ H∗(EG/G; Λ)

for any abelian group Λ such that ΛG ⊂ Λ ⊂ Q.
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Proof. The Brown spectral sequence (see [13], VII, 7.10) for the G-CW-
complex EG takes the form

E1
p,q =

⊕
σ∈Σp

Hq(BGσ; Λ) =⇒ Hp+q(BG; Λ)

with Gσ the (finite) stabilizer of the p-cell σ ⊂ EG and Σp a set of
representatives of orbits of p-cells. Our assumption on Λ implies that
E1
p,q = 0 for q > 0, so that E1

p,∗ = E1
p,0
∼= Cp(EG/G; Λ), the cellular

chain complex of EG/G with coefficients in Λ. Thus

E2
p,∗ = E2

p,0
∼= Hp(EG/G; Λ) ∼= E∞p,0

∼= Hp(BG; Λ),

with the isomorphism being induced by the edge-homomorphism. �

Our aim now is to show that, for any pervasively acyclic group G,
its classifying space for proper actions EG is KG

0 ΛG-discrete.
We first recall the use of Bredon homology in the context of equi-

variant K-homology (we refer to [34] for a more detailed exposition of
these techniques). Let G be any group and F the set of finite subgroups
of G. We write O(G,F) for the full subcategory of the orbit category
O(G) with objects G/H, H ∈ F. If X is a G-CW-complex, its cellu-
lar chain complex C∗X gives rise to a contravariant functor into the
category Ab∗ of chain complexes of abelian groups,

CF
∗X : O(G,F) −→ Ab∗, G/H 7−→ C∗X

H .

If M : O(G,F) −→ Ab is a (covariant) functor with target Ab (the
category of abelian groups), the Bredon homology HF

∗ (X;M) is defined
to be the homology of the chain complex of abelian groups CF

∗X⊗FM.
The latter is defined as∑

H∈F

C∗X
H ⊗M(G/H)

/
∼ ,

where ∼ is the equivalence relation induced by f ∗x⊗ y ∼ x⊗ f∗y, for
f : G/H → G/K running over all morphisms of O(G,F).

Remark 3.7. In the case of equivariant K-homology, the functor
M = KG

j (?) is of particular interest. For j even, KG
j (G/H) ∼= RC(H),

the complex representation ring of the finite group H, and for j odd
KG
j (G/H) = 0. A morphism ϕ : G/H → G/K gives rise to

ϕ∗ : KG
0 (G/H)→ KG

0 (G/K),

which corresponds to the map RC(H) → RC(K) induced by h 7→
x−1hx, if ϕ(H) = xK. In this way the automorphism group

mapG(G/H,G/H) ∼= NG(H)/H

acts on KG
0 (G/H) = RC(H); in particular CG(H) acts trivially on

RC(H) via CG(H) → NG(H)/H. If X is a proper G-CW-complex,
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there is an Atiyah-Hirzebruch spectral sequence (cf. Lück’s Remark
3.9 in [31])

E2
i,j = HF

i (X; KG
j (?)) =⇒ KG

i+j(X).

Theorem 3.8. Let X be a proper G-CW-complex. If for every finite
cyclic subgroup C < G one has H2i(X

C/CG(C); ΛG) = 0 for all i > 0,
then X is KG

0 ΛG-discrete.

Proof. As in Lück [31] we write Sub(G,F) for the quotient category
of O(G,F) with the same objects as O(G,F), but with morphisms
from G/H to G/K given by mapG(G/H,G/K)/CG(H), where the
centralizer CG(H) acts via

CG(H)→ NG(H)/H ∼= mapG(G/H,G/H)

on G-maps G/H → G/K. The cellular chain complex of X gives rise
to a contravariant functor to the category of chain complexes of abelian
groups:

CSub
∗ X : Sub(G,F)→ Ab∗, G/H 7→ C∗(X

H/CG(H)).

As before, if M : Sub(G,F)→ Ab is any (covariant) functor, Bredon-
type homology groups HSub

∗ (X;M) are defined. Note that the projec-
tion π : O(G,F)→ Sub(G,F) induces a functor π∗M := M ◦π. There
is a natural isomorphism (cf. [31] (3.6))

HF
∗ (X; π∗M) ∼= HSub

∗ (X;M).

