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Abstract: In this paper, a sensor model-based fault diagnosis method for a particular class of
linear parameter variant (LPV) systems is developed. The main contribution of this work is to
propose an adequate observer that performs fault detection over the whole operating range of the
system. The conditions for the existence of an observer are given. Such conditions guarantees
the observer convergence and they are proved through a Lyapunov analysis based on Linear
Matrix Inequality (LMI) formulation. A generalized observer scheme is performed in order to
achieve the fault isolation. The observer is evaluated through numerical simulations.
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1. INTRODUCTION

Linear parameter variant (LPV) systems can be used to
approximate nonlinear systems and hence systematic and
generic available theoretical results for LPV systems can
be then applied to derive nonlinear control laws for non-
linear systems. For instance, in (Wei and del Re, 2007) the
authors uses the LPV approach to model and control diesel
engines. The case of robust fault detection and isolation
of LPV systems is presented in (Armeni et al., 2009).
However, to the best of the authors’ knowledge, there
are a very few works where fault detection and isolation
(FDI) and fault tolerant control (FTC) approaches are
synthesized for this kind of systems associated to model-
based observer design. A very few recent papers has been
published on this last topic.

The idea of merging descriptor and LPV systems is not
new; see for instance (Rehm and Allgöwer, 2000) and
more recently (Chadli et al., 2008). The aim of this
work is to to develop a sensor fault diagnosis method
for LPV systems. In order to achieve this objective, an
observer for LPV descriptor systems is synthesized. This
observer is an extension of the observer proposed in
(Darouach and Boutayeb, 1995) where a method to design
full-order observers for LTI descriptor systems has been
considered. Then a simple and straightforward method to
design an observer for polytopic linear parameter variant
(LPV) is presented. The existence conditions of a LPV
observer synthesized with appropriate transformations are
given. Such conditions guarantee the observer convergence
proved through a combined method based on the original

approach proposed by Darouach and Boutayeb (1995)
and a Lyapunov-like analysis. A bank of residuals within
a Generalized Scheme Observer (GOS) is then used to
supervise LPV systems. The effectiveness and performance
of the proposed scheme are illustrated through a numerical
example.

2. PROBLEM FORMULATION

Consider the following continuous-time LPV system

Eẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = Cx(t)
(1)

In this paper, the polytopic LPV case is treated, i.e. where
the parameter ρ(t) varies in a convex polytope of vertices
ρi such that ρ(t) ∈ Co {ρ1, ρ2, . . . , ρM}. In this case, the
system (1) can be written as:

Eẋ(t) =
M∑

i=1

εi(ρ(t)) (Aix(t) + Biu(t))

y(t) = Cx(t)

(2)

where

M∑

i=1

εi(ρ(t)) = 1, εi(ρ(t)) ≥ 0 (3)



with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rw are the state, the
input and the output vectors, respectively, E ∈ Rq×n,
Ai ∈ Rq×n, Bi ∈ Rn×m, C ∈ Rw×n, are constant ma-
trices and i = 1, . . . ,M , where M is the total number of
functions εi(ρ(t)).

Due to abnormal operation or material aging, sensor faults
can occur in the system. A sensor fault can be represented
by additive and/or multiplicative faults as follows:

ωf
j = b(t)ωj + ω0 (4)

where ωj and ωf
j represent the jth normal and faulty

measurements (i.e., ω(t) = y(t)), ω0 denotes a constant
offset and 0 ≤ b(t) ≤ 1 denotes a gain degradation of the
jth sensor (constant or variable). Therefore, when a sensor
fault occurs, the state space representation defined in (2)
becomes as:

Eẋ(t) =
M∑

i=1

εi(ρ(t)) (Aix(t) + Biu(t))

y(t) = Cx(t) + Ff(t)

(5)

where F represents the sensor fault distribution matrix
and f(t) is the faulty vector.

The presence of such faults may lead to performance de-
terioration, instability of the system or the loss of the pro-
cess. The next sections are dedicated to the development
of an efficient model-based fault diagnosis method in order
to provide an efficient monitoring tool in the operator’s
decision. Firstly, the synthesis of an observer for systems
having the form (2) is presented in what follows.

3. OBSERVER SYNTHESIS

Consider the following LPV descriptor system:

Eẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = Cx(t)
(6)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rw are the state, the
input and the output vectors, respectively, E ∈ Rn×n,
Ai ∈ Rn×n, Bi ∈ Rn×m, C ∈ Rw×n, are constant
matrices and i = 1, . . . , M , where M is the total number
of functions εi(ρ(t)).

