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Abstract—The gate oxide reliability and the electrical behavior
of FinFETs are directly related to the surface characteristics of the
fin vertical sidewalls. The surface roughness of the fin sidewalls is
one of the most important structural parameters to be monitored
in order to optimize the fin patterning and postetch treatments. Be-
cause of the nanometer-scale dimensions of the fins and the vertical
orientation of the sidewall surface, their roughness measurement
is a serious challenge. In this paper, we describe a simple and ef-
fective method for measuring the sidewall morphology of silicon
fins by conventional atomic force microscopy. The present method-
ology has been employed to analyze fins as etched by reactive ion
etching and fins repaired by sacrificial oxidation. The results show
that sacrificial oxidation not only reduces the roughness of the side-
walls, but also rounds the top corners of silicon fins. The present
method can also be applied to characterize sidewall roughness of
other nanostructures and materials such as the polysilicon gate of
transistors or nanoelectromechanical beams.

Index Terms—Atomic force microscopy (AFM), FinFET, rough-
ness of silicon fin sidewall, sacrificial oxidation.

I. INTRODUCTION

F INFET [1], a nonplanar double-gate transistor usually built
on a silicon-on-insulator (SOI) substrate, is a promising

candidate for CMOS scaling down to the 10-nm regime. In previ-
ous years, several electrical characterizations of FinFET [2] have
demonstrated its effective control of short-channel effects [3],
higher current drive, and scalability [4]. The CMOS compati-
bility of its fabrication process flow explains the growing in-
terest of the microelectronics industry for the advanced MOS
architecture.
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Fig. 1. (a) 3-D scheme of a FinFET showing the fin sidewall and current drive
direction. (b) 3-D scheme of Si fins showing a standing fin and released fin after
etching away the BOX.

In a FinFET, the drive current flows along the vertical side-
walls of Si-fin [see arrow direction in Fig. 1(a)]. The surface
quality of the sidewalls, thus, strongly influences the gate in-
sulator reliability and the device electrical performance. Rough
sidewalls result in carrier mobility and lifetime reduction [5],
current drive decrease, subthreshold swing deterioration, leak-
age current, and low-frequency noise increase [6], [7]. It is
worth noting that the Si-fin sidewall roughness impacts n-type
FinFETs more severely than p-type FinFETs. Indeed, the in-
version charge centroid of electrons is closer to the surfaces of
the fin sidewalls than that of holes [8]. Hence, electron mobility
is more affected than hole mobility through surface scattering
phenomenon. It is, therefore, of foremost importance to quan-
titatively characterize the Si-fin sidewall roughness and effec-
tively improve the as-etched Si-fin sidewall quality for building
high-performance FinFETs. Besides the specificity of the Fin-
FET architecture, the control of the line-edge roughness (LER)
of the gate becomes a major issue as the size of the CMOS
devices further shrinks. A gate length less than 10 nm with large
LER causes fluctuations of the device characteristics. The Inter-
national Technology Roadmap for Semiconductors (ITRS) [9]
specifies a requirement of 2.8 nm for the LER for the year 2009
and smaller values for subsequent years. Similar concerns exist
for the fabrication of reliable nanoelectromechanical systems
(NEMSs) featuring sub-100 nm dimensions [10], [11].



Up to now, only few works evaluating the Si-fin sidewall
and LER have been reported. This is because rare instruments
are suited for such measurements. Although atomic force mi-
croscopy (AFM) with its high resolution has proven to be a
powerful tool to study, image, and manipulate the surface of
nanoscale systems [12], [13], it still has certain limitations for
profiling vertical sidewalls. For instance, Marrinello et al. [14]
tilted the measured sample by an angle for the point-shaped tip
to close untouchable regions at sidewall’s bottom, and Martin
and Wickramasinghe [15] used a modified tip (a boot-shaped
tip) to obtain a high lateral resolution. However, these methods
are not really suitable for scanning the sidewall of a Si-fin along
the channel direction [current flow direction, see Fig. 1(a)], even
using assembled cantilever probes, as recently reported by Dai
et al. [16], [17]. In the other hand, Gondran et al. [18] proposed
to cleave the sample along the length of the fin (channel di-
rection) and polish the sample edge using focused ion beam to
approach the fin’s sidewall. This method is rather complicated
since it requires sophisticated equipment to prepare the sample,
without mentioning the difficulty to cleave the sample perfectly
parallel to Si-fin sidewall to be measured.

