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Abstract—In this paper, we present an extension of the multi-
criteria decision making based on the Analytic Hierarchy Process
(AHP) which incorporates uncertain knowledge matrices for
generating basic belief assignments (bba’s). The combination of
priority vectors corresponding to bba’s related to each (sub)-
criterion is performed using the Proportional Conflict Redistribu-
tion rule no. 5 proposed in Dezert-Smarandache Theory (DSmT)
of plausible and paradoxical reasoning. The method presented
here, called DSmT-AHP, is illustrated on very simple examples.
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I. I NTRODUCTION

The Multi-criteria decision-making (MCDM) problem con-
cerns the elucidation of the level of preferences of decision
alternatives through judgments made over a number of criteria
[6]. At the Decision-maker (DM) level, a useful method for
solving MCDM problem must take into account opinions
made under uncertainty and based on distinct criteria with
different importances. The difficulty of the problem increases
if we consider a group decision-making (GDM) problem
involving a panel of decision-makers. Several attempts have
been proposed in the literature to solve the MCGDM problem.
Among the interesting solutions developed, one must cite
the works made by Beynon [3]–[6]. This author developed a
method called DS/AHP which extended the Analytic Hierar-
chy Process (AHP) method of Saaty [15]–[17] with Dempster-
Shafer Theory (DST) [23] of belief functions to take into
account uncertainty and to manage the conflicts between
experts opinions within a hierarchical model approach. In this
paper, we propose to follow Beynon’s approach, but instead
of using DST, we investigate the possibility to use Dezert-
Smarandache Theory (DSmT) of plausible and paradoxical
reasoning developed since 2002 for overcoming DST limita-

tions1 [24]. This new approach will be referred as DSmT-AHP
method in the sequel. DSmT allows to manage efficiently the
fusion of quantitative (or qualitative) uncertain and possibly
highly conflicting sources of evidences and proposes new
methods for belief conditioning and deconditioning as well[7].
DSmT has been successfully applied in several fields of appli-
cations (in defense, medicine, satellite surveillance, biometrics,
image processing, etc). In section II, we briefly introduce the
principle of the AHP developed by Saaty. In section III, we
recall the basis of DSmT and its main rule of combination,
called PCR5 (Proportional Conflict Redistribution rule # 5).
In section IV, we present the DSmT-AHP method for solving
the MCDM problem. The extension of DSmT-AHP method
for solving MCGDM problem is then introduced in section V.
Conclusions are given in Section VI.

II. T HE ANALYTIC HIERARCHY PROCESS(AHP)

The Analytic Hierarchy Process (AHP) is a structured
technique developed by Saaty in [8], [15], [16] based on
mathematics and psychology for dealing with complex de-
cisions. AHP and its refinements are used around the world
in many decision situations (government, industry, education,
healthcare, etc.). It helps the DM to find the decision that best
suits his/her needs and his/her understanding of the problem.

1A presentation of these limitations with a discussion is done in Chap 1
of [24], Vol. 3. It is shown clearly that the logical refinement proposed by
some authors doesn’t bring new insights with respect to whatis done when
working directly on the super-power set (i.e. on the minimalrefined frame
satisfying Shafer’s model). There is no necessity to work with a refined frame
in DSmT framework which is very attractive in some real-lifeproblems where
the elements of the refined frame do not have any (physical) sense/meaning
or are just impossible to clearly determine physically (as asimple example,
if Mary and Paul have possibly committed a crime alone or together, there
is no way to refine these two persons into three finer exclusivephysical
elements satisfying Shafer’s model). Aside the possibility to deal with different
underlying models of the frame, it is worth to note that PCR5 or PCR6 rules
provide a better ability than the other rules to deal efficiently with highly
conflicting sources of evidences as shown in all fields of applications where
they have been tested so far.



