
USER CONTEXT MODELS : A FRAMEWORK TO EASE

SOFTWARE FORMAL VERIFICATIONS

Amine Raji, Phillipe Dhaussy
LISyC-ENSIETA, 2 rue François Verny 29806, Brest Cedex 9, France

Université Européenne de Bretagne, Brest, France
amine.raji@ensieta.fr, dhaussy@ensieta.fr

Keywords: Formal verifications, Context Description Language, model transformation, User Context Models,
Property specification patterns.

Abstract: Several works emphasize the difficulties of software verification applied to embedded systems. In
past years, formal verification techniques and tools were widely developed and used by the research
community. However, the use of formal verification at industrial scale remains difficult, expensive
and requires lot of time. This is due to the size and the complexity of manipulated models, but
also, to the important gap between requirement models manipulated by different stackholders and
formal models required by existing verification tools. In this paper, we fill this gap by providing
the UCM framework to automatically generate formal models used by formal verification tools.
At this stage of our work, we generate behavior models of environment actors interacting with the
system directly from an extended form of use cases. These behavioral models can be composed
directly with the system automata to be verified using existing model checking tools.

1 INTRODUCTION

Verification of software systems is an impor-
tant task that aims to check whether design meets
intended requirements. Formal methods have
demonstrated their potential in this area espe-
cially through the so called model checking. How-
ever, the application of such techniques in indus-
trial practices is still limited w.r.t the growing
need of quality and reliability of developed soft-
ware.

In this paper we present our approach to over-
come this shortcoming by presenting a model
based approach to bridge the gap between high
level requirement models and models required
by existing formal verification tools. The pro-
posed approach aims to smooth the way proper-
ties and contexts1 are derived from requirement
documents and specifications.

We previously presented CDL (Context de-
scription language)(Dhaussy et al., 2008) to fill

1by contexts we refer to interactions that happen
between the system under study and its environment

the gap between user models2 and formal models
required to perform formal verifications. CDL is
presented in the form of UML like graphical dia-
grams (subset of activity and sequence diagrams)
to capture environment interaction. Additionally,
a textual syntax is prosed to formalize proper-
ties to be check using property description pat-
terns (Dwyer et al., 1999). CDL was evaluated
through several aeronautic and military industrial
case studies (Dhaussy et al., 2009). Conclusions
of this evaluation is that CDL considerably helps
practitioners to formally verify whether designed
models meet intended requirements.

However, CDL is a low level language that
requires design details since early development
phases to produce precise enough specifications
for formal verifications. We are currently work-
ing on an intermediate concept called UCM (User
Context Models). UCM is thought to be user ori-
ented and aims to utilize models constructed dur-
ing development phases to automatically generate

2models manipulated during development phases
of the development process

formal models (i.e CDL models). The idea is to
encourage users to put more details and avoid am-
biguities during their modeling activities to auto-
matically derive formal specifications.

This paper is organized as follow: Section 2
presents a background on CDL models and con-
text aware verification techniques. Section 3 de-
tails the UCM framework and argues how they
can be useful to fill the gap between require-
ment specification and formal verification activ-
ities. Section 4 presents related works and Sec-
tion 5 discusses future work and draws some con-
clusions.

2 BACKGROUND

In software verification, model checking is in-
creasingly used to verify that a formally speci-
fied model satisfy some desired property (Lam-
sweerde, 2009). In the most frequent form of
model checking, the inputs to the checker are a
formal state machine model and a desired prop-
erty formalized in temporal logic. Applying this
technique in an industrial context suffer from the
combinatorial explosion induced by the internal
complexity of the software to be verified.

One way to circumvent this problem consists
of specifying/restricting the context in which the
system will be used. This context corresponds
to well-defined operational phases, such as, for
example, initialization, reconfiguration, degraded
mode, etc. The system is then tightly synchro-
nized with its environment so that properties can
be checked in specific contexts which limits the
size of the generated state space.

In this context, CDL aims to ease the con-
struction of context models and to specify proper-
ties. CDL describes a system environment using
activity and sequence diagrams, together with a
textual syntax. Activity and sequence diagrams
are used to describe contexts, and the textual syn-
tax to describe properties to be checked. The
properties are specified using property descrip-
tion patterns and attached to specific elements in
the activity diagram describing the context.

CDL have demonstrated its usefulness in
porting formal verifications into industrial prac-
tices through several industrial projects (Dhaussy
et al., 2009). However, CDL models construction
remains a manual process requiring time and ef-
forts to understand the system specifications in
order to produce precise contexts’ interactions.