The following assumptions are considered by Darouach
and Boutayeb (1995):

(A1) rank E = r < n.

(A2) rank

(
E
C

)
= n.

Considering Assumption A2, there exists a nonsingular
matrix ∆:

∆ =
(

α β
γ ξ

)

such that

αE + βC = In (7)
γE + ξC = 0 (8)

where α, β, γ and ξ are constant matrices of appropriate
dimensions which can be found by the Singular Value

Decomposition of
(

E
C

)
.

As proposed by Darouach and Boutayeb (1995), an ob-
server for the system (2) should have the following form:

ż(t) =
M∑

i=1

εi(ρ(t)) [Niz(t) + L1iy(t) + Giu(t)

+ L2iy(t)]

x̂(t) = z(t) + βy(t) +
M∑

i=1

εi(ρ(t))Kiξy(t)

(9)

The general form of this observer is composed by a state
z(t) ∈ Rn. The observer inputs are the measured output
of the process y(t) and the process inputs u(t). The
matrices Ni, L1i, L2i, Gi and Ki, i = 1, . . . ,M should be
determined such that the estimates of the state variables
x̂(t) ∈ Rn converge asymptotically to x(t). For the sake of
simplicity, in what follows, the following notation is used:

Ω(ρ) =
M∑

i=1

εi(ρ(t))Ωi i = 1, . . . ,M

Thus, the system (9) is written in the simplified form:

ż(t) = N(ρ)z(t) + L1(ρ)y(t) + G(ρ)u(t)

+ L2(ρ)y(t)

x̂(t) = z(t) + βy(t) + K(ρ)ξy(t)

(10)

The problem is then to give necessary and sufficient
conditions such that the system in (9) is an observer for
system (2).

3.1 Observer design

Let the observer error be defined as:

e(t) = x(t)− x̂(t) (11)

Replacing x̂(t) from (10) into (11):

e(t) = x(t)− z(t)− βCx(t)−K(ρ)ξCx(t) (12)

Replacing βC and ξC from (7) and (8), respectively, into
(12):

e(t) = x(t)− z(t)− (In − αE)x(t)

− K(ρ)(−γE)x(t)

= (α + K(ρ)γ)Ex(t)− z(t)

(13)



Thus

ė(t) = (α + K(ρ)γ)Eẋ(t)− ż(t) (14)

Replacing Eẋ(t) and ż(t) from (2) and (10), respectively,
into (14):

ė(t) = (α + K(ρ)γ) (A(ρ)x(t) + B(ρ)u(t))

− N(ρ)z(t)− L1(ρ)y(t)

− L2(ρ)y(t)−G(ρ)u(t)

(15)

By grouping common terms in x(t), u(t) and z(t), (15)
becomes:

ė(t) = [K(ρ)γA(ρ) + αA(ρ)− L1(ρ)C

− L2(ρ)C] x(t) + [K(ρ)γB(ρ)

+ αB(ρ)−G(ρ)] u(t)−N(ρ)z(t)
(16)

By adding and subtracting the term

N(ρ) (α + K(ρ)γ)Ex(t)

in (16), it follows that

ė(t) = [(α + K(ρ)γ)A(ρ)−N(ρ) (α + K(ρ)γ)E

− L1(ρ)C − L2(ρ)C] x(t)

+ [(α + K(ρ)γ)B(ρ)−G(ρ)] u(t)

+ N(ρ) [(α + K(ρ)γ) Ex(t)− z(t)]︸ ︷︷ ︸
e(t)

(17)

It can be seen in (17) that if the following conditions are
fulfilled

0 = (α + K(ρ)γ)A(ρ)−N(ρ) (α + K(ρ)γ)E

− L1(ρ)C − L2(ρ)C
(18)

and

G(ρ) = (α + K(ρ)γ) B(ρ) (19)

then (17) reduces to

ė(t) = N(ρ)e(t) (20)

Now, replacing αE and γE from (7) and (8), respectively,
in (18), it is easy to deduce:

N(ρ) = (α + K(ρ)γ)A(ρ) + [N(ρ) (β + K(ρ)ξ)

− L1(ρ)] C − L2(ρ)C
(21)

The following assumption ensures that the second term in
the right hand side of (21) is zero:

L1(ρ) = N(ρ) (β + K(ρ)ξ) (22)

and then, (21) becomes

N(ρ) = K(ρ)γA(ρ) + αA(ρ)− L2(ρ)C (23)