AHP provides a comprehensive and rational framework for
structuring a decision problem, for representing and quantify-
ing its elements, for relating those elements to overall goals,
and for evaluating alternative solutions. The basic idea of
AHP is to decompose the decision problem into a hierarchy
of more easily comprehended sub-problems, each of which
can be analyzed independently. Once the hierarchy is built,
the DM evaluates the various elements of the hierarchy by
comparing them to one another two at a time [21]. In making
the comparisons, the DM can use both objective information
about the elements as well as subjective opinions about the
elements’ relative meaning and importance. The AHP converts
these evaluations to numerical values that are processed and
compared over the entire range of the problem. A numerical
weight or priority is derived for each element of the hierarchy,
allowing diverse and often incommensurable elements to be
compared to one another in a rational and consistent way. This
is the main advantage of AHP with respect to other decision
making techniques. At its final step, numerical priorities are
calculated for each of the decision alternatives. These num-
bers represent the alternatives’ relative ability to achieve the
decision goal. The AHP method can be summarized as [19]:
1) Model the problem as a hierarchy containing the decision
goal, the alternatives for reaching it, and the criteria for
evaluating the alternatives.
2) Establish priorities among the elements of the hierarchyby
making a series of judgments based on pairwise comparisons
of the elements.
3) Check the consistency of the judgments and eventually
revise the comparison matrices by reasking the experts when
the consistency in judgments is too low.
4) Synthesize these judgments to yield a set of overall priori-
ties for the hierarchy.
5) Come to a final decision based on the results of this process.
Example 1: According to his/her own preferences and using
the Saaty’s 1-9 ordinal scale, a DM wants to buy a car among
four available models belonging to the setΘ = {A, B, C, D}.
To simplify the example, we assume that the objective of DM
is to select one of these cars based only on three criteria
(C1=Fuel economy, C2=Reliability and C3=Style). According
to his/her own preferences, the DM ranks the different criteria
pairwise as follows: 1 - Reliability is 3 times as important as
fuel economy, 2 - Fuel economy is 4 times as important as
style, 3 - Reliability is 5 times as important as style, which
means that the DM thinks that Reliability criteria (C2) is the
most important criteria, followed by fuel economy (C1) and
style is the least important criteria2. The relative importance
of one criterion over another can be expressed using pairwise
comparison matrix (also called knowledge matrix) as follows:

M =
[

1/1 1/3 4/1
3/1 1/1 5/1
1/4 1/5 1/1

]

≈
[

1.0000 0.3333 4.0000
3.0000 1.0000 5.0000
0.2500 0.2000 1.0000

]

where the elementmij of the matrixM indicates the relative
importance of criteriaCi with respect to the criteriaCj.

2The relationships between preferences given by a DM may not be transitive
as shown in this example, nevertheless one has to deal with these inputs even
in such situations.

In this example,m13 = 4/1 indicates that the criteria C1
(Fuel economy) is four times as important as the criteria
C3 (Style) for the DM, etc. From this pairwise matrix,
Saaty demonstrated that the ranking of the priorities of the
criteria can be obtained from the normalized eigenvector3,
denotedw, associated with the principal eigenvalue of the
matrix, denotedλ. In this example, one hasλ = 3.0857 and
w = [0.2797 0.6267 0.0936]′ which shows that C2 criterion
(reliability) is the most important criterion with the weight
0.6267, then the fuel economy criterion C1 is the second most
important criterion with weight 0.2797, and finally C3 criterion
(Style) is the least important criterion with weight 0.0936for
the DM. A similar ranking procedure can be used to find the
relative weights of each carA, B, C or D with respect to
each criterion C1, C2 and C3 based on given DM preferences,
hence one will get three new normalized eigenvectors denoted
w(C1), w(C2) and w(C3). By example, if one has the
following normalized vectors

[w(C1)w(C2) w(C3)] =

[

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

]

then the solution of the MCDM problem (here the selec-
tion of the ”best” car according to the DM multicriteria
preferences) is finally obtained by multiplying the matrix
[w(C1) w(C2) w(C3] by the criteria ranking vectorw. For
this example, one will get:

[

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

]

×
[

0.2797
0.6267
0.0936

]

=

[

0.3771
0.1163
0.2630
0.2436

]