For the representation ring functor RC : O(G,F) → Ab, G/H 7→
RC(H) = KG

0 (G/H), the centralizer CG(H) acts trivially on RC(H).
Thus RC factors through Sub(G,F), to yield a functor still denoted
by RC, and hence we can replace the left-hand side of the Atiyah-
Hirzebruch spectral sequence by HSub

i (X;KG
j (?)). Denote by ΛGS the

category of functors Sub(G,F)→ ΛG-Mod; an object of ΛGS is called
a ΛGS-module. According to Lück [30], Theorem 3.5 (b), ΛG ⊗ RC is
a projective ΛGS-module. This implies that for any proper G-CW-
complex X

HSub
∗ (X; ΛG ⊗RC) ∼= HΛGS

∗ (X)⊗Sub (ΛG ⊗RC),

whereHΛGS
∗ (X) denotes the ΛGS-moduleG/H 7→ H∗(X

H/CG(H); ΛG)
(the ‘tensor product’ −⊗Sub− is, as before, defined by taking the sum
over all objects∑

H∈F

H∗(X
H/CG(H); ΛG)⊗ (ΛG ⊗RC(H))

and dividing out by the equivalence relation generated by f ∗x ⊗ y ∼
x⊗ f∗y, with f running over the morphisms of Sub(G,F)).

According to Artin’s theorem, for H < G a finite subgroup, every
y ∈ Z[1/ |H|]⊗RC(H) is a Z[1/ |H|]-linear combination of images f∗yα
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with yα ∈ Z[1/ |H|] ⊗ RC(Cα), and Cα < H a cyclic subgroup. This
means that for H ∈ F one has:

H∗(X
H/CG(H); ΛG)⊗ (ΛG ⊗RC(H))

/
∼

=
∑

H∗(X
C/CG(C); ΛG)⊗ (ΛG ⊗RC(C))

/
∼

where the sum is taken over finite cyclic subgroups of H, and thus

HSub
2i (X; ΛG ⊗RC) = 0, for all i > 0

since according to our assumption, the groups H2i(X
C/CG(C); ΛG) are

zero for all i > 0. This implies that the Atiyah-Hirzebruch spectral
sequence for X collapses when the coefficients are tensored with ΛG,
since all differentials either originate or end up in {0}. In particular,
the edge homomorphism

c0(X) : HF
0 (X; ΛG ⊗RC) −→ KG

0 (X)⊗ ΛG

is an isomorphism. Now, from the definitions and the fact that for
a subgroup H of G we have (X0)H = (XH)0, we readily obtain the
surjectivity of

ι∗ : HF
0 (X0; ΛG ⊗RC) −→ HF

0 (X; ΛG ⊗RC)

from its counterpart in ordinary homology. Hence the commutative
diagram expressing naturality

HF
0 (X0; ΛG ⊗RC)

c0(X0)−−−−→ KG
0 (X0)⊗ ΛG

ι∗

y ι∗

y
HF

0 (X; ΛG ⊗RC)
c0(X)−−−→ KG

0 (X)⊗ ΛG

implies the surjectivity of

ι∗ : KG
0 (X0)⊗ ΛG −→ KG

0 (X)⊗ ΛG ,

which establishes that X is KG
0 ΛG-discrete. �

Corollary 3.9. For any pervasively acyclic group G, EG is KG
0 ΛG-

discrete.

Proof. For every finite cyclic subgroup C < G, (EG)C is a model for
ECG(C). The natural map ECG(C)→ ECG(C) gives rise to a map

BCG(C) = ECG(C)/CG(C)→ ECG(C)/CG(C) = (EG)C
/
CG(C)

which induces an isomorphism

H∗(BCG(C); ΛG) ∼= H∗((EG)C
/
CG(C); ΛG),

by Lemma 3.6 applied to the group CG(C). Thus, since the centralizers
CG(C) are acyclic, the result follows by choosing X = EG in the
previous theorem. �
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4. Pervasively acyclic groups

In this section we introduce a functorial embedding of a given group
G in an acyclic group A(G) that has further strong properties required
for our arguments. Embeddings into acyclic groups have historically
been important for algebraic K-theory [37] and algebraic topology [23].
One of our further requirements for A(G) is that the centralizers in
A(G) of finitely generated abelian subgroups of A(G) should also be
acyclic (so that A(G) is pervasively acyclic, cf. Definition 3.4). In the
extreme case where G is itself abelian, a weaker form of this was already
known to be possible by making G the centre of an acyclic group [4],
[7], [8]. A prominent class of acyclic groups suited to our purpose
comprises the binate groups [8]. We now recall the definition.

