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Formal Approach to Multimodal Control Design:
Application to Mode Switching

Gregory Faraut, Member, IEEE, Laurent Piétrac, Member, IEEE, and Eric Niel

Abstract—A framework based on Supervisory Control Theory
(SCT) is proposed to assist the design of multi-modal control
for discrete-event systems (DESs). Our purpose handled modes
which are conceptualized by using multi-model approach. Each
mode represents a running part of the system, depending on the
requirements to enforce and resources to activate. The resulted
framework aims to design each mode independently first, and
resolves conflicting connections between them secondly. The
proposal carries out a formal way to build the final ready-to-use
control laws. A flexible manufacturing system illustrates this
approach.

Index Terms—Automata, discrete-event systems (DESs), mode
switching, multimodel control design, multimodal system, super-
visory control theory (SCT).

I. INTRODUCTION

I NITIATED by Ramadge and Wonham [1], Supervisory
Control Theory (SCT) has significatively improved results

in the discrete-event systems (DESs) domain. Properties such
as safety, liveness, controllability, observability and, more
recently, diagnosability have been introduced to assess for-
mally control architecture. Basically supported by finite-state
machines, SCT applicability for industrial application schemes
does not seems easy. In fact, the design of real control applica-
tions implies very large models, with two main problems. The
first pertains to scalability because of state-space explosion:
real system models may be too large to be computed. The
second problem pertains to the interpretation of the models:
larger models are difficult to understand even if computation is
successful. To solve scalability, several approaches have been
proposed in terms of control architecture: modular [2], [3], de-
centralized [4], [5], hierarchical [6], [7], and even hierarchical
and distributed [8], [9].

Even if a decomposition is used to reduce complexity,
these approaches always handle the whole process and the
whole specification. However, for numerous systems, user
requirements depend also upon specific instants. For example,
sequential modes for hybrid systems (chemical batch processes
need to be cleaned and prepared before production [10], [11]),
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switched systems whose control objectives and system structure
(components and their interactions) changes in a discontinuous
manner. Designing such systems implies particularities either
for process or specification.

• Within hybrid systems, one different continuous model is
used for each dynamic regime (a mode) [12], [13], and one
discrete model manages switches among modes.

• Within reconfigurable systems, designed to time-to-market
reduction [14]–[16], the management of a set of control
laws is well adapted to fast changing schemes.

• Within fault-tolerant systems [17], [18], specifications or
components structure temporarily fulfil some particular
aims when faults occur.

From a control point-of-view, one can remain with these as-
sumption, that the set of requirements need not be entirely ful-
filled at the same moment. Nominal functioning, degraded func-
tioning, underpower functioning, etc., define modes in which
a set of requirements would have to be enforced by the con-
troller, acting in each mode on a part of the process. This kind
of control law, which defines a sequence of operating modes,
is not exclusive to manufacturing systems. Embedded systems
[19]–[21] for cars also apply particular control laws according
to the active operating mode: startup, ABS on/off, cruise control
on/off For each mode, some components of the whole system
are engaged, and requirements may be very different from one
to another.

In DES, numerous works are focused on multimodal control
law. However, most of them applied compositional formalisms
on modeling configurations: for instance state charts [22], mode
charts [23], hierarchical finite-state machines, and mode au-
tomata [24]. In these approaches, the model of the process is not
specifically representative of the state of the process, and thus, is
unable to automatically detect (using the synthesis or validation)
the issues about mode switching. Formal approach like SCT
[25] seems to be more convenient for mode management by
distinguishing process and specifications. With this approach,
the authors of [26] have studied the problem to automatically
find the restart state, after correction of an error. However, in
these works, only the nominal mode of productivity is studied:
the method does not assume that errors and/or corrective actions
are included into the control. Our approach, quite the contrary,
has the purpose to design all running modes of the system, in-
cluding the actions of recuperation after a failure. Based on the
works of [27] and [28], the proposed framework is able to take
several modes into account. First, we define the model of the
(controlled or not) and the models of specifications in a consid-
ered mode. This is an usual way in the industry to study and to
design independently the mode between them. The models then
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are extended to include the mode switching [29]. The significant
contribution, as presented in this article, is the identification of
incompatibility for the mode switching, and the inconsistency
(several states are possible to be reached by one commutation,
meaning a lost of information) of the specifications. The pro-
posed framework thus helps the designer throughout the design
of control law of modes.