Based on this result, the carA which has the most important
weight (0.3771) will be selected by the DM. The costs could
also be included in AHP by taking into account the benefit
to cost ratios which will allow to chose alternative with
lowest cost and highest benefit. For example, let’s suppose
that the cost of carA is 21000 euros, the cost of carB is
13000 euros, the cost of carC is 12000 euros and the cost
of car D is 18000 euros, then the normalized cost vector
is [0.3281 0.2031 0.1875 0.2812]′, so that the benefit-cost
ratios are now[0.3771/0.3281 = 1.1492 0.1163/0.2031 =
0.5724 0.2630/0.1875 = 1.4026 0.2436/0.2812 = 0.8663]′.
Taking into account now the cost of vehicles, now the best
solution for the DM is to choose the carC since it offers the
highest benefit-cost ratio.

In this paper we do not focus on the rank reversal problem of
AHP as discussed in [9], [10], [13], [18], [22], but we propose
an extension of AHP using aggregation method developed
in DSmT framework, able to make a difference between
importance of criteria, uncertainty related to the evaluations
of criteria and reliability of the different sources.

3Note that if the relationships on the criteria is transitive, then we can
easily construct the normalized vector of priorities from asystem of algebraic
equations, without employing Saaty’s matrix approach. Forexample if in the
previous example one assumes4 M23 = 12/1 and M32 = 1/12 instead of
5/1 and 1/5, then the normalized weighting vector will be directly obtained
asw = [4/17 12/17 1/17]′.



III. B ASICS OFDSMT
Let Θ = {θ1, θ2, · · · , θn} be a finite set ofn elements

assumed to be exhaustive.Θ corresponds to the frame of
discernment of the problem under consideration. In general,
we assume that elements ofΘ are non exclusive in order to
deal with vague/fuzzy and relative concepts [24], Vol. 2. This
is the so-called free-DSm model. In DSmT, there is no need
to work on a refined frame consisting in a discrete finite set
of exclusive and exhaustive hypotheses5 because DSm rules
of combination work for any models of the frame. The hyper-
power setDΘ is defined as the set of all propositions built from
elements ofΘ with ∪ and∩, see [24], Vol. 1 for examples.
A (quantitative) basic belief assignment (bba) expressingthe
belief committed to the elements ofDΘ by a given source
is a mappingm(·): DΘ → [0, 1] such that:m(∅) = 0 and
∑

A∈DΘ m(A) = 1. ElementsA ∈ DΘ havingm(A) > 0 are
called focal elementsof m(.). The credibility and plausibility
functions are defined in almost6 the same manner as in DST
[23]. In DSmT, the Proportional Conflict Redistribution Rule
no. 5 (PCR5) is used generally to combine bba’s. PCR5
transfers the conflicting mass only to the elements involved
in the conflict and proportionally to their individual masses,
so that the specificity of the information is entirely preserved
in this fusion process. For example: consider two bba’sm1(.)
andm2(.), A ∩B = ∅ for the model ofΘ, andm1(A) = 0.6
and m2(B) = 0.3. With PCR5 the partial conflicting mass
m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed toA and
B only with respect to the following proportions respectively:
xA = 0.12 andxB = 0.06 because

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) + m2(B)
=

0.18

0.9
= 0.2

In this paper, we work in the power set2Θ since most of read-
ers are usually already familiar with this fusion space. Let’s
m1(.) and m2(.) be two independent7 bba’s, then the PCR5
rule is defined as follows (see [24], Vol. 2 for full justification
and examples):mPCR5(∅) = 0 and∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (1)

where all denominators in (1) are different from zero. If a
denominator is zero, that fraction is discarded. All proposi-
tions/sets are in a canonical form. A variant of (1), called
PCR6, for combinings > 2 sources and for working in
other fusion spaces (hyper-power sets or super power-sets)is
presented in [24]. Additional properties of PCR5 can be found
in [7]. Extension of PCR5 for combining qualitative bba’s can
be found in [24], Vol. 2 & 3.

5referred as Shafer’s model in the literature.
6We just replace2Θ by DΘ in the definitions of credibility and plausibility

functions.
7i.e. each source provides its bba independently of the othersources.

