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Parabolic schemes for quasi-linear parabolic and
hyperbolic PDEs via stochastic calculus

by Sébastien Darses1, Emmanuel Denis 2

Université Aix-Marseille I and Université Paris Dauphine

Abstract: We consider two quasi-linear initial-value Cauchy problems on Rd: a parabolic system
and an hyperbolic one. They both have a first order non-linearity of the form φ(t, x, u) · ∇u, a
forcing term h(t, x, u) and an initial condition u0 ∈ L∞(Rd) ∩ C∞(Rd), where φ (resp. h) is
smooth and locally (resp. globally) Lipschitz in u uniformly in (t, x). We prove the existence of
a unique global strong solution for the parabolic system. We show the existence of a unique local
strong solution for the hyperbolic one and we give a lower bound regarding its blow up time. In
both cases, we do not use weak solution theory but recursive parabolic schemes studied via a
stochastic approach and a regularity result for sequences of parabolic operators. The result on
the hyperbolic problem is performed by means of a non-classical vanishing viscosity method.

Key words: Quasi-linear Parabolic PDEs, Hyperbolic systems, Vanishing viscosity method,
Smooth solutions, Stochastic Calculus, Feynman-Kac Formula, Girsanov’s Theorem.

1. Introduction

The PDE problems we are studying in the current paper are part of the so-called class of
quasi-linear parabolic and hyperbolic initial-value systems:





∂tu +

d∑

j=1

Aj(t, x, u)∂ju−
∑

i,j

aij(t, x)∂2
iju = h(t, x, u)

u(0, x) = u0,

(1.1)

where (t, x) ∈ Rd, Aj are d× d matrices, and a is a positive definite matrix in the parabolic case
and a = 0 in the hyperbolic one. There exists a huge literature regarding analytical methods
proving the existence of solution for such PDEs. We refer to [9], [11] and references therein
regarding both cases.

We are interested in applying stochastic methods to show existence results when the matrices
Aj are diagonal. More precisely, we are here concerned with the following case: the first order

non-linearity has the special form φ(t, x, u) · ∇u. The map φ : [0, T ] × Rd × Rd → Rd (resp.
h) is assumed to be smooth and locally (resp. globally) Lipschitz in u uniformly in (t, x). We
prove global and local existence of smooth solutions in Rd, respectively in the parabolic case and
the hyperbolic one. We handle these questions by means of probabilistic methods due to the
relationship between the structure b · ∇u and the Feynman Kac formula for parabolic equations.
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More precisely, we use in both cases some iterative parabolic schemes (un) where the non linearity
φ(t, x, u) · ∇u is replaced by φ(t, x, un) · ∇un+1. Note that iterative hyperbolic schemes based on
such a type of replacement are classical to show the local existence of smooth solutions in Sobolev
spaces for non linear symmetric hyperbolic PDEs (see e.g. [8] or [9]). Let us now describe the
two main results of our work.

In Section 3, we prove the following theorem. Let v0 ∈ L∞(Rd) ∩ C∞(Rd) with bounded
derivatives; Assume that h(t, x, v) is a globally Lipschitz function in u uniformly in (t, x). Then,
for any given time T > 0, there exists a unique smooth solution v on [0, T ] verifying the Cauchy
problem





∂tv(t, x) + (φ(t, x, v) · ∇)v(t, x)− 1

2

∑

i,j

aij(t, x)∂2
ijv(t, x) = h(t, x, v(t, x))

v(0, x) = v0(x),

(1.2)

where a : [0, T ] × Rd → Rd ⊗ Rd satisfies suitable smooth and boundedness conditions on its
derivatives. We use the aforementioned iterative scheme (vn) defined by

∂tvn+1(t, x) + (φ(t, x, vn) · ∇)vn+1(t, x)− 1

2
∆σvn+1(t, x) = h(t, x, vn(t, x)),

where ∆σ denotes the second order term.
By means of Girsanov’s transformations on the Feynam Kac representation of the solution

vn+1, we show that (vn) converges to a vector field v and we obtain uniform bounds for the
spatial derivatives of (vn). We conclude about the regularity of the solution v by verifying the
suitable hypothesis of Friedman’s theorem on the convergence of parabolic operators [5]. We
finally show the uniqueness of the solution. Again, Girsanov’s transformations are helpful. We
stress that our method does not use the theory of weak solution for PDEs and does not involve
fixed point theorems due to the direct study of inductive schemes and some related induction
hypothesis. The conditions on h and σ we use are sufficient to ensure the existence of a global
smooth solution. Let us note that this global existence may fail to hold for v0 ∈ L∞ if the
source term is no longer globally Lipschitz in u. For instance, consider the one-dimensional case
h(t, x, v) = v1+ε, ε > 0 with a constant initial condition v0(x) = v0 > 0. Then the function

v(t, x) =

(
1

v−ε
0 − εt

)1/ε

is a blow-up solution of (1.2). Our theorem may then be seen as a critical case in that sense. We
also show in section 3.2 the local existence of a smooth solution when h(t, x, v) = vα for general
initial conditions.

Let us mention that local existence results are well known for more general semilinear parabolic
PDEs (cf Proposition 1.1 p.273 in [11]). It can also be proved that parabolic PDEs satisfying the
following assumptions: ”symmetric” first order non-linearity, h = 0, a = cst.Id and v0 ∈ L2(Rd),
have a unique global solution (cf Proposition 1.4 p.276 in [11]). In the case of bounded domains
and square integrable initial conditions, let us efer the reader to Example 3.6 p.75 in [6] where
the author treats a more general parabolic equation. Finally, let us note that the parabolic
equation we consider can be naturally related to some backward stochastic differential equations.
Pardoux and Peng developed a theory of BSDEs and its connection with a wide class of so-
lutions of quasi linear parabolic PDEs, as viscosity solutions for instance. Unfortunately, the
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non linearity φ(t, x, u) · ∇u cannot be handled by this theory, see e.g. the hypothesis on the map
f p.16 in [10]. Some applications of our method to BSDEs will be studied in a forthcoming paper.

In Section 4, we prove by means of a particular parabolic scheme a local existence result for
a system of quasi linear hyperbolic PDEs when the initial condition v0 is a smooth bounded
function with bounded derivatives of all orders. We claim that there exists T ∗ > 0 and a unique
smooth solution v on [0, T ∗) verifying the Cauchy problem

{
∂tv(t, x) + (φ(t, x, v) · ∇)v(t, x) = h(t, x, v(t, x))

v(0, x) = v0(x).
(1.3)

If v0 belongs to L2(Rd) in addition, our result turns out to be a special case of a well known
result regarding symmetric hyperbolic systems (cf e.g. [8] Th.2.1 p.30). To prove our result, we
use a vanishing viscosity method. Such methods have been studied for instance for hyperbolic
systems in one-space dimension. Let us refer to the seminal paper by Bianchini and Bressan [1]
regarding these various results.

Let us describe the proof of the main result of this section. First, we study a collection of se-
quences σ 7→ uσ := (uσ

n) derived from a Feynman-Kac representation where the time-dependent
coefficient diffusion sequence σ = (σn(t))n lies in a family of smooth positive functions. We obtain
uniform L∞ bounds in n and σ of the derivatives of (uσ

n) on a small interval. We show the uniform
convergence of a particular sequence u∗ :=

(
uσ∗

n

)
for a suitable sequence σ∗ converging to 0 as

n → ∞. We conclude that the limit u∗ of
(
uσ∗

n

)
is a smooth solution of the Cauchy system by

adding a constant diffusion term on both side before applying Friedman’s Theorem. The proof
actually relies on estimates regarding the difference un+1 − un and on a suitable conjecture on
the structure of the sequence σ∗. Here we do not use Girsanov’s transformation but rather esti-
mates coming directly from the underlying diffusion process in the Feynman Kac representation.
Finally, we provide a lower bound regarding the blow up time for this hyperbolic system.