UCM
Capture and formalization
of system contexts

Property specificaiton

Requirement
Documents

User
Models

Requirement
decomposition

Pattern
identification

Property
formalisation

Extended
use cases

Activity
diagram per

UC

Activity
diagram per

Actor

CDL

Figure 1: UCM content overview

3 USER CONTEXT MODELS

The main idea is to encourage engineers to put
enough details in their daily constructed mod-
els. This encouragement is made through the
UCM framework that presents guidelines for con-
structing contexts and specifying properties as
well as algorithms to automate formal models
generations from these models. Figure 1 shows
an overview of UCM content. The left side of fig-
ure 1 presents different steps leading to the gener-
ation of formal models describing the behavior of
different actors of the environment, i.e. context.
The right side shows the property specification
activities that aims to formalize properties to be
checked.

We have defined and formalized the generation
of behavioral models of the context using a model
based approach (the left side of figure 1). We
use an extended form of use cases to capture sys-
tem requirements as well as possible exceptions
and corresponding handlers if any. The idea be-
hind this step is to gather all useful information
about the system behavior and its interactions
with environment actors. Constructed use cases
are then used as input in our model transforma-
tion to generate formal models directly process-
able by a model checker.

Extended use cases are similar to traditional
use cases except that they capture system require-
ments as well as possible exceptions and corre-
sponding handlers if any (Mustafiz et al., 2009).In
fact, many exceptional situations might appear

during the execution of an application. The diffi-
culties arising during verification process are usu-
ally related to the missing of relevant information
about system behavior, especially when an excep-
tion endangers the normal execution of a use case.
To encounter this problem, we propose that en-
gineers (whom designed the system in the first
place) specify their systems using extended use
cases to foresee these exceptional situations and
document how the system should deal with them.
This approach leads engineers to systematically
investigate all possible exceptions arising in the
environment that the system may be exposed to.

We have proposed a metamodel of the ex-
tended use cases (figure 2) and an algorithm to
derive the behavior of different actors involved in
the use case.

In figure 2, classes with a white background
are imported from the UML metamodel, and
should be related to the identical ones presented
in (OMG, 2007). The classes with the filled
background was introduced to deal with excep-
tions and handlers in traditional use cases. The
important point in the proposed metamodel is
that main scenario steps have to be described
in a structured natural language to be trans-
formed into actions in the generated activity
diagram. Used structured language is RDL
(Requirement Description Language) introduced
in (Nebut et al., 2003).

+outcome : Outcomekind
MainScenario

*

UseCase

Include

ExtentionPoint

+name : String
+description: String

Step

+step

*

+subSteps

+operator: Operator
Transition

+outgoing

0..1

1

+next

0..1

+incoming

Handler

success
degraded
failure

<<enumeration>>

OutcomeKind

*

user-goal
summary
subfunction

<<enumeration>>

LevelType

Extensions

+name : String
+Intention : String
+level : levelType

UseCaseBody

+name : String
+outcome : Outcomekind

Exception

 1..*

+relatedStep
 0..*

+exception

 0..1

+next

 0..*
+handler

 1

+exception

 1

+addition

 1

+base

 +include*

condition:

BooleanExpression

Extend

 +extend

 +extension

*

1 1

+base

*

 +extensionPoint

 +extensionPoint

{Ordered}

*

1..*

1

Actor

 1 +performedBy

fork
join
choice

<<enumeration>>

Operator

 0..* +extesions
1 +mainScenario

1 +body

 {Ordered}

 {Ordered}

Figure 2: Metamodel of extended use case integrated
in the metamodel of UML

After use case modeling, our algorithm con-
sists in transforming each use case to a UML ac-
tivity diagram (T1) and then extract the behavior

of the each actor in a separate activity diagram
(T2).

The approach used for (T1) is partially in-
spired form the work presented in (Gutiérrez
et al., 2008). Authors in the cited article pro-
pose a method for representing functional require-
ments by automatically transforming use cases to
activity diagrams. However, proposed use cases
don’t support the handling of identified excep-
tions. We propose a model transformation of ex-
tended use cases with handler to UML2 activity
diagrams. The process of transforming extended
use cases to activity diagrams consists in applying
transformation rules enumerated bellow:

1. generate an activity for each use case,

2. generate an activity partition for each identified
actor in the use case plus an additional one for
the system,

3. generate an action for each Step in the main sce-
nario,

4. add generated action to the activity partition of
the actor identified in the performedBy attribute,

5. generate a decision node for each exception and
additional activity for each handler,

6. generate an activity final node for each outcome
in the use case labelled with a stereotype corre-
sponding to the output kind,

7. link all generated elements using control flow.