IV. DSMT-AHP FOR SOLVINGMCDM

DSmT-AHP aimed to perform a similar purpose as AHP
[15], [16], SMART [28] or DS/AHP [2], [4], etc. that is to find
the preferences rankings of the decision alternatives (DA), or
groups of DA. DSmT-AHP approach consists in three steps:

• Step 1: We extend the construction of the matrix for
taking into account the partial uncertainty (disjunctions)
between possible alternatives. If no comparison is avail-
able between elements, then the corresponding elements
in the matrix is zero. Each bba related to each (sub-)
criterion is the normalized eigenvector associated with the
largest eigenvalue of the ”uncertain” knowledge matrix
(as done in standard AHP approach).

• Step 2: We use the DSmT fusion rules, typically the
PCR5 rule, to combine bba’s drawn from step 1 to get a
final MCDM priority ranking. This fusion step must take
into account the different importances (if any) of criteria
as it will be explained in the sequel.

• Step 3: Decision-making can be done based either on the
maximum of belief, or on the maximum of the plausibility
of Decision alternatives (DA), as well as on the maximum
of the approximate subjective probability of DA obtained
by different probabilistic transformations.

Example 2: Let’s consider now a set of three carsΘ =
{A, B, C} and the criteria C1=Fuel Economy, C2=Reliability.
Let’s assume that with respect to each criterion the following
”uncertain” knowledge matrices are given:

M(C1) =

[

A B ∪ C Θ

A 1 0 1/3
B ∪ C 0 1 2

Θ 3 1/2 1

]

M(C2) =

[

A B A ∪ C B ∪ C

A 1 2 4 3
B 1/2 1 1/2 1/5

A ∪ C 1/4 2 1 0
B ∪ C 1/3 5 0 1

]

Step 1: (bba’s generation) Applying AHP method, one gets the
following priority vectorsw(C1) ≈ [0.0889 0.5337 0.3774]′

and w(C2) ≈ [0.5002 0.1208 0.1222 0.2568]′ which are
identified with the bba’smC1(.) and mC2(.) as follows:
mC1(A) = 0.0889, mC1(B ∪ C) = 0.5337, mC1(A ∪ B ∪
C) = 0.3774 and mC2(A) = 0.5002, mC2(B) = 0.1208,
mC2(A ∪ C) = 0.1222 andmC2(B ∪ C) = 0.2568.
Step 2: (Fusion) When the two criteria have the same full
importance in the hierarchy they are fused with one of the
classical fusion rules. In [4] Beynon proposed to use Demp-
ster’s rule. Here we propose to use the PCR5 fusion rule since
it is known to have a better ability to deal efficiently with
possibly highly conflicting sources of evidences [24], Vol.2.
With PCR5, one gets:

Elem. of2Θ mC1(.) mC2(.) mP CR5(.)

∅ 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ∪ B 0 0.1208 0
C 0 0 0.0652

A ∪ C 0 0.1222 0.0461
B ∪ C 0.5337 0.2568 0.3887

A ∪ B ∪ C 0.3774 0 0

Step 3: (Decision-making) A final decision based on
mPCR5(.) must be taken. Usually, the decision-maker (DM)
is concerned with a single choice among the elements ofΘ.



Many decision-making approaches are possible depending on
the risk the DM is ready to take. A pessimistic DM will
choose the singleton ofΘ giving the maximum of credibility
whereas an optimistic DM will choose the element having the
maximum of plausibility. A fair attitude consists usually in
choosing the maximum of approximate subjective probability
of elements ofΘ. The result however is very dependent on
the probabilistic transformation (Pignistic, DSmP, Sudano’s,
etc) [24], Vol. 2. Below are the values of the credibility, the
pignistic probability and the plausibility ofA, B andC:

Elem. ofΘ Bel(.) BetP (.) P l(.)

A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The carA will be preferred with the pessimistic or pignistic
attitudes, whereas the carB will be preferred if an optimistic
attitude is adopted since one hasPl(B) > Pl(C) > Pl(A).