Section 2 is devoted to some notational conventions. The Appendix recalls the key result of
Friedman to obtain in the parabolic case the regularity of the solution through subsequences of
parabolic operators.
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2. Notations

2.1. General Notations. Let T > 0 and d ∈ N∗. The space Rd is endowed with its usual
canonical scalar product: if x, y ∈ Rd, we denote by x · y their scalar product. Let | · | be the
induced norm. More generally, the notation | · | still denotes the operator norm of any multilinear
form. For instance, |Id| = 1 where Id ∈ Rd ⊗ Rd.

We denote by C∞
b,k(R

d) the space of infinitely differentiable bounded functions with bounded
derivatives of order p ≤ k.

We set ‖f(t)‖∞ = supx∈Rd |f(t, x)| and ‖f‖∞ = supt∈[0,T ] ‖f(t)‖∞ when f : [0, T ] × Rd → Rd

is a continuous function. If f(t, ·) ∈ Lp(Rd), ‖f(t)‖p denotes the Lp norm of f(t, ·), 1 ≤ p < +∞.

If r > 0, we set B(0, r) := {x ∈ Rd, |x| ≤ r}.
Throughout the paper, C denotes some constant independent of n which can change from line

to line. When a particular constant C used in a proof is needed for another proof, we write it
with an index or a subscript, as C2 or C∗ for instance.

2.2. Differential operators and PDEs. If f : [0,T ] × Rd → R is a smooth function, we set

∂jf = ∂f
∂xj

and ∂tf = ∂f
∂t . We denote by ∇f = (∂if)1≤i≤d the gradient of f and by ∆f =∑

j ∂2
jjf its Laplacian. More generally, for a given set of non negative definite matrixes a(t, x) =

σ(t, x)σ∗(t, x) : [0, T ]× Rd → Rd ⊗ Rd, we set

(2.4) ∆σf(t, x) =
∑

i,j

aij(t, x)∂2
ijf(t, x).

For a smooth vector field Φ : [0,T ]× Rd → Rd, we denote by Φj its jth-component, by ∇Φ its
differential with respect to x, that we represent into the canonical basis of Rd: ∇Φ = (∂jΦ

i)i,j , and
by∇·Φ =

∑
j ∂jΦ

j its divergence. As usual, ∆Φ denotes the vector (∆Φj)j . The notation (Ψ·∇)Φ

denotes the parallel derivative of Φ along Ψ, whose coordinates are: ((Ψ · ∇)Φ)i =
∑

j Ψj∂jΦ
i.

Throughout the paper, we consider parabolic operators whose generic form is given by

Lb,σ = ∂t + b(t, x) · ∇+
1

2
∆σ,(2.5)

where b : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd ⊗ Rd.

2.3. Probability space and Diffusions. We are given a filtered probability space (Ω,F , (Ft), P)
on which a standard d-dimensional (Ft)-adapted Brownian motion W (·) is defined. A diffusion
starting from x at time t is denoted by Xt,x and reads:

(2.6) Xt,x(s) = x +

∫ s

t
b(r, Xt,x(r))dr +

∫ s

t
σ(r, Xt,x(r))dWt,0(r), 0 ≤ t ≤ s ≤ T,

where b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd ⊗ Rd and:

(2.7) Wt,0(s) = W (s)−W (t).

More generally, under suitable conditions on σ, W σ
t,x denotes the unique strong solution of the

SDE

W σ
t,x(r) = x +

∫ r

t
σ(u, W σ

t,x(u))dWt,0(u) 0 ≤ t ≤ r ≤ T.(2.8)
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3. Study of a class of parabolic quasi-linear PDEs

3.1. Assumptions and preliminaries lemmas. In the sequel, we say that a function h :
[0, T ] × Rd × Rd → Rd satisfies Assumption (H) if there exist (c1, c2, c3) ∈ R3

+, a non negative

function M ∈ L1([0, T ], L∞(Rd)) and a function ϕ : Rd → R bounded on all compact sets such
that for all (t, x, y, z) ∈ [0, T ]× Rd × Rd × Rd:

|h(t, x, y)| ≤ M(t, x) + c1|y|(3.9)

|h(t, x, y)− h(t, x, z)| ≤ c2|y − z|(3.10)

|∇xh(t, x, y)|+ |∇2
xh(t, x, y)| ≤ c3 + ϕ(y).(3.11)

We set cM := ‖M‖L1([0,T ],L∞(Rd)).

Second, we say that a map σ : [0, T ]×Rd → Rd⊗Rd satisfies Assumption (H∆) if σ ∈ C∞ and

|σ(t, x)ξ|2 ≥ µ|ξ|2, ξ ∈ Rd(3.12)

‖σ‖∞ + ‖∇σ‖∞ < ∞(3.13)

‖σ−1‖∞ + ‖∇σ−1‖∞ + ‖∇2σ−1‖∞ < ∞.(3.14)

Finally, we say that a map φ : (t, x, y) ∈ [0, T ] × Rd × Rd → Rd satisfies Assumption (HΦ) if
φ ∈ C∞, φ(·, ·, 0) is bounded on [0, T ]× Rd, and if

∇xφ, ∇yφ, ∇2
x,xφ, ∇2

x,yφ, ∇2
y,yφ

are bounded in y on any compact subset K ∈ Rd uniformly in (t, x) on [0, T ]× Rd.
If φ satisfies Assumption (HΦ), let us define the following increasing functions:

Φ1
1(ρ) = sup

t∈[0,T ],x∈Rd,|y|≤ρ

|∇xφ(t, x, y)|(3.15)

Φ1
2(ρ) = sup

t∈[0,T ],x∈Rd,|y|≤ρ

|∇yφ(t, x, y)|, ρ ≥ 0.(3.16)

Remark 1. Hypothesis (HΦ) obviously includes the case where σ = CId, φ = b(t, x) + yα where
α is a multi index and b is a bounded function.

We will use several times the following simple lemmas:

Lemma 3.1. Let (gn : [0, T ] → R)n∈N be a sequence of non negative measurable functions. Let
θ ∈ L1([0, T ], R+). If for all n ≥ 0 and t ∈ [0, T ]

(3.17) gn+1(t) ≤ K0 + K1

∫ T

t
gn(s)ds +

∫ T

t
θ(s)ds, g0(t) ≤ K̃0,

then for all t ∈ [0, T ]
(3.18)

gn(t) ≤ K0

n−1∑

k=0

(K1(T − t))k

k!
+

∫ T

0
θ(s)ds

n−1∑

k=1

(K1(T − t))k

k!
+ K̃0

(K1(T − t))n

n!
+

∫ T

t
θ(s)ds.

We also have the useful expression:

(3.19) gn(t) ≤
(

max(K0, K̃0) +

∫ T

0
θ(s)ds

)
eK1(T−t) −

∫ t

0
θ(s)ds.