In Section III, we present a framework based on SCT devoted
to functioning mode management. The proposed framework
aims to design each functioning mode independently, and then
simplify design and interpretation, considering for the discussed
mode only the engaged components and associated require-
ments of that particular mode. The approach is illustrated on a
conventional example in Section IV and is compared with the
centralized approach. However, to give a better understanding
of the proposition, Section II recalls basic notions of SCT.

II. SUPERVISORY CONTROL THEORY

Ramadge and Wonham’s theory [25] underpins the study of
DES control. This theory is based on separation between the
model representing what the system can do (the uncontrolled
process), the model of what the system must or must not do
(the liveness and safety properties of the process), the model of
what the system does (the controlled process), and the model of
what the system should do (the desired language).

The automaton models the uncon-
trolled process [30], with the finite-state set, the finite
alphabet of symbols (event labels), the partial
transition function, the initial state, and the set
of marked states. States exist for periods of time (duration),
whereas events occur instantaneously, asynchronously, and
at virtually random (unpredictable) times. For a machine,
examples of states are “idle,” “operating,” “broken down,”
and “under repair.” Examples of events are “machine starts to
work,” “breaks down,” “completes work,” or “start to repair.”
Marked states are used to model ends of tasks, states to be
reached or states in which the system can be stopped.

Let be the set of all finite sequences or strings of events
in , including the empty string . The function is extended
to . Any subset of is called a language
over . The languages associated with are the closed behavior

and the marked behavior
. represents the set

of all possible trajectories, i.e., all possible system behaviors,
whereas represents the subset of trajectories leading to
a marked state.

Let us assume that automaton models the uncontrolled be-
havior of the process. This behavior is not satisfactory and must
be restricted to a subset of [31]. Let the specification rep-
resented by an automaton with the
state set, the same alphabet as in the initial state and
the set of marked states. This specification models the liveness
and safety requirements of the process. The objective is to ad-
join a supervisor, denoted by , to interact with . To do this,
the alphabet is partitioned into two disjoint subsets and

, which comprise controllable and uncontrollable events, re-
spectively. The controllable events are the events that can be

prevented from happening by supervisor , the uncontrollable
events cannot. Formally, the supervisor is a function from the
language generated by to the power set (the set of all subsets)
of : . Our goal is to find a controlled process,
modeled by an automaton , such that:

• The marked language of is included in that of :
.

• This controlled process satisfies the specification:
.

• This controlled process is controllable, i.e., a supervisor
such that exists.

If is controllable with respect to , then
. Else, we can determine [32] the automaton that gen-

erate the largest controllable sublanguage of , called
“supremal controllable sublanguage.” If this automaton exists,
the controlled process is nonblocking and minimally restrictive.

III. MULTIMODAL DESIGN

A. Overview

In this paper, a multimodal standpoint with a representation
by multimodel approach is adopted to design a system. This
system is composed by different and numerous components
(plants, actuators, sensors, etc.) activated to achieve tasks in
accordance to functional and safe requirements. This system
can also be critical so that it needs to have a high availability
even if one of these components fails. This is only possible if a
number of alternative components are available. These available
components are capable of replacing the failed components and
keeping the same quality of production.

The considered mechanism will be implemented for systems
which can operate in one single mode (production, initialization,
etc.) once. In automatic control within mode switching ability,
our contribution comprises proposing a framework, in which:

• Each mode is studied independently and separately. In
most cases, a mode is characterized by the components
used, generating events involving a commutation, and by a
set of requirements, modeled independently of the require-
ments of the others modes, having to be fulfilled when the
system is working in this mode. In this independent study,
the SCT theory is applied “conventionally” in each mode
(limited to the centralized control structure in this paper).

• The intermodal framework includes the intermodal speci-
fications, used to extend the behavior of modes and having
all possible trajectories, and the switch specifications, used
to limit the commutation phenomena, i.e., forbid undesired
switch trajectories. Of course, this will depend on whether
switch events can be observed and controlled or not.