Definition 4.1. A group G is said to be binate if for any finitely
generated subgroup H of G there is a homomorphism ϕH : H → G
and an element uH ∈ G such that for all h in H we have

h = [uH , ϕH(h)] = uHϕH(h)u−1
H ϕH(h)−1.

Obviously ϕH is injective, while the fact that it is a homomorphism
implies, from the usual product formula for commutators, that its im-
age commutes with H. So this apparatus embeds a pair of commuting
copies of each finitely generated subgroup of G in G (binate = arranged
in pairs). The key property of binate groups is their acyclicity.

Theorem 4.2 (see [6], (11.11)). Every binate group is acyclic.

In general, there is a construction for embedding a given group in a
binate group, the universal binate tower [8]. It is universal in the sense
that it maps to any other such construction [9]. See [10] for justification
of the role of binate groups in this context. The construction we now
give is an adaptation of the universal binate tower.

In the following, we use the notation

∆G = {(g, g) ∈ G×G | g ∈ G} ,
∆
′

F =
{

(f−1, f) ∈ F × F | f ∈ F
}
.

Definition 4.3. Let H be a group with {Fi}i∈I as the set of all its
finitely generated abelian subgroups. For i ∈ I, write Ci for the central-
izer inH of Fi. Then inH×H the subgroups (1×Fi) = {(1, f) | f ∈ Fi}
and ∆Ci commute, so that their product (1×Fi)·∆Ci is also a subgroup
of H ×H. Likewise, ∆′Fi · (1×Ci) is also a subgroup, and the obvious
bijection

(1× Fi) ·∆Ci −→ ∆′Fi · (1× Ci)
(k, fk) 7−→ (f−1, fk)
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is a group isomorphism. Now define A1(H) to be the generalized HNN
extension

A1(H) = HNN(H ×H; (1× Fi) ·∆Ci
∼= ∆′Fi · (1× Ci), ti)i∈I

meaning that, whenever f ∈ Fi and k ∈ Ci,
(k, fk) = ti(f

−1, fk)t−1
i .

Lemma 4.4. The inclusion h 7→ (h, 1) of H in H×H as H×1 extends
to a functorial inclusion of H in A1(H).

Proof. That we obtain an inclusion is an application of the Higman-
Neumann-Neumann Embedding Theorem for HNN extensions to the
present situation. Functoriality is a routine check, since homomor-
phisms map finitely generated abelian subgroups to finitely generated
abelian subgroups and centralizers into centralizers. �

The inclusion of H in A1(H) is used implicitly in the sequel. Note
that an element in A1(H) can be written as a word involving elements
of H ×H and stable letters.

Lemma 4.5. For all i in I, ti centralizes Fi, that is, ti ∈ CA1(H)(Fi).

Proof. From the construction we have, for any f ∈ Fi,
ti(f, 1)t−1

i = ti(f, f
−1f)t−1

i = (f, f−1f) = (f, 1).

�

Lemma 4.6. If two elements of H are conjugate in A1(H), then they
are conjugate in H.

Proof. Fix h ∈ H. Our aim is to contradict the assertion that there
exist elements of H ×H that are conjugate to h in A1(H) but not in
H ×H. This contradiction gives the required result, for it means that
whenever (h′, h′′) in H×H is conjugate to h = (h, 1), then there exists
x = (x′, x′′) ∈ H ×H such that

(h′, h′′) = (x′, x′′)(h, 1)(x′, x′′)−1.