Proof. The proof stems from an immediate induction. �
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Lemma 3.2. Let φ satisfy Assumption (HΦ). Let χ : [0, T ] × Rd → Rd be a bounded C2 vector
field with bounded derivatives. Then

sup
t∈[0,T ], x∈Rd

|φ(t, x, χ(t, x))| ≤ ‖φ(·, ·, 0)‖∞ + Φ1
2(‖χ‖∞) ‖χ‖∞(3.20)

sup
x∈Rd

∣∣∣∣
∂

∂x
(φ(t, x, χ(t, x)))

∣∣∣∣ ≤ Φ1
1(‖χ‖∞) + Φ1

2(‖χ‖∞)‖∇χ(t)‖∞(3.21)

sup
x∈Rd

∣∣∣∣
∂2

∂x2
(φ(t, x, χ(t, x)))

∣∣∣∣ ≤ C + C‖∇χ(t)‖2∞ + C‖∇2χ(t)‖∞.(3.22)

Proof. The first inequality comes from the inequality

|φ(t, x, χ(t, x))− φ(t, x, 0)| ≤ sup
y∈B(0,‖χ‖∞)

|∇yφ(t, x, y)| |χ(t, x)|,

and Assumption (HΦ). The Leibniz rule and Assumption (HΦ) yield the two other ones. �

Lemma 3.3. The mapping x 7→ W σ
t,x(r) is differentiable for all x ∈ Rd a.s. Moreover its

differential satisfies the SDE

∇W σ
t,x(r) = Id +

∫ r

t
∇σ(u, W σ

t,x(u))∇W σ
t,x(u)dWt,0(u).(3.23)

For all x, y ∈ Rd and all p ≥ 1, we have the followings bounds:

E
∣∣W σ

t,y(s)−W σ
t,x(s)

∣∣2p ≤ Cp|y − x|2p,(3.24)

E|∇W σ
t,x(r)|2p ≤ Cp,(3.25)

E
∣∣∇W σ

t,y(s)−∇W σ
t,x(s)

∣∣2p ≤ Cp|y − x|2p.(3.26)

Proof. The Gronwall Lemma and (3.42) yield the inequality (3.24).
From (3.42), we can write (3.23) (cf e.g. [7]). Using the assumption ‖∇σ‖∞ < ∞, the

Burkolder-Davis-Gundy (BDG) inequality and the Gronwall lemma, we obtain (3.25). Using
(3.23–3.25–3.24), we can finally prove (3.26).

�
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3.2. Main Result. We consider the following Cauchy problem:

{
∂tv(t, x) + (φ(t, x, v) · ∇)v(t, x)− 1

2∆νv(t, x) = h(t, x, v(t, x))

v(0, x) = v0(x),
(3.27)

where φ : Rd → Rd, ν : [0, T ]×Rd → Rd ⊗Rd, h : [0, T ]×Rd ×Rd → Rd, v0 : Rd → Rd are given
while v : [0, T ]× Rd → Rd is the unknown.

For all t ∈ [0, T ], let

λ1(t) =

(
‖v0‖∞ +

∫ T

0
‖M(s)‖∞ds

)
ec1t −

∫ T

t
‖M(s)‖∞ds.(3.28)

We then define the following constants:

λ1 := λ1(T )(3.29)

λ2 := ‖σ−1‖2∞
(
‖φ(·, ·, 0)‖∞ + Φ1

2(λ1)
)2

(3.30)

λ3 := 4‖EJσ‖2∞e2λ2T ,(3.31)

where σ(t, x) = ν(T − t,−x), φ satisfies (HΦ), and Jσ
t,x(s) denotes the module of the Jacobian of

the inverse of the C1 diffeomorphism x 7→W σ
t,x(s).

The main result of this section is the following theorem.

Theorem 3.4. Fix T > 0. Let φ satisfy Assumption (HΦ), v0 ∈ C∞
b,2(R

d), and let h : [0, T ] ×
Rd×Rd → Rd be a C∞ function satisfying Assumption (H). Let ν : [0, T ]×Rd → Rd⊗Rd verify
Assumption (H∆).

Then there exists a unique bounded solution v ∈ C∞([0, T ]×Rd) verifying the Cauchy problem
(3.27). The following bound holds for t ∈ [0, T ]:

‖v(t)‖∞ ≤ λ1(t).

Moreover, if v0 ∈ L2(Rd) ∩ C∞
b,2(R

d) and M ∈ L2([0, T ]× Rd) then

‖v(t)‖22 ≤
(

λ3‖v0‖22 +

∫ T

0
λ3‖M(s)‖22ds

)
eλ3c21Tt −

∫ T

t
λ3‖M(s)‖22ds.

Proof. The proof is based on the following steps. First, using the associated backward Cauchy
system we define a sequence (un) derived from a Feynman-Kac representation. In Step 1, we
show the uniform convergence of (un) using Girsanov’s transformation and Gronwall’s Lemma.
This proof involves estimates on Girsanov’s densities which are a slight generalization of those
already obtained by Busnello [2]. In Step 2, we obtain uniform bounds of the derivatives of un.
In Step 3, we conclude that the limit u of (un) is a smooth solution of the Cauchy system by
using the previous results and applying a Friedman’s Theorem (Th. 15 p.80 in [4]) on uniform
parabolic PDEs. In Step 4, we prove the uniqueness of the solution and eventually in Step 5, we
obtain suitable bounds in L2 for this solution.
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Using the change of variable u(t, x) = v(T − t,−x), we turn the initial Cauchy system into the
following backward one:

{
∂tu(t, x) + (φ(t, x, u) · ∇)u(t, x) + 1

2∆σu(t, x) = −g(t, x, u(t, x))

u(T, x) = u0(x),
(3.32)

where u0 := v0, g(t, x, y) = h(T − t,−x, y) and σ(t, x) = ν(T − t,−x). In particular, g and σ
satisfy the same conditions than h and ν respectively.

Let us define by induction the sequence un : [0, T ]× Rd → Rd, n ≥ 0 as:

u0(t, x) = u0(x)(3.33)

un+1(t, x) = E

[∫ T

t
fn(s, X

(n)
t,x (s))ds + u0(X

(n)
t,x (T ))

]
,(3.34)

where

fn(t, x) = g(t, x, un(t, x)),(3.35)

and X
(n)
t,x is the stochastic flow defined by:

(3.36) X
(n)
t,x (s) = x +

∫ s

t
wn(r, X

(n)
t,x (r))dr +

∫ s

t
σ(r, X

(n)
t,x (r))dWt,0(r), 0 ≤ t ≤ s ≤ T,

with

wn(t, x) = φ(t, x, un(t, x)).(3.37)

Note that un+1 is derived from the Feynman-Kac representation as the solution of the following
PDE:

{
∂tun+1(t, x) + (wn · ∇)un+1(t, x) + 1

2∆σun+1(t, x) = fn(t, x)

un+1(T, x) = u0(x).
(3.38)

From Theorem 10 p. 72 in [4], we deduce by induction that un+1 ∈ C∞([0, T ]× Rd).

Step1: Convergence of (un)n∈N in L∞([0, T ]× Rd).

The expression (3.34) shows that the sequence (un)n≥0 is bounded in L∞([0, T ]×Rd). Indeed,
due to Assumption (H), we can write:

(3.39) ‖un+1(t)‖∞ ≤ ‖u0‖∞ +

∫ T

t
‖M(s)‖∞ds + c1

∫ T

t
‖un(s)‖∞ds,

and we then apply Lemma 3.1 with K0 = K̃0 = ‖u0‖∞, K1 = c1 and θ(s) = ‖M(s)‖∞ to obtain
for all t ∈ [0, T ] the bound:

sup
n≥0
‖un+1(t)‖∞ ≤

(
‖u0‖∞ +

∫ T

0
‖M(s)‖∞ds

)
ec1(T−t) −

∫ t

0
‖M(s)‖∞ds ≤ λ1.