The main problem is to determine the state of the models
(process, controlled process and specification), when a mode
of the system has to leave the initial mode to commute to an-
other one, called the final mode. In fact, the commutation is
possible if the initial mode is in a compatible state with the final
mode. Compatible means the state of the shared components
between initial and final mode are the same. It also means the
requirements existing in both modes are still respected even if
the system switches modes.

The following sections describe each of the steps necessary
in order to build, in a formal way, the final control law for each



FARAUT et al.: FORMAL APPROACH TO MULTIMODAL CONTROL DESIGN: APPLICATION TO MODE SWITCHING 445

mode respecting requirements. To do so, we successively ex-
plain the intramodal framework—giving the internal behavior
of each mode—and the intermodal framework allowing to check
the connection between modes and identifying which ones of
them are allowed or forbidden to finally obtain the control law.

To give a better understanding, Table II, shown at the end of
this paper, refers to the notation used.

B. Definitions

A system is composed of different components. The dynamic
of each component is the same regardless of the system mode.
These dynamics include possible failures and recoveries. Such
events will be used to model switching modes.

Definition 1: A set of components is denoted by
, where and . A

component is modeled by an automaton where
, with:

• is the state set of the component ;
• is the event set of the component , including two

partitions:
— with . and are,

respectively, the controllable and uncontrollable events
of the component .

— with is the set
of switch events. are the other events.

• is the transition function and includes which rep-
resents the set of switch transitions;

• is the initial state of the component ;
• is the marked states set of the component .

Definition 2: A set of modes is denoted by
, where and (by con-

vention, we assume the initial active mode is ). We define
as the set of components used in the mode , where

such that:

• is the set of components representing the intramodal
behavior of the process in the mode ;

• is the set of components that lead the system to enter
into the mode ;

• is the set of components that lead the system to exit
mode ;

• is the set of switch components.

No particular relation is assumed to exist between

and except that they are all included in : in particular, a
component can be included in:

• , but not to be a switch component of .

• and in . It means this component is used in the
mode and is necessary to enter into this mode.

• or . It means this component is necessary to rep-
resent the switch behavior of the mode (enter or exit).

Fig. 1 is an example of switching modes. We have three
modes, and . The components and are
used in mode . From this nominal mode, a switch is possible
to the degraded mode , by the switch event generated
if the component breaks down, or to , by the switch
event if it is the component that breaks down. Thus,

Fig. 1. Example of mode decomposition.

the mode is composed of component representing its
internal behavior, i.e., and of the component

because it is this component that
generates the event leading to a switch from the mode
to . In the same way, the mode is composed of the
components and , but also with the
components that generates the event

responsible for the switch.
Definition 3: Let a mode automaton representing

the switch behavior of the system, described in require-
ments. Formally, this automaton is denoted by

such that:
• ;
• ;
• is the transition function of mode

automaton;
• ;
• .

This automaton aims to easily add information on which
mode the system is in. It also allows the addition of strategies
to switch by modifying it.

C. Intramodal Design

The intramodal design, illustrated in Fig. 2, is very similar
to the supervisory control theory used to synthesize the con-
trol law [31]. The objective of this first framework, a subpart
of the general proposed framework, is to ensure the internal be-
havior enforcing the intramodal specification is correct and that
each mode is reliable, well-built and optimal according to the re-
quirements (illustrated by the green book). For each mode ,
the process , the model representing the internal behavior
(in) of the mode , results from parallel composition [31] of
automata , models of components used in this mode. It is
defined on . The specification , de-

fined on the alphabet , results from the product composi-
tion of the model of each specification to be complied
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Fig. 2. Intramodal design framework.

Fig. 3. Intermodal design framework.

with in this mode. After designing the required modes, the de-
signer obtains uncontrolled processes specifications

and controlled processes (denoted ).
Each model of represents the control law of the mode
. Nevertheless, these models are not interconnected, and this

is the main focus of the next section.