The MCDM problem deals with several criteria having
different importances and the classical fusion rules cannot
be applied directly as in step 2. In AHP, the fusion is done
from the product of the bba’s matrix with the weighting
vector of criteria. Such AHP fusion is nothing but a simple
componentwise weighted average of bba’s and it doesn’t
actually process efficiently the conflicting information between
the sources. It doesn’t preserve the neutrality of a full ignorant
source in the fusion. To palliate these problems, we propose
a solution for combining sources of different importances in
the framework of DSmT and DST.

Before going further, it is essential to explain the difference
between the importance and the reliability of a source of
evidence. The reliability is an objective property of a source,
whereas the importance of a source is a subjective character-
istic expressed by the fusion system designer. The reliability
of a source represents its ability to provide the correct as-
sessment/solution of the given problem. It is characterized by
a discounting reliability factor, usually denotedα in [0, 1],
which should be estimated from statistics when available,
or by other techniques [11]. The reliability can be context-
dependent. By convention, we usually takeα = 1 when the
source is fully reliable andα = 0 if the source is totally
unreliable. The reliability of a source is usually taken into
account with Shafer’s discounting method [23] defined by:

(

mα(X) = α · m(X), for X 6= Θ

mα(Θ) = α · m(Θ) + (1 − α)
(2)

The importance of a source is not the same as its reliability
and it can be characterized by an importance factor, denotedβ
in [0, 1] which represents somehow the weight of importance
granted to the source by the fusion system designer. The choice
of β is usually not related with the reliability of the source
and can be chosen to any value in[0, 1] by the designer
for his/her own reason. By convention, the fusion system
designer will takeβ = 1 when he/she wants to grant the
maximal importance of the source in the fusion process, and
will take β = 0 if no importance at all is granted to this
source in the fusion process. The fusion designer must be able
to deal with importance factors in a different way than with

reliability factors since they correspond to distinct properties
associated with a source of information. The importance of
a source is particularly crucial in hierarchical multi-criteria
decision making problems, specially in the AHP [16], [20].
That’s why it is primordial to show how the importance can
be efficiently managed in evidential reasoning approaches.
The main question we are concerned here is how to deal
with different importances of sources in the fusion processin
such a way that a clear distinction is made/preserved between
reliability and importance? Our preliminary investigations for
the search of the solution of this problem were based on the
self/auto-combination of the sources. But such approach is
very disputable and cannot be used satisfactorily in practice
whatever the fusion rule is adopted because it can be easily
shown that the auto-conflict tends quickly to 1 after several
auto-fusions [11]. Actually a better approach can be used for
taking into account the importances of the sources and can
be considered as the dual of Shafer’s discounting approach
for reliabilities of sources. The idea was originally introduced
briefly by Tacnet in [24], Vol.3, Chap. 23, p. 613. It consists
to define the importance discounting with respect to the
empty set rather than the total ignoranceΘ (as done with
Shafer’s discounting). Such new discounting deals easily with
sources of different importances and is very simple to use.
Mathematically, we define the importance discounting of a
sourcem(.) having the importance factorβ in [0, 1] by:

(

mβ(X) = β · m(X), for X 6= ∅

mβ(∅) = β · m(∅) + (1 − β)
(3)

Here we allow to deal with non-normal bba sincemβ(∅) ≥ 0
as suggested by Smets in [26]. This new discounting pre-
serves the specificity of the primary information since all
focal elements are discounted with same importance factor.
Here we use the positive mass of the empty set as an
intermediate/preliminary step of the fusion process. Clearly
when β = 1 is chosen by the fusion designer, it will mean
that the source must take its full importance in the fusion
process and so the original bbam(.) is kept unchanged.
If the fusion designer takesβ = 0, one will deal with
mβ(∅) = 1 which is interpreted as a fully non important
source.m(∅) > 0 is not interpreted as the mass committed
to some conflicting information (classical interpretation), nor
as the mass committed to unknown elements when working
with the open-world assumption (Smets interpretation), but
only as the mass of the discounted importance of a source in
this particular context. Based on this discounting, one adapts
PCR5 (or PCR6) rule forN ≥ 2 discounted bba’smβ,i(.),
i = 1, 2, . . .N by considering the following extension, denoted
PCR5∅, defined by:∀X ∈ 2Θ

mPCR5∅
(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (4)