A Girsanov transformation yields the following expression for un+1:

(3.40) un+1(t, x) = E

[(∫ T

t
fn(s, W σ

t,x(s))ds + u0(W
σ
t,x(T ))

)
Z

(x,n)
t,T

]
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where

(3.41) Z
(x,n)
t,s = exp

{∫ s

t
(σ−1wn)

(
r, W σ

t,x(r)
)
dWt,0(r)−

1

2

∫ s

t
|σ−1wn|2

(
r, W σ

t,x(r)
)
dr

}

and W σ
t,x is the solution of the SDE

W σ
t,x(r) = x +

∫ r

t
σ(u, W σ

t,x(u))dWt,0(u) 0 ≤ t ≤ r ≤ T.(3.42)

Indeed, under Q := Z
(x,n)
t,T · P, the process

s 7→ W̃t,0(s) := Wt,0(s)−
∫ s

t
(σ−1wn)

(
r, W σ

t,x(r)
)
dr

is a Brownian motion. We then write:

dW σ
t,x(r) = wn

(
r, W σ

t,x(r)
)
dr + σ(r, W σ

t,x(r))dW̃t,0(r).

It follows that W σ
t,x is a weak solution of the SDE satisfied by X

(n)
t,x . So W σ

t,x has the same law

under Q than X
(n)
t,x under P, and we deduce (3.40).

Lemma 3.5. The sequence (un) defined by (3.33 - 3.37) uniformly converges on [0, T ]× Rd.

Proof. We study the convergence of (un) via the series
∑

γn where

(3.43) γn(t) = ‖(un+1 − un)(t)‖∞.

Let us now remark that the martingale s 7→ Z
(x,n)
t,s solves the SDE

(3.44) Z
(x,n)
t,s = 1 +

∫ s

t
(σ−1wn)(r, W σ

t,x(r))Z
(x,n)
t,r dWt,0(r).

From (3.20) we deduce that (wn)n≥0 is bounded in L∞([0, T ]× Rd) since (un)n≥0 is bounded in
L∞([0, T ]× Rd).

Moreover, the Ito isometry and the Gronwall lemma imply

(3.45) E
(
Z

(x,n)
t,s

)2
≤ exp

(
2‖σ−1‖2∞(s− t)‖wn‖2∞

)
, t ≤ s.

Inequality (3.20) applied with χ = un, and supn≥0 ‖un‖∞ <∞ then yield

(3.46) sup
x∈Rd, t,s∈[0,T ], n≥0

E
(
Z

(x,n)
t,s

)2
<∞.
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Set 0 < T ′ ≤ T . Recall that wn+1 − wn = φ(t, x, un+1) − φ(t, x, un). Since ∇yφ is bounded on

[0, T ]× Rd ×B(0, λ1), we obtain the following inequalities:

E
∣∣∣Z(x,n+1)

t,T ′ − Z
(x,n)
t,T ′

∣∣∣
2
≤ CE

∣∣∣∣∣

∫ T ′

t
(wn+1 − wn)(r, W σ

t,x(r))Z
(x,n+1)
t,r dWt,0(r)

∣∣∣∣∣

2

+CE

∣∣∣∣∣

∫ T ′

t
wn(r, W σ

t,x(r))
(
Z

(x,n+1)
t,r − Z

(x,n)
t,r

)
dWt,0(r)

∣∣∣∣∣

2

≤ CE

∫ T

t
|(un+1 − un)(r, W σ

t,x(r))|2|Z(x,n+1)
t,r |2dr

+CE

∫ T ′

t

∣∣wn(r, W σ
t,x(r))

∣∣2
∣∣∣Z(x,n+1)

t,r − Z
(x,n)
t,r

∣∣∣
2
dr

≤ C

∫ T

t
γn(t)2dr + CE

∫ T ′

t
E
∣∣∣Z(x,n+1)

t,r − Z
(x,n)
t,r

∣∣∣
2
dr.

The Gronwall Lemma (making T ′ vary) then yields:

(3.47) E
∣∣∣Z(x,n+1)

t,T ′ − Z
(x,n)
t,T ′

∣∣∣
2
≤ C

∫ T

t
γn(t)2dr.

We write

(un+1 − un)(t, x) = E

[(∫ T

t

(
fn(s, W σ

t,x(s))− fn−1(s, W
σ
t,x(s))

)
ds

)
Z

(x,n)
t,T

]

+E

[(∫ T

t
fn−1(s, W

σ
t,x(s))ds

)(
Z

(x,n)
t,T − Z

(x,n−1)
t,T

)]

+E
[
u0(W

σ
t,x(T ))

(
Z

(x,n)
t,T − Z

(x,n−1)
t,T

)]
.

Due to the Jensen and Cauchy Schwarz inequalities, the Lipschitz condition satisfied by g, In-
equalities (3.54) and (3.47) with T = T ′, we obtain:

(3.48) γn(t)2 ≤ C

∫ T

t
γn−1(r)

2dr.

Lemma 3.1 then implies:

(3.49) γn(t)2 ≤ Cn+1 (T − t)n

n!
.

Therefore, since the serie
∑√

(C(T−t))n

n! is convergent, it follows

(3.50)
∑

n≥0

sup
t,x
|(un+1 − un)(t, x)| <∞.

This yields the conclusion of Lemma 3.5.
�

Step 2: Bounds for the derivatives of (un).
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Lemma 3.6. If sup[0,T ] ‖∇un(t)‖∞ <∞ then the map
{

Rd −→ L2(Ω)

x 7−→ Z
(x,n)
t,s

(3.51)

is differentiable for all x ∈ Rd. Moreover, its L2(Ω)−valued derivative reads ∇Z
(x,n)
t,s = Z

(x,n)
t,s ∇Y

(x,n)
t,s

where

Y
(x,n)
t,s :=

∫ s

t
rn

(
r, W σ

t,x(r)
)
dWt,0(r)−

1

2

∫ s

t
r2
n

(
r, W σ

t,x(r)
)
ds.(3.52)

Proof. Set

rn = σ−1wn.(3.53)

Recall that supn≥0 ‖un‖∞ <∞ and

(3.54) sup
x∈Rd, t,s∈[0,T ], n≥0

E
(
Z

(x,n)
t,s

)2
<∞,

and more generally from the Doleans form of Z, we can prove that for all p ∈ Z there exists some
constants Cp independent of n such that

(3.55) sup
x∈Rd, t,s∈[0,T ], n≥0

E
(
Z

(x,n)
t,s

)2p
≤ Cp.

In addition, let us note that if αs ∈ [0, 1] is a Fs-adapted random variable then, from the inequality(
Z

(x,n)
t,s

)2p(1−αs)
≤ 1 +

(
Z

(x,n)
t,s

)2p
, we can choose Cp such that

(3.56) sup
x∈Rd, t,s∈[0,T ], n≥0

E
(
Z

(x,n)
t,s

)2p(1−αs)
≤ Cp, p ∈ Z.