In this paper, we present a simple and effective method to
deeply analyze the sidewall morphology of Si-fins using con-
ventional AFM. Contrary to the methods mentioned previously,
the present technique requires neither special tips nor cleaving
of the sample. The main idea is to release the fins to present
the sidewall surface to be measured [see Fig. 1(b)]. The re-
lease of the Si-fins can be obtained by simply etching away the
buried oxide (BOX) on which the Si-fins stand on. After that re-
lease step in a hydrofluoric acid (HF) based solution, the Si-fins
present one of their sidewall surfaces parallel to the substrate,
thus being exposed to AFM tip for the analysis. This simple
procedure is quite powerful to quickly analyze, and then op-
timize the etch conditions and the postetch treatments for the
fabrication of high-quality Si-fins. The sidewall roughness of
as-etched and repaired Si-fins has been measured by using the
present method.

II. SAMPLE PREPARATION

A p-type SOI wafer with a BOX thickness of 400 nm, which
is a common substrate for building n-type FinFETs, is used as
starting material. The 200-nm-thick Si film is thinned down to
80 ± 1 nm by a wet etching in a solution (NH4OH:H2O2:H2O
1:8:64 mixture) [19]. Then, a 30-nm-thick oxide is deposited
on top of the film by low-pressure chemical vapor deposition to
serve as a hard mask. Fins with a width of 30 nm are patterned
using electron-beam lithography. The longitudinal direction of
the fins is chosen parallel to the [1 1 0] wafer direction, so that
the fin sidewall surface is in the (1 1 0) plane. The hard mask
is etched by CHF3 with a gas flow rate of 500 sccm and a
power of 50 W. The Si-fins are etched by reactive ion etch
(RIE), which is performed under a pressure of 25 mTorr with
a SiCl4 gas flow rate of 20 sccm and a power of 40 W. In
this step, the Si etch rate is 43 nm/min, and the selectivity for
Si to SiO2 is about 15:1. Sacrificial oxidation [20] is carried
out at 950 ◦C for 5 min to smooth and repair the sidewalls

Fig. 2. SEM cross sections of repaired Si-fins. The fins have a width of 30 nm
and a height of 80 nm.

damaged by RIE. Fig. 2 shows a scanning electron microscope
(SEM) image of the repaired fins (sample A): the fin has a
width of 30 nm, a height of 80 nm, a length of 848 µm, and a
pitch of 400 nm. It can be seen that the fin sidewalls are quite
steep, which permits the fin to be flat when it is released after
removing the BOX. In order to compare the sidewall roughness
before and after sacrificial oxidation, as-etched fins (sample B)
are also characterized using the same technique. Finally, the fins
are released for the characterization of the sidewall surface. For
this purpose, both samples are immersed in buffered HF (BHF)
for 20 s at room temperature to remove the BOX of the SOI
wafer and rinsed in deionized water to clean the residual BHF.
The BHF is composed of 40% NH4F and 49% HF (85.5:12.5),
and the etch rate of the BOX in BHF is about 60 nm/min.
The 30-nm-wide fins are completely released after an etch time
of less than 20 s since the etching is carried out from two
sidewalls. In this step, not only the BOX is removed, but also
the residual hard mask is removed in 20 s. As a result, the Si-
fins are floating, either broken or intact, and lay on the silicon
substrate, as shown in Fig. 3 (a) and (b), and Fig. 4 (a) and (b). It
is worth noting that the thermal oxide (grown during sacrificial
oxidation) surrounding the Si-fins of sample A is also removed
during their release from the BOX.