To derive the behavior of each environment
actor (T2), we propose an algorithm that derive
these behavior while preserving the consistency
of the global activity diagram. The algorithm
extracts nodes and edges related to the same ac-
tor (based on activity Partitions) then links them
together using control flow. To preserve the se-
mantics of the global behavior described in the
source activity diagram, events triggering the flow
between actions and coming from the system or
other actors are added to the targeted activity
diagram. These events are represented with in-
stances of the AcceptEventAction class (OMG,
2007). Thus, the flow between actions in the ac-
tivity of a specific actor is conditioned with the
reception of the corresponding event. Thus, the
master rule to transform each activity group into
a single activity diagram (AD) is defined as fol-
lows.

mapActivityGroup2ActivityDiagram()

ADi = createInitialNode()

processOwnedElements(ADi)

createActivityFinalNode(ADi)

The result of applying our synthesis algorithm
on the activity diagram generated from (T1) pro-
duce an activity diagram for each actor partic-
ipating in the considered use case. To preserve

interactions between actors, instances of the Ac-
ceptEventAction class are added, each time a
transition linking two activities related to two dif-
ferent actors is detected.

4 RELATED WORKS

The work presented in (Almendros-Jimenez
and Iribarne, 2004) describes an approach to
translate use case-based functional requirements
to activity charts. The source models are use
cases diagrams with support of inclusion and gen-
eralization relationships. In (Gutiérrez et al.,
2008), authors propose a model based approach
to generate an activity diagram modeling the use
case scenario. A functional requirement meta-
model was proposed to represent the use case sce-
nario with possible exceptions.

Mustafiz et. al (Mustafiz et al., 2009) pro-
pose an algorithm that transforms dependability-
focused use cases with handlers into activity di-
agrams. The transformation takes textual use
cases description as source to produce activity
diagram model respecting the use case hierar-
chy source model. Our approach differs in the
sense that we begin with informal requirements
specification, namely extended use cases, apply a
model-driven process to map requirements to ac-
tivity diagrams, and then, automatically extract
formal behavioral models of actors that interact
with the system using our synthesis algorithm.

5 CONCLUSION AND FUTURE

WORK

In this paper we introduce the UCM frame-
work to ease the integration of formal verification
techniques into software development. We have
proposed a metamodel of extended use cases with
handlers that address detected exceptions. Ex-
ceptional situations are less common and hence
the behavior of the system in such situations is
less obvious. Therefore, the proposed metamodel
represents a good starting point for the identi-
fication of environment actors that might inter-
act with the system. We have also proposed an
approach to automatically synthesis environment
entities behavior directly from constructed use
cases. We have generated an activity diagram
that describe the behavior of each use case using
our model transformation rules. Then, we ex-

tract the behavior of each actor participating to
the activity in a separate activity diagram. The
motivation behind this contribution is to ease the
use of formal verification techniques by providing
early context descriptions with enough precision
to feed formal verification tools. To the best of
our knowledge, there is no similar work dealing
with this particular problem.

As a future work, we firstly plan to formal-
ize requirement decomposition and formalization
(the right side of figure 1). Secondly, we would
like to evaluate the usefulness of introducing
UCM into industrial practices as we did for CDL
in (Dhaussy et al., 2009). And finally, we will in-
tegrate our approach in the complete verification
process.

REFERENCES

Almendros-Jimenez, J. and Iribarne, L. (2004). De-
scribing use cases with activity charts. Metain-

formatics, 3511 of LNCS. Springer:141–159.

Dhaussy, P., Auvray, J., De belloy, S., Boniol, F., and
Landel, E. (2008). Using context descriptions
and property definition patterns for software for-
mal verification. In Workshop Modevva08,hosted

by ICST 2008.

Dhaussy, P., Pillain, P.-Y., Creff, S., Raji, A., Traon,
Y. L., and Baudry, B. (2009). Evaluating con-
text descriptions and property definition pat-
terns for software formal validation. MoDELS,
LNCS 5795:438–452.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.
(1999). Patterns in property specifications for
finite-state verification. ICSE, pages 411–420.

Gutiérrez, J., Nebut, C., Escalona, M., and Mej́ıas,
M. (2008). Visualization of use cases through au-
tomatically generated activity diagrams. MOD-

ELS.

Lamsweerde, A. V. (2009). Requirements engineer-
ing: From system goals to uml models to soft-
ware specifications. Book.

Mustafiz, S., Kienzle, J., and Vangheluwe, H. (2009).
Model transformation of dependability-focused
requirements models. Proceedings of the 2009

ICSE Workshop on Modeling in Software Engi-

neering.

Nebut, C., Fleurey, F., LeTraon, Y., and Jézéquel,
J.-M. (2003). A requirement-based approach to
test product families. 5th Intl. Workshop on

Product Family Engineering (PFE-5).

OMG (2007). UML 2.1.2 superstructure. pages 1–
738.