We claim that the map
{

Rd −→ L2p(Ω)

x 7−→ Y
(x,n)
t,s

(3.57)

is differentiable everywhere on Rd, and for any p ≥ 1. Moreover its derivative ∇Y
(x0,n)
t,s at

x0 is computed by differentiating (3.52) under the integral sign. Indeed, from the hypothesis
sup[0,T ] ‖∇un(t)‖∞ <∞, Assumption (H∆) and Lemma 3.2, we first obtain that

‖wn‖∞ + ‖rn‖∞ < ∞,(3.58)

‖∇wn(s)‖∞ < C + C‖∇un(s)‖∞,(3.59)

‖∇rn(s)‖∞ < C + C‖∇un(s)‖∞, 0 ≤ s ≤ T.(3.60)

Then, we use the BDG inequality to show that there exist some constants Cp such that

E
∣∣∣Y (x,n)

t,s − Y
(x0,n)
t,s −∇Y

(x0,n)
t,s (x− x0)

∣∣∣
2p
≤ Cp|x− x0|2p, p ≥ 1,(3.61)

and we apply the dominated convergence theorem to conclude about the desired differentiability.
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Now, recall that Z
(x,n)
t,s = eY

(x,n)
t,s . By virtue of measurable selection arguments there is a

FT -measurable random variable αs ∈ [0, 1] such that

E
∣∣∣Z(x,n)

t,s − Z
(x0,n)
t (s)− Z

(x0,n)
t (s)∇Y

(x0,n)
t,s (x− x0)

∣∣∣
2

= E

∣∣∣∣∣∣
eY

(x,n)
t,s − eY

(x0,n)
t,s

Y
(x,n)
t,s − Y

(x0,n)
t,s

(Y
(x,n)
t,s − Y

(x0,n)
t,s )− Z

(x0,n)
t (s)∇Y

(x0,n)
t,s (x− x0)

∣∣∣∣∣∣

2

= E

∣∣∣∣e
αsY

(x0,n)
t,s +(1−αs)Y

(x,n)
t,s (Y

(x,n)
t,s − Y

(x0,n)
t,s )− Z

(x0,n)
t (s)∇Y

(x0,n)
t,s (x− x0)

∣∣∣∣
2

≤ 2E

∣∣∣∣
(

eαsY
(x0,n)
t,s +(1−αs)Y

(x,n)
t,s − Z

(x0,n)
t (s)

)
Y

(x,n)
t,s − Y

(x0,n)
t,s

∣∣∣∣
2

+2E
∣∣∣Z(x0,n)

t (s)
(
Y

(x,n)
t,s − Y

(x0,n)
t,s −∇Y

(x0,n)
t,s (x− x0)

)∣∣∣
2

:= A(x) + B(x).

Let ǫ > 0. Using the Cauchy-Schwarz inequality and (3.61), we then bound A(x) by the square
root of

E

∣∣∣∣e
(1−αs)

“
Y

(x,n)
t,s −Y

(x0,n)
t,s

”

− 1

∣∣∣∣
4

E
∣∣∣Z(x0,n)

t (s)(Y
(x,n)
t,s − Y

(x0,n)
t,s )

∣∣∣
4

≤ C|x− x0|4

ǫ +

√

E

∣∣∣∣e
(1−αs)

“
Y

(x,n)
t,s −Y

(x0,n)
t,s

”

− 1

∣∣∣∣
8√

P
(∣∣∣Y (x,n)

t,s − Y
(x0,n)
t,s

∣∣∣ > η
)

 ,

where η > 0 is such that (ez−1)4 ≤ ǫ for |z| ≤ η. From (3.56), we deduce that A(x) = o(|x−x0|2).
Finally, we use the Cauchy-Schwarz inequality and the differentiability of x 7→ Y

(x,n)
t,s ∈ L4(Ω) to

conclude that B(x) = o(|x− x0|2).
�

Lemma 3.7. The sequence (un) defined by (3.33 - 3.37) verifies

(3.62) sup
n≥0
‖∇un‖∞ <∞.

Proof. Let us assume by induction that sup[0,T ] ‖∇un(t)‖∞ <∞ for some n ≥ 0.

We prove the following statement: if sup[0,T ] ‖∇un(t)‖∞ <∞ for some n ≥ 0 then there exists
a constant C independent of n such that

‖∇un+1(t)‖2∞ ≤ C + C

∫ T

t
‖∇un(r)‖2∞dr.

In that case, since ‖∇u0‖∞ < ∞, then for all n ≥ 0, sup[0,T ] ‖∇un+1(t)‖∞ < ∞. The sequence

(∇un)n≥0 is then uniformly bounded by virtue of Lemma 3.1.

By virtue of the Ito integration by parts, we deduce:

(3.63) ∇xZ
(x,n)
t,s =

∫ s

t

(
∇rn(r, W σ

t,x(r))∇xW σ
t,x(r)Z

(x,n)
t,r + rn(r, W σ

t,x(r))∇xZ
(x,n)
t,r

)
dWt,0(r).
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Thus

(3.64) E
∣∣∣∇Z

(x,n)
t,s

∣∣∣
2

=

∫ s

t
E
∣∣∣∇rn(r, W σ

t,x(r))∇xW σ
t,x(r)Z

(x,n)
t,r + rn(r, W σ

t,x(r))∇Z
(x,n)
t,r

∣∣∣
2
dr.

Therefore, due to inequalities (3.55) and (3.25):

(3.65) E
∣∣∣∇Z

(x,n)
t,s

∣∣∣
2
≤ C

∫ s

t
‖∇rn(r)‖2∞dr + C

∫ s

t
E
∣∣∣∇Z

(x,n)
t,r

∣∣∣
2
dr.

Again, by Gronwall’s Lemma and (3.58),

(3.66) E
∣∣∣∇Z

(x,n)
t,s

∣∣∣
2
≤ C

∫ s

t
‖∇rn(r)‖2∞dr ≤ C + C

∫ s

t
‖∇un(r)‖2∞dr.

We have:

(3.67) ∇fn(s, x) = ∇xg(s, x, un(s, x)) +∇yg(s, x, un(s, x))∇un(s, x),

and then

(3.68) |∇fn(s, x)| ≤ C + C‖∇un(s)‖∞.

Let us now compute the rate of increase

δs(un+1)(x, yα) =
(un+1(s, yα)− un+1(s, x))

α
(3.69)

of ∇un+1(s, ·) in any direction e ∈ Rd, |e| = 1 at x with yα = x + αe:

δt(un+1)(x, yα) = E

[(∫ T

t
δs(fn)(W σ

t,x(s), W σ
t,yα

(s))ds + δ(u0)(W
σ
t,x(T ), W σ

t,yα
(T ))

)
Z

(yα,n)
t,T

]

+ E

[(∫ T

t
fn(s, W σ

t,x(s))ds + u0(W
σ
t,x(T ))

)
δ
(
Z

(·,n)
t,T

)
(x, yα)

]
(3.70)

Using a Taylor expansion we write
∣∣δs(fn)(W σ

t,x(s), W σ
t,yα

(s))
∣∣ ≤ ‖∇fn(s)‖∞

∣∣Wt,yα(s)−W σ
t,x(s)

∣∣α−1(3.71)
∣∣δs(u0)(W

σ
t,x(s), W σ

t,yα
(s))

∣∣ ≤ ‖∇u0(s)‖∞
∣∣Wt,yα(s)−W σ

t,x(s)
∣∣α−1.(3.72)

Moreover,

δ
(
Z

(·,n)
t,T

)
(x, yα)

L2(Ω)−−−−→
α→0

∇Z
(x,n)
t,T · e.(3.73)

Recall the inequality

E
∣∣W σ

t,yα
(s)−W σ

t,x(s)
∣∣2 ≤ C|yα − x|2 = Cα2.