III. ROUGHNESS MEASUREMENT OF SI-FIN SIDEWALLS

AFM analysis is performed under ambient condition on a
multimode Nanoscope IV (Veeco Instruments) operating in
amplitude-modulated mode. The used cantilever (Super Sharp
Silicon SPM-sensor from Nanosensors) [21] has a resonance fre-
quency around 70 kHz and a typical spring constant of 5 Nm−1 .
On this type of sensors, the tip has an aspect ratio better than
4:1 and the apex radius of curvature is less than 5 nm. The free
and set-point amplitudes are set to 15 and 10 nm, respectively.
Image processing and analyses are performed using home-made
procedures developed under Igor Pro software (Wavemetrics).
Images are flattened with a plane fit procedure (subtraction of an
average plane), and are analyzed without any further treatment.

For each sample, images of several released Si-fins are ac-
quired to perform a statistical analysis of the sidewall roughness.



Fig. 3. AFM images of repaired Si-fins (sample A). (a) General view of
released and standing up fins. (b) Zoom on four released fins. (c) Details of left
fin visible in (b). (d) Zoom on the sidewall of the fin presented in (c). The white
curve in (c) is the cross section profile of the fin measured along the horizontal
line.

Fig. 4. AFM images of as-etched Si-fins (sample B). (a) General view of
released fins. (b) Zoom on two released fins. (c) Details of left fin visible in (b).
(d) Zoom on the sidewall of the fin presented in (c). The white curve in (c) is
the cross section profile of the fin measured along the horizontal line.

Images of the repaired and as-etched Si-fins are shown in Figs. 3
and 4, respectively. Figs. 3(c) and 4(c) present cross section pro-
files of the released Si-fins. The measured height (corresponding
to the fin width) ranges between 25 and 35 nm, which are consis-
tent with the targeted value of 30 nm. The sidewall width (cor-
responding to the fin height) is measured around 100 nm, i.e., a
value slightly larger than the actual height of the fins (80 nm).
This larger value may be explained by image widening (or dila-
tion) effects [22], namely, the finite tip size produces a widening
of the lateral size of the surface features. In the present case, the
maximum widening D can be estimated based on the relation

D = 2R + h/Ar , where R is the tip apex radius of curvature, Ar

is the tip aspect ratio factor, and h is the sidewall height. With
R ≤ 5 nm, Ar = 4, and h = 30 nm, the widening is estimated
to be equal or less than 17.5 nm leading to an expected apparent
width ≤97.5 nm, consistent with the measured values.

From the large-scale images (typically 1 µm × 1 µm), the
large-scale LER of the Si-fins was estimated as follows. 5-pixel-
wide and 1-µm-long line profiles were measured along released
fins. The LER was estimated by calculating the rms roughness
of the line profiles and by averaging the values measured on
different profiles measured on various fins. The obtained values
are equal to 2.0 ± 1.3 nm for the as-etched fins and 1.1 ± 0.3 nm
for the repaired fins.

Small-scale images [60 nm × 60 nm, see Figs. 3(d) and 4(d)]
are also acquired on several Si-fins. The rms roughness of the
fin sidewall is calculated from those images. The average values
are 0.25 ± 0.05 and 0.55 ± 0.10 nm for the repaired and as-
etched fin sidewalls, respectively. The roughness of the sidewall
surface is approximately reduced by a factor of 2 after repairing.

To further illustrate this, the circular average power spectral
density (PSD) of the 60 nm × 60 nm images is then calculated.
The PSD curves extracted from several images are merged to
obtain an average PSD curve, which statistically represents the
fin sidewall surfaces. Based on the average PSD curves, the
variation of the rms roughness (σ) as a function of the length
scale (r) is calculated using the following relation:

σ(r) =
[
2π

∫ sm a x

1/r

PSD(s)sds

]1/2

where s is the spatial frequency and smax is the maximum spatial
frequency or Nyquist frequency, smax = N/(2L), with N and L
being the image lateral pixel number and size, respectively.