(Of course, we are primarily interested in the case where we begin with
the further assumption that h′′ = 1; however, the more general case
is used later.) The above equation yields that indeed h′′ = 1 and so
(h′, h′′) = h′ = x′h(x′)−1, making h and xhx−1 conjugate in H itself.
Therefore, in order to establish a contradiction, let us take s to be the
minimal number of indices i ∈ I of stable letters ti occurring in any
expression of x as a word in A1(H), where x varies among all elements
of A1(H) for which xhx−1 lies in H ×H but fails to be conjugate to h
in H × H. The fact that x /∈ H × H means s ≥ 1. Let w be such a
word involving precisely s distinct stable letters.

Write h̄ = whw−1, and let i(1), . . . , i(s) ∈ I be the indices of stable
letters ti occurring in w. We argue as in Step 2 of the proof of Britton’s
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Lemma [12]. We first observe that the trivial word h̄−1whw−1 lies in
the subgroup

Bs = HNN(H ×H; (1× Fi(j)) ·∆Ci(j)
∼= ∆′Fi(j) · (1× Ci(j)), ti(j))j=1,...,s

of A1(H). We put B0 = H ×H, and, for r = 1, . . . , s, write

Br = HNN(Br−1; (1× Fi(r)) ·∆Ci(r)
∼= ∆′Fi(r) · (1× Ci(r)), ti(r)).

Then, once again using the Embedding Theorem, we have

H = H × 1 < H ×H = B0 < B1 < · · · < Br−1 < Br < · · · < Bs.

Clearly it suffices to establish the following.

Claim. If h is conjugate in Br (1 ≤ r ≤ s) to an element g of Br−1,
then it is conjugate in Br−1 to g.

To prove this, we write F = Fi(r), C = Ci(r), t = ti(r). By the Normal
Form Theorem [32] p.182 for Br as an HNN extension of Br−1, we may
suppose that n is minimal among all x ∈ Br with xhx−1 = g and

x = g0t
ε1g1t

ε2g2 · · · tεngn
reduced. That is, each gi ∈ Br−1, each εi ∈ {±1}, and there is no
subword of the form

tgit
−1 with gi ∈ ∆′F · (1× C)

nor
t−1git with gi ∈ (1× F ) ·∆C .

To show that in fact x ∈ Br−1 we contradict the minimality of n when
n ≥ 1. Since in Br

1 = g−1g0t
ε1g1 · · · tεngnhg−1

n t−εn · · · g−1
1 t−ε1g−1

0 ,

by Britton’s Lemma (see [32]) we must have either

εn = 1 and gnhg
−1
n ∈ ∆′F · (1× C)

or
εn = −1 and gnhg

−1
n ∈ (1× F ) ·∆C .

Since gn ∈ Br−1 ≤ Bs−1 and gnhg
−1
n ∈ H ×H, by minimality of s we

must have
gnhg

−1
n = yhy−1 with y ∈ H ×H.

As noted at the beginning, this forces gnhg
−1
n ∈ H. Therefore

gnhg
−1
n ∈ H∩((∆′F · (1× C))∪((1× F ) ·∆C)) = F.

However, by Lemma 4.5, t ∈ CBr(F ). Hence

xhx−1 = g0t
ε1g1t

ε2g2 · · · tεn−1gn−1gnhg
−1
n g−1

n−1t
−εn−1 · · · g−1

1 t−ε1g−1
0

= zhz−1

where z = g0t
ε1g1t

ε2g2 · · · tεn−1gn−1gn involves fewer than n occurrences
of t, thereby contradicting the minimality of n. �
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The final property that we need is that no new primary torsion is
created in the construction.

Lemma 4.7. A1(H) contains an element of prime power order pk, if
and only if H also contains an element of order pk.

Proof. It is evident that H and H × H have the same prime powers
arising as orders of elements. The Torsion Theorem for HNN extensions
[32] p.185, after iteration as in the proof of Lemma 4.6, shows that
H ×H and A1(H) share the same finite orders of elements. (Of course
H×H, and hence A1(H), may have non-prime-power orders not found
in H itself.) �

Definition 4.8. Let G be a group. We write A1 = A1(G), and for
n ≥ 2 inductively define An(G) = A1(An−1), which we also write as
An. Thus by Lemma 4.4 An−1 ≤ An, and we put A = A(G) = ∪An.

Theorem 4.9. The homomorphism G→ A(G) has the following prop-
erties.