Then we apply the Cauchy-Schwarz inequality taking into account the uniform bound (3.68) in
x, the uniform bound (3.54) in x and n, the uniform bound (3.66) in x and we get as α→ 0:

|∇un+1(t, x)|2 ≤ C + C

∫ T

t
‖∇un(r)‖2∞dr.

where C does not depend on n, which concludes the proof.
�

Remark 2. Note that it is not possible to use directly the dominated convergence theorem to
show the desired uniform bounds.
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Lemma 3.8. The sequence (un) defined by (3.33 - 3.37) verifies

(3.74) sup
n≥0
‖∇2un‖∞ <∞.

Proof. We use the same method than the previous lemma. Recall that we have uniform bounds
for (rn) in n and x, but also for (∇un) and then (∇rn) in x and n due to the previous lemma.

From (3.22), we deduce that

‖∇2wn(t)‖∞ ≤ C + C‖∇un(t)‖2∞ + C‖∇2un(t)‖∞(3.75)

≤ C + C‖∇2un(t)‖∞.(3.76)

Recall that ∇Z
(x,n)
t,s = Z

(x,n)
t,s ∇Y

(x,n)
t,s . Due to the bounds of the successive derivatives of rn and

the semi-martingale decomposition of ∇Y
(x,n)
t,s , we can prove as in the previous lemma that the

map x 7→ ∇Y
(x,n)
t,s is differentiable in L2p(Ω). Moreover ∇2Y

(x,n)
t,s is computed by differentiating

∇Y
(x,n)
t,s under the integral sign. And so is ∇xZ, p ≥ 1. We then have:

(3.77) ∇2Z
(x,n)
t,s = Z

(x,n)
t,s ∇2Y

(x,n)
t,s +∇Y

(x,n)
t,s ∇Z

(x,n)
t,s .

Integrating by parts, we obtain:

∇2
xZ

(x,n)
t,s =

∫ s

t
∇2rn(r, W σ

t,x(r))(∇W σ
t,x(r))2Z

(x,n)
t,r dWt,0(r)

+

∫ s

t
∇rn(r, W σ

t,x(r))∇2W σ
t,x(r)Z

(x,n)
t,r dWt,0(r)

+2

∫ s

t
∇rn(r, W σ

t,x(r))∇Z
(x,n)
t,r dWt,0(r)

+

∫ s

t
rn(r, W σ

t,x(r))∇2
xZ

(x,n)
t,r dWt,0(r).

The suitable bounds then yield

E
∣∣∣∇2Z

(x,n)
t,s

∣∣∣
2
≤ C

∫ s

t
‖∇2un(r)‖2∞dr + C,(3.78)

where the constant C does not depend on n.
Repeating the same reasoning involving the rates of increase and the Cauchy-Schwarz inequality

as in the previous lemma, we can bound ∇2un+1 by an expression in terms of Z
(x,n)
t , fn, u0, W σ

t,x

and their two first derivatives using a first order Taylor expansion. We then obtain

|∇2un+1(t, x)|2 ≤ C + C

∫ T

t
‖∇2un(r)‖2∞dr.

The conclusion of Lemma 3.8 follows from Lemma 3.1.
�

Step 3: Existence of a smooth solution.

We apply Theorem 15 p.80 in [4] (See Appendix 5.1). Let us define the following sequence of
parabolic operators:

(3.79) Lφ(t,x,un) = ∂t + φ(t, x, un) · ∇+
1

2
∆σ.



15

We can write:

(3.80) Lφ(t,x,un)un+1 = fn.

Let us verify the assumptions of Friedman’s Theorem on any bounded domain Ξ ⊂ [0, T ) × Rd

of the form Ξ = [0, T [×[m, M ]. First we know that (un) uniformly converges to a function u on
[0, T ]× Rd. Second from Steps 1 and 2 we deduce that

(3.81) sup
n≥0
‖∂tun‖∞ <∞,

and then

(3.82) sup
n≥0

(‖∂tun‖∞ + ‖un‖∞ + ‖∇un‖∞) <∞.

Therefore

(3.83) sup
n≥0

(‖∂tfn‖∞ + ‖fn‖∞ + ‖∇fn‖∞) <∞.

Condition (B) (See Appendix 5.1) i.e. the uniform parabolic condition holds due to Assumption
H∆, whereas Condition (A) holds due to (4.131) and Assumption H∆. Now the solution un+1 of

Lφ(t,x,un)un+1 = fn

obviously satisfies (4.130). As a consequence, there exists a subsequence of (un+1) such that its
two first derivatives also converge uniformly on the domain Ξ. Moreover u is continuously twice
differentiable and verifies

(3.84) (Lφ(t,x,u)u)(t, x) =

(
∂tu + φ(t, x, u) · ∇u +

1

2
∆σu

)
(t, x) = −g(t, x, u(t, x)), (t, x) ∈ Ξ.

As a conclusion, using Theorem 10 p.72 in [4], we deduce that u ∈ C∞([0, T )× Rd).

It remains to conclude about the regularity at T . By Step 1, we deduce that

‖u(t)− u0‖∞ −−−→
t→T

0.

Using (3.70) we compute δt(un+1)(x, yα)−∇u0(x). We bound it by means of Cauchy-Schwarz’s
inequality, the uniform bound (3.54) and Taylor expansions as in (3.71–3.72). We then let α→ 0
to obtain a bound for ‖∇un+1(t)−∇u0‖∞. Using Cauchy-Schwarz’s inequality, Inequality (3.66)
together with Lemma 3.7, we can let n → ∞ and hence obtain a bound for ‖∇u(t)−∇u0‖∞ of
the form C(T − t). We finally deduce

‖∇u(t)−∇u0‖∞ −−−→
t→T

0.(3.85)

The same analysis can be performed to show the continuity of the derivatives of higher order.

Step 4: Unicity of the solution.

Lemma 3.9. The system (4.120) admits at most one bounded solution in C∞([0, T ]× Rd).

Proof. Let u and v be two bounded solutions in C∞([0, T ]×Rd). We write their implicit Feynman-
Kac representation; For instance u reads:

u(t, x) = E

[∫ T

t
fu(s, Xu

t,x(s))ds + u0(X
u
t,x(T ))

]
,(3.86)
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where

fu(t, x) = g(t, x, u(t, x)),(3.87)

and Xu
t,x is the stochastic flow defined by

(3.88)

Xu
t,x(s) = x +

∫ s

t
φ
(
r, Xu

t,x(r), u(r, Xu
t,x(r))

)
dr +

∫ s

t
σ(r, Xu

t,x(r))dWt,0(r), 0 ≤ t ≤ s ≤ T.

Using the same notation and techniques as in Lemma 3.5, we obtain

(3.89) γ(t) := sup
x∈Rd

|(u− v)(t, x)|2 ≤ C E|Z(x,u)
t,T − Z

(x,v)
t,T |2.

Set 0 < T ′ ≤ T . As in Lemma 3.5 we obtain the following inequalities:

E
∣∣∣Z(x,u)

t,T ′ − Z
(x,v)
t,T ′

∣∣∣
2
≤ CE

∣∣∣∣∣

∫ T ′

t
(u− v)(r, W σ

t,x(r))Z
(x,v)
t,r dWt,0(r)

∣∣∣∣∣

2

+CE

∣∣∣∣∣

∫ T ′

t
v(r, W σ

t,x(r))(Z
(x,u)
t,r − Z

(x,v)
t,r )dWt,0(r)

∣∣∣∣∣

2

= CE

∫ T

t
|(u− v)(r, W σ

t,x(r))|2
∣∣∣Z(x,u)

t,r

∣∣∣
2
dr

+CE

∫ T ′

t
|v(r, W σ

t,x(r)|2
∣∣∣Z(x,u)

t,r − Z
(x,u)
t,r

∣∣∣
2
dr

= C

∫ T

t
γ(r)dr + CE

∫ T ′

t
E
∣∣∣Z(x,u)

t,r − Z
(x,v)
t,r

∣∣∣
2
dr.