The following theorem is given.
Theorem 1. The system (10) is an observer for the system
(2) if the following conditions are satisfied:

(i) sufficient condition:
ė(t) = N(ρ)e(t) (24)

is stable

(ii) necessary conditions: given the matrices Ki and L2i,
such that the sufficient condition is satisfied, the matrices
N(ρ) , G(ρ), and L1(ρ) are deduced by

N(ρ) = K(ρ)γA(ρ) + αA(ρ)− L2(ρ)C (25)

G(ρ) = (α + K(ρ)γ)B(ρ) (26)

L1(ρ) = N(ρ) (β + K(ρ)ξ) (27)

Proof. Equation (24) is obtained by replacing (26)-(27)
in (17). Now, it remains to give the necessary conditions
to ensure stability of the system given by (24).

Consider the following Lyapunov function candidate V (e(t)) =
eT (t)Pe(t) with P = PT > 0, where (·)T denotes matrix
transposition. The time derivative of the Lyapunov func-
tion along the trajectories of the system (24) is:

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t)

= eT (t)
(
NT (ρ)P + PN(ρ)

)
e(t)

= eT (t)
M∑

i=1

εi(ρ(t))
(
NT

i P + PNi

)
e(t)

(28)

Quadratic stability (Amato, 2006) of the equilibrium point
of system (24) is guaranteed if V̇ (e(t)) < 0, ∀e(t) 6= 0. This
condition is satisfied if

NT
i P + PNi < 0 (29)

If there exists an appropriate symmetric matrix P to
make possible that

(
NT

i P + PNi

)
< 0 holds ∀ i =

1, . . . , M , then it is obvious that (29) holds for any εi(ρ(t)).
Consequently, the matrix inequality (29) is transformed in
a set of M matrix inequalities:

(
NT

i P + PNi

)
< 0 ∀ i = 1, . . . , M (30)

Ni is deduced from (25) and defined such as:

Ni = Kiγ

M∑

j=1

εj(ρ(t))Aj + αAi − L2iC (31)

∀ j = 1, . . . , M . Replacing Ni from (31) in (29), the
following BMI is obtained:



AT
i αT P +

M∑

j=1

εj(ρ(t))AT
j γT KT

i P − CT LT
2iP+

PαAi + PKiγ

M∑

j=1

εj(ρ(t))Aj − PL2iC < 0

(32)

∀ i = 1, . . . , M . The BMI conditions (32) can be trans-
formed into LMI conditions by considering Qj = PKj and
Ri = PL2i. In this way, (32) becomes:

AT
i αT P +

M∑

j=1

εj(ρ(t))AT
j γT QT

i − CT RT
i +

PαAi + Qiγ

M∑

j=1

εj(ρ(t))Aj −RiC < 0

(33)

∀ i = 1, . . . , M . By multiplying each LMI (33) by
M∑

i=1

εi(ρ(t)) and adding them all together, the following

inequalities are defined:

M∑

i=1

εi(ρ(t))
M∑

j=1

εj(ρ(t))
(
AT

i αT P + AT
j γT QT

i − CT RT
i +

PαAi + QiγAj −RiC) < 0
(34)

Finally, if there exist appropriate matrices P , Qi and Ri,
then it is obvious that (34) holds and consequently the
system (24) is stable.

4. GENERALIZED LPV DESCRIPTOR OBSERVER
SCHEME

For the purpose of fault diagnosis, the basic idea of this
approach is to reconstruct the state of the system from
the subsets of measurements. The objective is to build a
bank of observers so that each one of them is driven by
all inputs and all outputs except the jth measurement
variable. yj is not used in the jth observer due to the
fact that yj is assumed to be corrupted by the fault and
therefore does not carry the required information (Frank,
1990). For the synthesis of the observer, the following state
space equation is included:

Eẋ(t) = Ax(t) + Bu(t)

ζj(t) = C̄jx(t)
(35)

where ∀ j ∈ [1, . . . ,m], ζ(t)j j ∈ Rm−1 is the output vector
without the jth element and C̄j is the C matrix without the
jth row. It can be noted that the jth observer corresponds
to the output vector without the jth component.

This fault diagnosis scheme is similar to the well-known
Generalized Observer Structure (GOS) but the absence of
a sensor fault. In order to reach both the isolation and the
estimation of an actuator fault under disturbances, we also
consider the case of j = 0 needs also to be considered: the

observer is based on system (10) where C is not related to
the sensor fault-free case.