A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is thatmPCR5(∅) = 0 whereasmPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvectorw.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector isw = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]

′ can also be obtained directly by solving the
algebraic system of equationsw2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sourcesmβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
ThereforemPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. allβi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such casemβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probabilityor
plausibility of each element ofΘ for decision-making. In this
example one gets:

Elem. ofΘ Bel(.) BetP (.) P l(.)

A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’smC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. ofΘ Bel(.) BetP (.) Pl(.)

A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternativeA since the carA has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than carsB or C. It is however worth to
note that the values ofBel(.), BetP (.) andPl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the final result for
example if the costs of vehicles have also to be included in
the final decision (as explained at the end of the example 1).
Note also that the uncertaintiesU(X) = Pl(X) − Bel(X)
of alternativesX = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. ofΘ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion ofmβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specificity of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combiningmβ1 6=1,C1(.)
with mβ2 6=1,C2(.) due to the way of processing of the total
conflicting mass of belief. PRC5 deals more efficiently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.



V. DSMT-AHP FOR SOLVINGMCGDM

Previously, a new approach mixing AHP with DSmT solv-
ing MCDM problem has been presented. In many practical
situations however, the decision must be taken by a group
of n > 1 Decision Makers (GDM), denotedGDM =
{DMi, i = 1, 2, . . . , n}, rather than a single DM, and from
the Multi-Criteria preference rankings of theDMi’s. The
importance (influence) of each member of the GDM is usually
non-equivalent [1] and the importance of each DM of the
GDM must be efficiently taken into account in the final
decision-making process. Let’s denote bymDMi(.) the re-
sult of DSmT-AHP approach (see section IV) related with
DMi ∈ GDM . The MCGDM problem consists in combining
all opinions/preferences rankingsmDMi(.), i = 1, . . . , n
with their own (possibly different) importances. When all
DMi’s have equal importance, the classical fusion rules8 ⊕
for combiningmDMi(.) can be directly used to get the final
resultmMCGDM (.) = [mDM1 ⊕mDM2 ⊕ . . .⊕mDMn ](.); If
the DMi’s have different importance weightswi, the DSmT-
AHP approach can also be used at the GDM fusion level
using the importance discounting approach presented here.The
result for group decision-making is given by the PCR5∅ fusion
of mβi,DMi(.), with βi = wi and then the result must be
normalized for decision making support. In [6], Beynon used
the classical discounting technique [23] to readjustmDMi(.)
with wi’s and he identified the importance factors with the
reliability factors. In our opinions, this is disputable since
importance of aDMi is not necessarily related with its
reliability but rather with the importance in the problem ofthe
choice of his/her Multi-Criteria to establish his/her ranking, or
it can come from other (political, hierarchical, etc.) reasons.
In our new approach, we make a clear distinction between
notions of importance and reliability and both notions can be
easily taken into account [25] with DSmT-AHP for solving
MCGDM problems, i.e. we can use the classical discounting
technique for taking into the reliabilities of the sources,and
use the importance discounting proposed here for dealing with
the importances of sources.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new method for Multi-
Criteria Decision-Making (MCDM) and Multi-Criteria Group
Decision-Making (MCGDM) based on the combination of
AHP method developed by Saaty and DSmT. The AHP
method allows to build bba’s from DM preferences of solutions
which are established with respect to several criteria. The
DSmT allows to aggregate efficiently the (possibly highly
conflicting) bba’s based on each criterion. This DSmT-AHP
method allows to take into account also the different impor-
tances of the criteria and/or of the different members of the
decision-makers group. The application of this DSmT-AHP
approach for the prevention of natural hazards in mountainsis
currently under progress, see [24], Vol.3, Chap. 23, and [27].

8typically the PCR5 or PCR6 rules, or eventually Dempster’s rule if the
conflict betweenDMi’s is low.
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