So due to Gronwall’s Lemma (making T ′ vary):

(3.90) E
∣∣∣Z(x,u)

t,T ′ − Z
(x,v)
t,T ′

∣∣∣
2
≤ C

∫ T

t
γ(r)dr.

Setting now T ′ = T , we thus have:

(3.91) γ(t) ≤ C

∫ T

t
γ(r)dr.

Thus γ = 0, which concludes Lemma 3.9.
�

Step 5: L2 bounds of the solution when u0 ∈ L2(Rd).

From (3.45–3.20) we obtain:

E
(
Z

(x,n)
t,T

)2
≤ exp(2λ2(T − t)).(3.92)
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Let us assume that u0 ∈ L2(Rd) and ‖M‖2
L([0,T ]×Rd)

< ∞. From (3.40) and using the Cauchy

Schwarz inequality we deduce the following:

|un+1(t, x)| ≤
√

E
(
Z

(x,n)
t,T

)2

√

E

∣∣∣∣
∫ T

t
fn(s, W σ

t,x(s))ds + u0(W σ
t,x(T ))

∣∣∣∣
2

|un+1(t, x)|2 ≤ 2E
(
Z

(x,n)
t,T

)2
E

(
(T − t)

∫ T

t

∣∣fn(s, W σ
t,x(s))

∣∣2 ds +
∣∣u0(W

σ
t,x(T ))

∣∣2
)

By Th. 4.6.5 p.173 in [7], we know that x 7→ W σ
t,x(s) is a C1 diffeomorphism. Let Jσ

t,x(s) be

the module of the Jacobian of its inverse. Using e|z| ≤ ez + e−z, the martingale property of
the Doleans exponential, and the bounds of the successive derivatives of σ, we can prove that
‖EJσ‖∞ <∞. We then obtain by integrating in x the last inequality:

‖un+1(t)‖22 ≤ 2E
(
Z

(x,n)
t,T

)2
‖EJσ‖∞

(
(T − t)

∫ T

t

∫

Rd

|fn(s, x)|2 dxds +

∫

Rd

|u0(x)|2 dx

)

≤ 2‖EJσ‖∞e2λ2(T−t)

(
T

∫ T

t
‖fn(s)‖22ds + ‖u0‖22

)

≤ 4‖EJσ‖∞e2λ2(T−t)

(
T

∫ T

t
‖M(s)‖22ds + c2

1T

∫ T

t
‖un(s)‖22ds + ‖u0‖22

)
.

Setting λ3 = 4‖EJσ‖2∞e2λ2T , we now apply Lemma 3.1 with k0 = K̃0 = λ3‖u0‖22, K1 = λ3c
2
1T

and θ(s) = λ3‖M(s)‖22 and we get:

‖un+1(t)‖22 ≤
(

λ3‖u0‖22 +

∫ T

0
λ3‖M(s)‖22ds

)
eλ3c21T (T−t) −

∫ t

0
λ3‖M(s)‖22ds.

This concludes the Theorem.
�

3.3. Source term of the form uα. We consider the following Cauchy problem

{
∂tv(t, x) + (φ(v) · ∇)v(t, x)− ν∆v(t, x) = βvα(t, x)

v(0, x) = v0(x),
(3.93)

where ν > 0, α ≥ 2, φ : Rd → Rd, v0 : Rd → Rd and v : [0, T ]×Rd → Rd is the unknown. By xα,
we mean (x1α, · · · , xdα).

Theorem 3.10. Let T > 0, α ≥ 2, φ be a function in C∞(Rd) whose first and second derivatives
are bounded, v0 ∈ C∞(Rd) with bounded derivatives of all orders and assume that

β‖v0‖α−2
∞ e‖v0‖∞T (α−1) ≤ 1.

Then there exists a unique solution v in C∞ verifying the Cauchy problem (3.93).

Remark 3.
(i) We consider the case where φ is in C∞(Rd) with first and second derivatives bounded,

only for simplicity.
(ii) In the case where v0 ∈ C∞(Rd) ∩ L2(Rd), this theorem is actually a particular case of

well known results on local existence for quasi-linear PDEs (see [11] e.g.).
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Proof. The proof of this theorem is very similar to that of Theorem 3.4. Using the change of
variable u(t, x) = v(T − t,−x), we turn the initial Cauchy system into the following backward
one:

{
∂tu(t, x) + (φ(u) · ∇)u(t, x) + 1

2σ2∆u(t, x) = −βuα(t, x)

u(T, x) = u0(x),
(3.94)

where u0 := v0 and σ =
√

2ν.
Let us define by induction the sequence un : [0, T ]× Rd → Rd, n ≥ 0 as:

u0(t, x) = u0(x)(3.95)

un+1(t, x) = E

[∫ T

t
fn(s, X

(n)
t,x (s))ds + u0(X

(n)
t,x (T ))

]
,(3.96)

where

fn(t, x) = βuα
n(t, x),(3.97)

and X
(n)
t,x is the stochastic flow defined by:

(3.98) X
(n)
t,x (s) = x +

∫ s

t
wn(r, X

(n)
t,x (r))dr + W σ

t,0(s), 0 ≤ t ≤ s ≤ T,

with

wn(t, x) = φ(un(t, x)).(3.99)

Because of the Feynman-Kac representation of un+1, we get

‖un+1‖∞ ≤ β

∫ T

t
‖un(s)‖α∞ds + ‖u0‖∞.

By induction, we assume that

‖un(s)‖∞ ≤
n∑

k=0

‖u0‖k+1
∞ (T − s)k

k!
, s ∈ [0, 1].

Then

‖un(s)‖∞ ≤ ‖u0‖∞e‖u0‖∞T ,

and

‖un+1‖∞ ≤ β‖u0‖α−1
∞ e‖u0‖∞T (α−1)

∫ T

t
‖un(s)‖∞ds + ‖u0‖∞

≤ ‖u0‖∞
n∑

k=0

‖u0‖k+1
∞ (T − s)k+1

(k + 1)!
+ ‖u0‖∞

≤
n+1∑

k=0

‖u0‖k+1
∞ (T − s)k

k!
.

We can then conclude that supn,t ‖un(t)‖∞ <∞ and supn,t ‖fn(t)‖∞ <∞.

The sequel is similar; To show that (un)n is uniformly convergent, we have to estimate

(fn+1 − fn) (s, x + σWt,0(s)) = β
(
uα

n+1 − uα
n

)
(s, x + σWt,0(s)).
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But the Taylor expansion component wise yields the equality (Xi)α− (Y i)α = α(θi)α−1(Xi−Y i)
where θi ∈ [Xi, Y i]. In our case, θi ∈ [ui

n+1, u
i
n] is bounded so that

|(fn+1 − fn) (s, x + σWt,0(s))| ≤ c |(un+1 − un) (s, x + σWt,0(s))|
and we can conclude as in the proof of Theorem 3.4.

As for the estimation of ‖∇un‖∞, we have

|∇fn(t, x)| = β
∣∣α∇un(t, x)uα−1

n (t, x)
∣∣ ≤ c‖∇un(t, x)‖∞.