Under the assumption that ∀ j ∈ [1, . . . , m], the pair(
C̄j , A

)
is observable, the bank could be designed. Simi-

larly to the classical approach, a residual evaluation which
involves statistical testing such as the limit checking test
and the generalized likelihood ratio test, the trend analysis
test is performed for each observer of the bank as previ-
ously described. An output vector of the statistical test
can be built according to a test applied to a set of m + 1
residuals. The status of the residuals is equal to 0 when
the residual signal is closed to zero in some sense and equal
to 1 otherwise.

The bank of observers generates an incidence matrix (see
Table 1), where each column is called the coherence vector
associated with each fault signature:

Table 1. Incidence Matrix

Fault F1 F2 · · · Fm

‖y − ŷ‖ 1 1 1 1

‖ζ1 − ζ̂1‖ 0 1 1 1

‖ζ2 − ζ̂2‖ 1 0 1 1
· · · 1 1 0 1

‖ζm − ζ̂m‖ 1 1 1 0

The bank of observers generates some zero mean residuals,
otherwise, only the observer which is insensitive to a sensor
fault Fj generates a unique residual with a zero mean.
Based on this type of signature, the fault is easily isolated
using the GOS structure irrespective of the actuator fault
occurrence. Decision-making is then used according to
elementary logic which can be described as follows: a fault
indicator is equal to one if the residual vector generated
by the bank is equal to a column of the incidence matrix,
and to zero otherwise. The element which is associated
with the indicator being equal to one is then declared to
be faulty.

5. EXAMPLE

Let us consider a continuous-time LPV descriptor system
in fault-free case (2) described by:

E =

( 1 0 0
0 1 0
0 0 0

)

A1 =

(−5 0 0
0 −4 0
0 0 −4.5

)
A2 =

(−6 0 0
0 −4 0
0 0 −5

)

B1 =

( 0
−1
1

)
B2 =

( 0
−0.5

2

)

C =
(

1 0 1
0 1 0

)

According to the fulfilled conditions defined in the third
section, the design of each LPV observer has been achieved
based on a pole placement in LMI region D as proposed
by (Chilali and Gahinet, 1996). A constant matrix K has
been considered to synthesize the gain of each observer



which produces a residual rj(t) equal to ζj(t)− ζ̂j(t). The
effectiveness of the proposed observer scheme is illustrated
with the system studied in open-loop. In fault-free case,
the input vector is presented in Fig. 1. As illustrated in
Fig. 2, the system is considered on the whole operating
conditions.

Fig. 1. Dynamic behaviour of the input

Fig. 2. Dynamic behaviour of the weighting functions

Given the initial conditions x(0) = [3 2 1]T , the
simulation result of the state space vector x(t) is depicted
in Fig. 3 in fault-free case. Under the initial conditions
x̂(0) = [0 0 0]T , the residual norm vector issued from
the two observers (in our case m = 2) is close to zero as
illustrated in Fig.4. a severe fault is also tested when the
first sensor (respectively the second sensor) is out of order
at instant 2500s. According to the incidence matrix defined
in the previous section, only the observer synthesized in
order to be insensitive to a sensor fault on this output
provides a residual vector equal to zero means as presented
in Fig.5 (respectively in Fig. 6.).

The results show that the bank of observers is very
effective in detecting and isolating the fault for the whole
operating conditions. The residual norm vector should be
evaluated through a classical statistical threshold test in

Fig. 3. Dynamic behaviour of the state space vector

Fig. 4. Residual vector norms in Fault free case

Fig. 5. Residual vector norms with first sensor out of order



Fig. 6. Residual vector norms with second sensor out of
order

order to generate alarms for the operating system. The
generalized LPV descriptor observer scheme is able to
indicate which sensor is faulty and represents an efficient
tool in the operator’s decision winding process.

6. CONCLUSION

In this paper, a sensor model-based fault diagnosis method
for a particular class of linear parameter variant (LPV)
systems is presented. For that, a bank of observers so
that each one of them is driven by all inputs and all
outputs except the jth measurement variable is designed.
Each observer is an observer for polytopic LPV descriptor
systems. The observer synthesis is an extension of the work
presented in (Darouach and Boutayeb, 1995) where an
observer for LTI descriptor systems is reported. Sufficient
conditions are stated to ensure the existence and the stabil-
ity of the proposed observer by using a combined Lyapunov
analysis based on LMI formulation. The proposed method
is evaluated via simulations using a numerical example.
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