D. Intermodal Design

The intramodal framework focuses only on components used
to represent the internal behavior and the requirements having to
be fulfilled for each mode. This framework ensures the existence
of one control law and that the requirements are respected. The
running of the system remains flawless as long as it operates
within one of these modes. However, as previously said in the
introduction, the commutation phenomena are a very particular
problem in mode management. The second framework aims to
handle these phenomena correctly. This section focuses on the
intermodal behavior of modes, and takes the behavior that could
lead to switching between modes into account. The proposed
framework is shown in Fig. 3.

This new framework includes successive steps in order to
identify all trajectories connecting modes and, in some cases,
to forbid them. The first step extends the mode’s behavior.
The second one synthesizes these extended mode behaviors of
mode by the extended intramodal specifications regarding these
new dynamics resulted from the intermodal specifications.
The next process tracking step identifies trajectories allow a
switch from one mode to another. Concerning the steps process
tracking (step three) and the merge function (step five), it
is well-known that merging states in an automaton can cause
nondeterminism [31]. The switch events are renamed in process
tracking (Section III-D3) to avoid this. Thus, the knowledge
about the switch events that produced them has been preserved.

In other words, the merge function has been anticipated in
renaming all identified switch events during the procedure in
step three. Using both of these functions allows the reduction of
complexity without generating a nondeterministic automata. A
second synthesis considering switch specifications (step four)
is realized to forbid the undesired trajectories. The final models
resulting from the fifth step are the control law of mode.

1) Extension of Process: The controlled process in the in-
tramodal framework is built by composition of the components
used in each mode and the requirements that have to be re-
spected when the system is running in one of these modes. Nev-
ertheless, assuming that the internal behavior is totally repre-
sented, it is not necessarily the case for the external behavior,
i.e., all possible commutations between modes could be not to-
tally known. Some components are indeed not taken into con-
sideration in the intramodal framework for a particular mode,
but could be important from a switch standpoint. The extension
then takes all the components that are necessary to represent
the internal and external behavior of modes into account. Ex-
tended models result in parallel composition of both in-
cluded components in (and not only ), and the
mode automaton .

Definition 4: Let be such that

where
These models ensure that the whole behavior is represented

and allow to detect all trajectories relying modes.
2) Synthesis With Extended Specification: The synthesis of

the intramodal framework only deals with built specifications
regarding taken components in the intramodal behavior of
modes. In this step, we have to take the whole specification
of the considered mode into account in order to fulfill the
intermodal behavior of each mode. Thus, there are two types
of specifications.

• Extended intramodal specifications. These specifications
have to be extended according to the newly added compo-
nents in the extension step. Indeed, some components do
not represent the intramodal behavior of modes and may
have an influence on intramodal specification. For this
reason, the intramodal specification have to be extended.
The specification represents extended intramodal
specification.

• Intermodal specifications represent specifications which
are not necessary in the intramodal behavior, but can
modify the trajectory to switch. These specifications have
to be taken into account also.

The synthesis procedure is applied in the same way as the syn-
thesis in intramodal framework. For each mode, we obtain the
model which represents both intramodal and intermodal
behaviors and respects the requirements of the mode .

3) Process Tracking: In fact, models are too rich in
states: they also contain some states that do not correspond to
the internal behavior or to a commutation between modes. It
is a consequence of the parallel composition of the component
models and the mode automaton . These states will be
removed in the last step of the intermodal framework (merge
function), that may also cause an indeterminism (several tran-
sitions with the same event from a single state). To avoid that,
we will add an information on each event occurrence (a label).
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It is possible only if a single state exists in the final controlled
process after a commutation from a single state in the ini-
tial controlled process .

Formally, the procedure uses the next definitions to find the
equivalent states between modes. However, the first definition
is focused on subsets of necessary for others following
definitions.

Definition 5: is the set of commutation events
of the mode : . ,

where (resp. ) is the event set that lead the system to
enter into (resp. exit) the mode .

We define the states set of , where a switch

event exists and leads from the initial mode to the final
mode .

Definition 6:

Let the language be the sublanguage of

leading from the initial state of to a state ,
where a switch event can occur.