(a) It is a functorial inclusion.
(b) Every finitely generated abelian subgroup of A(G) has its cen-

tralizer in A(G) binate, hence acyclic. In particular, A(G) is
pervasively acyclic.

(c) If two elements of G are conjugate in A(G), then they are con-
jugate in G itself.

(d) The prime powers that occur as orders of elements of A(G) are
precisely those that occur as orders of elements of G.

(e) If G is countable, A(G) is too.

Proof. (a), (c) and (d) are easy consequences of Lemmas 4.4, 4.6 and
4.7 respectively. So we concentrate on proving (b). In view of Theorem
4.2, we show that, for each finitely generated abelian subgroup F of
A(G), the centralizer CA(F ) is binate. Therefore let H be a finitely
generated subgroup of CA(F ). It follows that we can find n with both
H and F subgroups of An, and so that F = Fi for some suitable
member i of the index set of finitely generated abelian subgroups of
An. Then the homomorphism ϕ sending h ∈ H to (1, h) ∈ An+1 maps
into CA(F ). By Lemma 4.5 we have also ti ∈ CA(F ). Thus the fact
that, for any h ∈ H,

h = (h, h)(1, h)−1 = ti(1, h)t−1
i (1, h)−1 = [ti, ϕ(h)]

reveals CA(F ) to be binate, as required.
For (e) one notices that a countable group has only countably many

finitely generated subgroups. �
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5. The Bass conjecture for amenable groups: proof of
Theorem 1.4

In this section we show how the use of pervasively acyclic groups
allows us to deduce the Bass conjecture from the Bost conjecture on
the assembly map

βG∗ : KG
∗ (EG)→ Ktop

∗ (`1(G)).

Notice that in the case where ∗ = 0 and A is any Banach algebra, the
groups K0(A) and Ktop

0 (A) agree, as they both are defined to be the
Grothendieck group of finitely generated projective A-modules – the
topology does not enter in this case.

Proof of Theorem 1.4. Consider the embedding G → A where A =
A(G) is the pervasively acyclic group of Definition 4.8. This embed-
ding, as well as the inclusion ι : EA0 → EA, yields the following
commutative diagram:

KG
0 (EG)

βG0−−−→ K0(`1(G))
HS1

−−−→ `1([G])y y y
KA

0 (EA)
βA0−−−→ K0(`1(A))

HS1

−−−→ `1([A])

ι∗

x x j

x
KA

0 (EA0)
β−−−→

⊕
RCFα

γ−−−→
⊕

`1([Fα]).

The map β arises from Remark 3.2, by writing EA0 as a disjoint union
of orbits A/Fα (where the Fα are the finite subgroups of A). We now
discuss the maps γ and j. For Fα < A finite, we have a commutative
diagram

K0(`1(A))
HS1

−−−→ `1([A])x jα

x
RC(Fα) = K0(`1(Fα))

HS1

−−−→ `1([Fα])

Here ja is induced by [Fα] → [A], and therefore maps into
⊕

FC(A) C,

where FC(A) denotes the set of conjugacy classes of finite order ele-
ments of A. The map γ is just the sum of Hattori-Stallings traces (on
the Fα), and j :

⊕
`1([Fα])→ `1([A]) is the map that restricts on each

`1([Fα]) to jα.

After tensoring the left two columns of this diagram with Q, by
assumption the Bost assembly map βG0 ⊗ IdQ becomes surjective, and
the map ι∗⊗ IdQ becomes an epimorphism because of Corollary 3.9. It
is a consequence of Theorem 4.9 part (c) that [G] ⊆ [A], and thus

`1([G]) ⊂ `1([A]) ⊃ `1 (FC(A)) ⊃
⊕

FC(A)

C,
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with ⊕
FC(G)

C = `1([G])
⋂ ⊕

FC(A)

C.

Therefore the map

HS1 : K0(`1(G))→ `1([G])

takes its values in the C-vector space spanned by the conjugacy classes
of elements of finite order. �

6. On the image of the Kaplansky trace

We now turn to the idempotent conjecture for `1(G) and the proof of
Corollary 1.6. Using similar arguments to those that have been used in
part 1 of [34], Lemma 7.2, one could deduce the idempotent conjecture
for `1(G) from the surjectivity of the Bost assembly map. However, our
aim is to prove something stronger, namely the idempotent conjecture
for `1(G) out of the rational surjectivity of the Bost assembly map. We
start with some standard facts concerning the Kaplansky trace.