The length-scale dependence of σ is presented in Fig. 5. It
shows that the repaired and as-etched Si-fins have comparable
sidewall roughness at length scales lower than 2 nm. It is worth
noting that, when the length scale is much smaller than the
curvature radius of the tip (i.e., less than 5 nm in the present
case), roughness determined by AFM may not reflect the actual
roughness anymore. When the length scale is higher than 3 nm,
the rms roughness is significantly improved after sacrificial
oxidation.

In addition, it is found that the sidewall surface is rougher than
the wafer surface after RIE (red lines in Figs. 5 and 6). This can
be explained by the followings. The roughness of the wafer sur-
face is mainly introduced by ion bombardment damage in RIE,
while the roughness of the sidewalls is caused not only by ion
bombardment damage, but also by the imperfectness of the hard
mask in electron-beam lithography. The repair (at 950 ◦C for
5 min) used here is efficient to restore the wafer surface rough-
ness to the original value of the Unibond SOI wafer (0.2 nm), but
it is incomplete for the sidewall surface with a higher roughness.
To further smooth the sidewall surface, a longer oxidation time
is needed. In the beginning of the thermal oxidation, the oxidant
is sufficiently supplied, the rate-limiting process is the interface
reaction where the oxide thickness is proportional to oxidation
time. When the oxidation is further carried out, the rate-limiting



Fig. 5. RMS roughness as a function of length scale calculated from merged
circular-averaged PSD’s of the small-scale images of the Si-fin sidewalls. Error
bars correspond to +/− the standard deviation on the data.

Fig. 6. RMS roughness as a function of length scale calculated from the
circular-averaged PSD’s of the image of the Si wafer surfaces. Error bars corre-
spond to +/− the standard deviation on the data.

process becomes oxidant-supplying process, where the oxide
thickness is proportional to square root of oxidation time. The
surface smoothing happens during the oxidant-supplying period,
because the oxidation supply rate at convex parts is higher than
at concave parts of the oxidized Si surface [23]. Therefore, the
oxidation time should be long enough to pass the rate-limiting
period, thereby flatting the rougher sidewall. This is crucial for
selecting postetch treatments and designing high-performance
FinFET devices. In addition to sacrificial oxidation, the side-
wall roughness of the Si-fins also can be improved by the other
methods, such as hydrogen annealing [24] and chemical dry
etching [25].

IV. CORNER TRANSFORMATION OF SI-FIN

The top corner shape of the Si-fins significantly affects the
performance of FinFET device, i.e., sharp corners result in
larger subthreshold sweep and higher off-state current [26], [27].
Hence, the measurement and control of the curvature radius for

Fig. 7. (a) SEM cross sections of as-etched Si-fins by RIE. (b) SEM cross
sections of repaired Si-fins by sacrificial oxidation, showing that sacrificial
oxidation increases radii of curvature of the top corners.

the top corners of the fin are an important technological issue.
Fig. 7(a) and 7(b) shows SEM images of cross-sectional profiles
for four fins before and after the repair by sacrificial oxidation,
respectively. It is clear that, after the repair, the top corners of
the fins become rounded. According to the images, the radii of
curvature of the top corners are estimated. For a fin with a cross
section of 80 nm × 80 nm, the radius of curvature is increased
from 15 to 28 nm after the repair. This implies that the corner
effect can be eliminated and suppressed by sacrificial oxidation.
The rounding of the top corners is attributed to higher oxidation
rate in the regions of the top corners because oxygen atoms pen-
etrate these regions from the sidewall as well as from the upper
surface.

V. CONCLUSION

In this paper, we present a simple and effective method to
release Si-fins for measuring their sidewall roughness by AFM.
Like in a “lift-off” process, the BOX of the SOI wafer on which
the Si-fins are placed is removed away, and the fins are lifted
off. Some of them lay down with the sidewall exposed so that
AFM measurements can be easily performed. This method is
used to analyze Si-fins etched by RIE and Si-fins repaired by
sacrificial oxidation. The results reveal that sacrificial oxidation
has not only improved the rms roughness of the sidewalls, but
also rounded the top corners of the Si-fins.
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