Definition 7:

The identification results in the extended projection function
defined as follows:

Definition 8: Let such as
and

In other words, this function takes a language defined on al-
phabet (representing the alphabet of the initial mode), and
erases the events that are not included on alphabet (rep-
resenting the alphabet of final mode). More details are given in
[27] and [33]. In the next definition, this projection is used on

to find the projected language on the alphabet

of the final mode .
Definition 9: Let an initial mode be called and a

final mode be called . is the lan-

guage of that leads to a state , where a switch
event occurs. is the projected lan-

guage on the alphabet of the final mode , such that:
.

Based on this definition, we can define two properties. First
of all, if all languages of are

in , this means at least one connection state exists in
. In this case, we say is compatible with

(this does not mean that is compatible with ). It is
not the case, specifications have to be modified.

Definition 10: is compatible with iff (if and only
if): .

If is compatible with , it is possible that from a
single state of , several states of are reachable. In this
case, it is not possible to define a single state of connection. It is
also possible that from several states of , a single state of

is reached. Thus, an information contained in the model
has disappeared in the model , which could lead to a

problem when returning to the initial mode. If these two cases
do not occur, there is no problem and all the switch events can be
labeled with a subindex. We say is consistent with
(this does not mean that is consistent with ).

Definition 11: Let be compatible with . is
consistent with iff:

•

with
;

•

.

In the following procedure, we apply the above definitions to
track trajectories representing commutations.

Procedure 1: For each of the mode au-
tomaton :

1) For each [definition 6]:

a) We calculate [definition 7];

b) We calculate [definition 9]. Two

cases are possible.
i) . So, is

not compatible with and we can stop the
procedure for this transition [definition 10];

ii) : maybe

is compatible with . Two cases are
possible:
A)

and

or

: is not consistent with and
we can stop the procedure for this transi-
tion [definition 11].

B) else, maybe is consistent with .
is then considered

as valid. The new name is operated on
the transitions functions of and

such as and
exist and are changed by and

with a subindex. The al-
phabet of the newly built models is given
by: .
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Fig. 4. Manufacturing system example: (a) the studied system; (b) models for components and ; (c) model for components and ; (d) the
model of the mode automaton ; (e) a modal decomposition standpoint of the system, with the components used in each mode; (f) the model of specification

representing the behavior of the buffer in the nominal mode; and (g) a modal decomposition standpoint of the controlled processes for each mode.

Fig. 5. Manufacturing system example: (a) a modal decomposition standpoint with the controlled processes extended; (b) the model representing the extended
specification for the degraded mode ; and (c) the model representing the extended controlled process for the degraded mode .

2) After the last , if the procedure was not

stopped before this step, is consistent with . We
can go to the next transition .

When the switch events detected by an incompatibility or
by an inconsistency has been listed, there are two methods to
solve it. Either we go in the loop of the framework intermodal
illustrated in Fig. 3 to modify the intermodal specifications,
Section III-D2, or we create a new switch specification to forbid
the undesired switch events which have been detected. This
step of switch specification is the next step in the intermodal
framework.

4) Synthesis With Switch Specifications: The switch speci-
fications step is about trajectories detected as undesired during
the process tracking, and not modified by the intermodal speci-
fications. Building these models of specifications is really easy,
because we use the new switch events label as we did in the last
Section III-D3. In other words, the language of switch specifica-
tions is defined on the alphabet without the switch events
we desire to forbid. Applying these specifications, represented
by the models , gives the new models At the end
of this step, the models are under control and no model of the

modes has more than one switch event with the same label, the
undesired switch events have been forbidden and there is only
one other switch event in another mode that has the same label
for each switch event. The model of modes can now be reduced
by using a merge function.

5) Merge Function: The merge function reduces the com-
plexity of the model by keeping only the intramodal behavior
of each mode and including the useful intermodal behavior. To
obtain the smallest size of each mode, the mode automaton
used during the extension step is used one more time. Each state
of mode then has a name including the state where is. In
other words, we know for each state the mode in which the
system is in. As we are now only interested in the intramodal be-
havior of each mode, we just have to remove the behavior which
does not represent the intramodal behavior and add an idle state
representing the mode when it will be deactivated to meet the
specification that only one mode can be active in the same time.
To do this, we execute the next procedure.