Recall that C∗r (G) acts on `2(G). Considering 1 ∈ G as an element
of `2(G), one defines for f ∈ C∗r (G) the Kaplansky trace

κ(f) = 〈f(1), 1〉 ∈ C.
This defines a trace κ : C∗r (G)→ C which extends the Kaplansky trace
`1(G) → C described earlier, in the sense that the resulting map in
K-theory (which we still denote by κ) fits into a commutative diagram

K0(`1(G))
κ−−−→ Cy ∥∥∥

K0(C∗r (G))
κ−−−→ C.

Moreover, κ is natural in the sense that for H < G one has a commu-
tative diagram

K0(C∗r (H))
κ−−−→ Cy ∥∥∥

K0(C∗r (G))
κ−−−→ C.

Combined with Theorem 1.4, the following proposition completes the
proof of Corollary 1.6.

Proposition 6.1. Let G be a torsion-free group satisfying Conjec-
ture 2.2. Then `1(G) contains no idempotent other than 0 and 1.

Proof. We first show that in the case where Conjecture 2.2 holds and G
is torsion-free, both the Kaplansky trace κ and the augmentation trace
ε, considered as maps K0(`1(G)) → C, coincide. On the one hand,
for G torsion-free, Conjecture 2.2 says that HS1 = ε[1] = ε (since G
being torsion-free implies that FC(G) = {1}), and on the other hand
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as observed earlier one has that κ = ε[1]. Since the augmentation trace
ε : K0(`1(G)) → C is known to assume integral values only (recall
from Section 2 that it factors through K0(C)), this means that the
Kaplansky trace κ has integral range as well.

If a ∈ `1(G) ⊂ C∗r (G) is an idempotent, then the projective ideal P =
C∗r (G)·a ⊂ C∗r (G) satisfies κ([P ]) = 0 or 1, so that P = 0 or C∗r (G).
Therefore a = 0 or 1 by the usual argument concerning idempotents in
C∗r (G) (cf. [3], Proposition 7.16). �

Using similar ideas to those in the previous section, we now give
another application of pervasively acyclic groups and Proposition 3.9,
but in the context of the Baum-Connes conjecture. Here we recall:

Conjecture 6.2 (Baum-Connes). Let G be a countable discrete group.
The Baum-Connes assembly map

µG∗ : KG
∗ (EG)→ Ktop

∗ (C∗r (G))

is an isomorphism.

We refer to Baum, Connes and Higson [3], as well as Lafforgue’s work
[28] for the construction of the Baum-Connes assembly map, and for
considerable partial information concerning the validity of the Baum-
Connes conjecture. Our techniques allow us to give a new proof of a
recent theorem of Lück [30].

Theorem 6.3. Let κ : K0(C∗r (G)) → C be the Kaplansky trace and
µG0 : KG

0 (EG) → K0(C∗r (G)) the Baum Connes assembly map. Then
the image of κ ◦ µG0 is contained in ΛG.

Proof. Consider the embedding G → A where A = A(G) denotes the
pervasively acyclic group of Definition 4.8. Notice that ΛG = ΛA(G) by
Theorem 4.9 (d). This equality, as well as the inclusion ι : EA0 → EA,
yields the commutative diagram

KG
0 (EG)

µG−−−→ K0(C∗r (G))
κ−−−→ Cy y Id

y
KA

0 (EA)
µA−−−→ K0(C∗r (A))

κ−−−→ C

ι∗

x x x
KA

0 (EA0)
β−−−→

⊕
RCFα

σ−−−→ ΛG

where β is as in the proof of Theorem 1.4, and σ is given as follows. If
{xα} is an element in

⊕
RCFα, then

σ({xα}) =
∑
α

κα(xα)

where κα : RCFα → C is the Kaplansky trace on K0(C∗r (Fα)) = RCFα,
which takes its values in 1

|Fα|Z ⊂ ΛG. Indeed, the groups Fα are finite,
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and for a finitely generated projective CFα-module P one has, accord-
ing to Bass ([1], Corollary 6.3), by comparing the Kaplansky trace of
P with the Kaplansky trace of P considered as a module over C{1},

κ([P ]) =
1

|Fα|
dimCP ∈

1

|Fα|
Z.