Procedure 2: Let and be automata, where
is the model reduced by the merge function of the

model . The procedure to merge states is described next.
1) We determine in , a merge set . The

states included in are the insignificant states to the
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Fig. 6. Manufacturing system example: (a) the model representing the extended controlled process of the degraded mode and including the label of
switch events and (b) the new model (extended specification of degraded mode ) including the missing requirement to solve the incompleteness.

mode. Insignificant state to the mode are all states
which do not have as part of their name (this part was
given by the mode automaton ). These states are cer-
tainly added during the extension of the different models.

2) All states in are replaced by one new state called .
3) We remove all self-loops at .
4) If the initial state is included in , then is the new

initial state.
5) If a marked state is included in , then is a marked

state.
This procedure results in models which only represent the in-

ternal behavior of each mode and an idle state needed for re-
stricting it to one active mode at a time. Formally, the automaton

is defined as follows:
Definition 12: Let be the set of all states which do not

have as part of their name.
such

that:
• .
• = .

•
.

•

•

The aim of the steps process tracking and merge function are
to avoid the nondeterminism involving the reduction complexity
of models of mode. Between the last two steps, we can use the
synthesis (step four) again to forbid the undesired trajectories.
The final models resulted in the fifth step are the control law of
mode.

IV. EXAMPLE

A. Requirements

Consider the manufacturing system illustrated in Fig. 4(a),
the system comprises four components and one buffer. The
components are used to process a part and the buffer is used as
a storage between the components with a maximal capacity of
1. The components are modeled by the automaton denoted

and are shown Figs. 4(b) and (c). The events and
represent a new task and the end of the task, respectively. While
all these events are observable, events and are controllable
and and are not. The system has four modes, such as

. Fig. 4(d) shows the model of the mode
automaton , which represents the switch behavior between
modes. The first one, which is the initial mode, is the nominal
mode . The other modes are the degraded modes and

which, respectively, depend on whether the component
or and will fail. In the case of malfunction,

the component is replaced by the component and the
component by the component . This malfunction is
modeled with the event while the repairing is modeled with
the event . So we have:

.

B. Intramodal Design

The modal decomposition of the system, where modes use
components necessary to run, is modeled in Fig. 4(e). These
models must be controlled according to the requirements de-
fined by a specification automaton, like the model of the nominal
specification representing the requirement of the buffer,
shown in Fig. 4(f). It is unlikely that is not
controllable with respect to , thus we use the supremal
controllable sublanguage of to control our four modes,
as illustrated in Fig. 4(g).

C. Intermodal Design

The first step is an extension of each mode with the compo-
nents not already included in the internal behavior but which are
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Fig. 7. Manufacturing system example: (a) the new model (extended controlled process of degraded mode ) including the new model (modified
intermodal specifications); (b) the model (switch Specification) to forbid undesired commutations ; and (c) the merged model , of degraded
mode , representing the final control law for this mode.

necessary to represent the switch behavior. This extension is il-
lustrated Fig. 5(a) by a modal decomposition standpoint. The
model representing the extended specification for the de-
graded mode is represented in Fig. 5(b). It includes the ex-
tended intramodal specification that is the buffer but expressed
on the alphabet (and not like in the intramodal design).
This specification also includes an intermodal requirement—the
activation or the deactivation of the machines 1 and 3 following
if the system is in the mode nominal or degraded . This
second specification was not present in the intramodal design
because it has no effect on the internal behavior. The extended
controlled process of the degraded mode is illustrated
in Fig. 5(c). The next step is the process tracking to characterize
the switch events and identify those to imply a deadlock.

Fig. 6(a) represents the model for the degraded mode
and is the result of the process tracking step. At the end of this
step, some problems are identified throughout the switch events
sets and . In each set, the projec-
tion of their language results in the same switch event in the
final mode. This is an incompleteness between requirements,
i.e., it misses information in the requirements. This informa-
tion is about when the system can repair the machine 1 with re-
gards to machine 3. This missing requirement has to be added by
modifying the model of the intermodal specification. The modi-
fied intramodal specification for the degraded mode is shown
Fig. 6(b).