Now write M for the image of κ◦µG0 . As the map ι∗⊗ IdΛG becomes an
epimorphism because of Corollary 3.9, commutativity of the diagram
now shows that M ⊗ ΛG lies in ΛG ⊗ ΛG. (This is essentially Lück’s
theorem.) The Z-flatness of submodules of C then gives injections

M ∼= M ⊗ Z→M ⊗ ΛG → ΛG ⊗ ΛG
∼= ΛG,

and so the result. �

7. New examples of groups satisfying the Bass conjecture

We describe a wide class of groups for which the Bost conjecture
is known. This class, which Lafforgue in [28] called C ′, includes all
discrete countable groups acting metrically properly and isometrically
on one of the following spaces:

(a) an affine Hilbert space (those groups are said to have the Haager-
up property, or to be a-T-menable);

(b) a uniformly locally finite, weakly δ-geodesic and strongly δ-bolic
space (we will see that cocompact CAT(0)-groups satisfy this
assumption);

(c) a non-positively curved Riemannian manifold, with curvature
bounded from below and bounded derivative of the curvature
tensor (with respect to the connection induced from the Levi-
Civita connection on the tangent bundle).

Theorem 7.1. (Lafforgue [28]) The Bost conjecture holds for any
group in the class C ′.

We now discuss in turn the three classes of groups specified by (a),
(b) and (c) above.

Class (a). Here, we have Theorem 1.3 as a special case. We recall that
the class of groups satisfying the Haagerup property has the following
closure properties (see [15]).

– The Haagerup property is closed under taking subgroups, and
direct products.

– If G acts on a locally finite tree with finite edge stabilizers, and
with the vertex stabilizers having the Haagerup property, then
so does G.

– If G =
⋃
n≥0Gn, with Gi < Gi+1 for all i, and each Gi has the

Haagerup property, then so does G.
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– If G and H are countable amenable groups and C is central in
H and G then G∗CH has the Haagerup property (in particular,
free products of countable amenable groups have the Haagerup
property).

Class (b). We now turn to the second class of groups contained in C ′.

Definition 7.2. A metric space (X, d) is called uniformly locally finite
if, for any r ≥ 0, there exists k ∈ N such that any ball of radius r
contains at most k points (notice that this forces X to be discrete).
For δ > 0, the metric space X is termed weakly δ-geodesic if, for any
x, y ∈ X and t ∈ [0, d(x, y)], there exists a ∈ X such that

d(a, x) ≤ t+ δ, d(a, y) ≤ d(x, y)− t+ δ.

The two conditions above are automatically satisfied by any finitely
generated group G endowed with the word metric associated to any
finite generating set, and by the orbit of a point in a Riemannian man-
ifold with non-positive curvature, under a group acting properly, iso-
metrically and cocompactly on the manifold. The following definitions
are taken from [26] and [28].

Definition 7.3. Given δ > 0, a metric space (X, d) is said to be weakly
δ-bolic if the following conditions are satisfied:

(b1) For any r > 0, there exists R = R(δ, r) > 0 such that, for any
four points x1, x2, y1, y2 in X satisfying d(x1, y1) + d(x2, y2) ≤ r
and d(x1, y2) + d(y1, x2) ≥ R, one has:

d(x1, x2) + d(y1, y2) ≤ d(x1, y2) + d(y1, x2) + δ.

(b2) There exists a map m : X ×X → X such that:
(i) For all x, y ∈ X,

d(m(x, y), x) ≤ d(x, y)

2
+ δ and d(m(x, y), y) ≤ d(x, y)

2
+ δ.

(ii) For all x, y, z ∈ X,

d(m(x, y), z) ≤ max{d(x, z), d(y, z)}+ 2δ.

(iii) For all p ≥ 0, there exists N = N(p) ≥ 0 such that, for
any n ≥ N and x, y, z ∈ X with d(x, z) ≤ n, d(y, z) ≤ n
and d(x, y) > n, one has

d(m(x, y), z) < n− p.
Given δ > 0, a metric space (X, d) is called strongly δ-bolic if it is

weakly δ-bolic and if condition (b1) is satisfied for any δ > 0.