The intermodal specification once modified and the process
tracking step reused, only events remain problematic,
as illustrated in Fig. 7(a), by the new model , which includes
the added requirements. Nevertheless, these requirements do not
solve the incompleteness for these events. A closer look showed
that the incompleteness due to these events is caused by the
fact that the final mode does not have the behavior of machine
3 and, thus, does not know the buffer can be reduced by this
machine 3. This may sound strange since the state in final mode
exists, but the connection allowing the commutation does not.
The easiest way for the designer to correct this incompleteness
is to forbid these events in the model of the switch specification,
as displayed Fig. 7(b), representing the model . Thanks to
rename command in the process tracking step, it is really easy
to design the model of the switch specifications. The last figure,
as displayed in Fig. 7(c), represents the model after the
application of the merge function for the degraded mode .
This merge function merges all states that do not have as
part of their name. This merge results a new idle state, which
is the new initial state for degraded modes. The models
are the final control law for each mode and ensure a reliable
commutation between modes.

D. Comparison

In this section, the classical centralized approach is compared
with our proposed multimodel approach. The Table I, gives the



FARAUT et al.: FORMAL APPROACH TO MULTIMODAL CONTROL DESIGN: APPLICATION TO MODE SWITCHING 451

TABLE I
COMPARISON BETWEEN THE APPROACHES

TABLE II
NOTATION USED IN PAPER

size of the different models. Each model has three numbers,
meaning, respectively, the number of states (in the set of states),
the number of events (in the set of events), and the number of
transition in the automaton.

Through the intramodal study, Table I shows the different
models are much smaller than the models built in centralized
approach. The number of transitions is by example divided by
a value comprised between 2 and 7 depending on the mode
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considered. This reduction gives an easier way for the designer
to perform a good interpretation of these models, which is one
of the aims of this work.

During the intermodal study, the last models of the controlled
process, i.e., the models , are approximately three times
smaller that their equivalent models , built in the centralized
approach, when we compare the number of states and the
number of transitions. The number of events is a little bit bigger
due to the process tracking step when some switch events are
labeled. A comparison on the built models through the inter-
modal framework (the models et ) show they
are a similar size, but with a reduced complexity because the
number of transitions is halved. A negative point is the study
of the degraded mode . Indeed, in this mode, all components
are considered to build the (uncontrolled) process. This is the
worst case that could happen for the framework, because the
model of the process in the mode is the same as the process
in the centralized approach: . This also is the case
for the models of specifications , and the model of
controlled process: . This is because in our example
the single specification is also the single specification in
mode . This is also the worst case for specifications.

Are these models necessary? The models of the intramodal
framework allow the designer, in charge of the synthesis, to dis-
cuss with the users of the studied system. These models have to
be the most clear that it is possible to reach, and this is clearly
the case for the framework. The models and
built in the intermodal study are only used by the designer that
do not work, at this moment, with models simpler than in the
centralized approach. On the contrary, his work is more com-
plicated because he has to use more models. In the same way,
the final models are intended to the communication
between the designer and the users, and then have to be as sim-
plest as possible, that effectively the case with this framework.
With these results, we think our objectives about the simplifi-
cation of the models, to be easier to analyze, are for a big part
reached.

V. CONCLUSION

The main contribution of this paper is to present an advanced
framework using a multimodal standpoint and allowing to de-
sign a system by multimodel approach. The multimodal stand-
point is an usual way in industry to design a system. The pro-
posed framework uses a multimodel approach allowing to de-
compose the system in numerous control laws (one by mode).
The first step of the framework is an intramodal study where
each mode is studied independently. The second step, and the
major contribution of this work, focuses on formal way to de-
sign complete modes including its different switch dynamics, to
identify some incompatibilities during the mode switching and
forbid these incompatibilities by using SCT. Being an offline
study, this work gives a formal method to design a control law
from scratch while meeting all requirements the system needs.
Current research involves defining strategies when incompatible
states have been recognized using uncontrollable switch events
and when the supremal controllable does not give satisfaction
on the set of requirements.
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