Mineyev and Yu in [33] showed that a hyperbolic group G can be
endowed with a left G-invariant metric such that there exists δ > 0 for
which G is strongly δ-bolic.

We recall that in a geodesic metric space (X, d) a geodesic triangle ∆
consists of three points a, b, c with three (possibly non-unique) geodesics



BASS CONJECTURE FOR AMENABLE GROUPS 21

joining them, and a comparison triangle ∆ for ∆ is a euclidean triangle
with side lengths d(a, b), d(b, c), d(c, a). We write a, b and c for the
vertices of ∆, and if x is a point in ∆ (say on a geodesic between a
and b), we write x for a comparison point for x, namely a point in ∆
such that dE(x, a) = d(x, a) (where dE denotes the euclidean distance
in R2). A geodesic metric space (X, d) is termed CAT(0) if for all
geodesic triangles ∆ in X and all x, y ∈ ∆,

d(x, y) ≤ dE(x, y)

where x, y are any two comparison points in any euclidean comparison
triangle ∆ for ∆. The following is an easy fact.

Proposition 7.4. CAT(0) metric spaces are strongly δ-bolic for any
δ > 0.

Proof. We leave to the reader the verification that R2 with its euclidean
distance is a strongly δ-bolic space for any δ > 0 (the rest of the proof
relies on this fact, see also [26] Proposition 2.4.). Let (X, d) be a
CAT(0) metric space. We start by checking that condition (b2) holds.
The map m is defined as follows:

m(x, y) = γ(t)

where t = d(x, y)/2 and γ : [0, d(x, y)] → X is the unique geodesic
from x to y. Point (i) is satisfied by assumption on m, (ii) holds
since in CAT(0) spaces the metric is strictly convex, and (iii) follows
from the CAT(0) inequality. It remains to prove condition (b1) for any
δ > 0. To do this, we follow Bridson’s advice and use the CAT(0)
4-points condition (see Bridson-Haefliger’s book [11] p.164) which says
that in a CAT(0) space, every 4-tuple of points x1, x2, y1, y2 has a sub-
embedding in R2, meaning that there exist 4 points x1, x2, y1, y2 in R2

such that dE(xi, yj) = d(xi, yj) for i = 1, 2 and d(x1, x2) ≤ dE(x1, x2),
d(y1, y2) ≤ dE(y1, y2). We now take δ, r ≥ 0 and R = R(δ, r) as for
R2. By definition of subembedding, the 4-tuple x1, x2, y1, y2 satisfies
the assumptions of (b1) as soon as the 4-tuple x1, x2, y1, y2 does, and
we conclude with

d(x1, x2) + d(y1, y2)

≤ dE(x1, x2) + dE(y1, y2) ≤ dE(x1, y2) + dE(x2, y1) + δ

= d(x1, y2) + d(y1, x2) + δ.

�

If a countable discrete group G acts properly and cocompactly on
a CAT(0) metric space X, then there exists a δ > 0 such that, for
any x0 ∈ X, Y = Gx0 ⊂ X endowed with the induced metric from
X is weakly δ-geodesic and strongly δ-bolic. Indeed, one may choose
δ = 2R, where R is a positive real number (existing by cocompactness)
such that X =

⋃
g∈GB(gx0, R). Finally, G is finitely generated (see [11]
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p. 439). Thus Y is automatically uniformly locally finite and, since
G obviously acts properly on Y , this shows that cocompact CAT(0)
groups are in the class C ′.

We recall that that the class of cocompact CAT(0) groups (that is,
discrete groups acting properly, isometrically and cocompactly on a
CAT(0) metric space) is closed under the following operations (see [11]
p. 439):

– direct products;
– HNN extensions along finite subgroups;
– free products with amalgamation along virtually cyclic sub-

groups.

Class (c). The group SLn(Z) (and more generally any discrete sub-
group of a virtually connected semisimple linear Lie group) is in the
class C ′, as any non-positively curved symmetric space is a Riemannian
manifold satisfying the required assumptions on the curvature.
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