Thus, we can conclude as in the proof of Theorem 3.4 that supn ‖∇un‖∞ <∞. Finally,

∇2fn(t, x) = βα(α− 1) (∇un(t, x))2 uα−2
n (t, x) + βα∇2un(t, x)uα−1

n (t, x).

It follows that ∣∣∇2fn(t, x)
∣∣ ≤ c

∣∣∇2un(t, x)
∣∣+ c

and we can also conclude in the same way that supn ‖∇2un‖∞ <∞.
Therefore, it suffices to conclude by using Theorem 15 p.80 in [4].
The uniqueness is obtained by the same reasoning: setting γ(t) := supx∈Rd |(u− v)(t, x)|2, we

deduce

(3.100) γ(t) ≤ C

∫ T

t
γ(r)dr,

since α ≥ 2 implies (ui)α(t, x) − (vi)α(t, x) = (ui(t, x) − vi(t, x))li(t, x) where li are bounded
functions.

�
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4. Hyperbolic case

This section aims at studying the following hyperbolic PDE:

{
∂tv(t, x) + (φ(t, x, v) · ∇)v(t, x) = h(t, x, v(t, x))

v(0, x) = v0(x),
(4.101)

where φ : Rd → Rd, ν : [0, T ]×Rd → Rd ⊗Rd, h : [0, T ]×Rd ×Rd → Rd, v0 : Rd → Rd are given
while v : [0, T ]× Rd → Rd is the unknown.

Recall that for all t ∈ [0, T ]

λ1(t) :=

(
‖v0‖∞ +

∫ T

0
‖M(s)‖∞ds

)
ec1t −

∫ T

t
‖M(s)‖∞ds.(4.102)

We then define the following constants:

λ1 := λ1(T )(4.103)

βg,φ,v0 := ‖∇v0‖∞Φ1
2(λ1)

(
e−Φ1

1(λ1)T ‖∇xg‖∞
2‖∇v0‖∞

+ ‖∇yg‖∞
)−1

.(4.104)

The main result of this section is the following theorem.

Theorem 4.1. Let T > 0, φ be a function in C∞(Rd) whose first and second derivatives are
bounded, v0 ∈ C4

b,4(R
d) with bounded derivatives of all orders, h : [0, T ]×Rd×Rd → Rd be a C∞

function satisfying Assumption (H).
Then there exists T ∗ ∈ (0, T ] and a unique bounded solution v in C2([0, T ∗]×Rd) verifying the

Cauchy problem (4.101). Moreover:

sup
t∈[0,T ∗]

‖v(t)‖ ≤ λ1,(4.105)

and the following lower bound for T ∗ holds:

T ∗ ≥ e−Φ1
1(λ1)T

2Φ1
2(λ1)‖∇v0‖∞

log

(
1 + 2βg,φ,v0

1 + βg,φ,v0

)
.(4.106)

Proof. The proof is based on the following steps. First, based on the associated backward Cauchy
system we define and study a collection of sequence σ 7→ uσ := (uσ

n) derived from a Feynman-
Kac representation where the coefficient diffusion sequence σ = (σn(·))n lie in the family Σ of
all sequences such that for all n ∈ N, σn(·) ∈ C∞

b ([0, T ], (0,∞)). In Step 1, we obtain uniform
bounds of the derivatives of (uσ

n) in n and σ on a small interval. In Step 2, we show the uniform
convergence of a particular sequence u∗ :=

(
uσ∗

n

)
for a suitable sequence σ∗ converging to 0 as

n → ∞. In Step 3, we conclude that the limit u∗ of
(
uσ∗

n

)
is a smooth solution of the Cauchy

system by using the previous results and applying a Friedman’s Theorem (Th. 15 p.80 in [4]) on
uniform parabolic PDEs. In Step 4, we prove the uniqueness of the solution and eventually in
Step 5, we obtain suitable bounds in L∞ and L2 for this solution.
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Using the change of variable u(t, x) = v(T − t,−x), we turn the initial Cauchy system into the
following backward one:

{
∂tu(t, x) + (φ(t, x, u) · ∇)u(t, x) = −g(t, x, u(t, x))

u(T, x) = u0(x),
(4.107)

where u0 := v0 and g(t, x, y) = h(T − t,−x, y) . Note that g satisfies the same conditions than h.
For a given sequence σ = (σn(t))n ∈ Σ, let us define by induction the sequence uσ = (uσ

n) :
[0, T ]× Rd → Rd, n ≥ 0 as:

uσ
0 (t, x) = u0(x)(4.108)

uσ
n+1(t, x) = E

[∫ T

t
fσ

n (s, X
(n)
t,x (s))ds + u0(X

(n)
t,x (T ))

]
,(4.109)

where

fn(t, x) = g(t, x, uσ
n(t, x)),(4.110)

and X
(n)
t,x is the stochastic flow defined by:

(4.111) X
(n)
t,x (s) = x +

∫ s

t
wσ

n(r, X
(n)
t,x (r))dr +

∫ s

t
σn(r)dWt,0(r), 0 ≤ t ≤ s ≤ T,

with

wσ
n(t, x) = φ(t, x, uσ

n(t, x)).(4.112)

Note that uσ
n+1 is derived from the Feynman-Kac representation as the solution of the following

PDE:
{

∂tu
σ
n+1(t, x) + (wσ

n · ∇)uσ
n+1(t, x) + 1

2σ2
n(t)∆uσ

n+1(t, x) = fσ
n (t, x)

uσ
n+1(T, x) = u0(x).

(4.113)

From Theorem 10 p. 72 in [4], we deduce by induction that uσ
n+1 ∈ C∞([0, T ]× Rd).

Lemma 4.2. There exists T0 ∈ [0, T ) and a constant C∗
0 such that for all t ∈ [T0, T ] and all

σ ∈ Σ.

sup
n∈N

(
‖uσ

n(t)‖∞ + ‖∇uσ
n(t)‖∞ + · · ·+ ‖∇4uσ

n(t)‖∞
)
≤ C∗

0 .

Proof. As in Step 1 of Theorem 3.4, we deduce that for all n ≥ 0 and all σ ∈ Σ, ‖uσ
n‖∞ ≤ λ1.

From (4.111), we compute

∇X
(n)
t,x (s) = Id +

∫ s

t
∇wσ

n(r, X
(n)
t,x (r))∇X

(n)
t,x (r)dr, 0 ≤ t ≤ s ≤ T.(4.114)

From (3.21) we have ‖∇wσ
n(r)‖∞ ≤ Φ1

1(λ1) + Φ1
2(λ1)‖∇uσ

n(r)‖∞, and then

|∇X
(n)
t,x (s)| ≤ eΦ1

1(λ1)T exp

(
Φ1

2(λ1)

∫ s

t
‖∇uσ

n(r)‖∞dr

)
.(4.115)
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Computing

∇uσ
n+1(t, x) = E

[∫ T

t
∇xg(s, X

(n)
t,x (s), uσ

n(r, X
(n)
t,x (s)))∇X

(n)
t,x (s)ds

+

∫ T

t
∇yg(s, X

(n)
t,x (s), uσ

n(r, X
(n)
t,x (s)))∇uσ

n(t, X
(n)
t,x (s))∇X

(n)
t,x (s)ds

+ ∇u0(X
(n)
t,x (T )∇X

(n)
t,x (T ))

]
,

we thus deduce

e−Φ1
1(λ1)T

∣∣∇uσ
n+1(t, x)

∣∣ ≤ ‖∇xg‖∞
∫ T

t
exp

(
Φ1

2(λ1)

∫ s

t
‖∇uσ

n(r)‖∞dr

)
ds

+‖∇yg‖∞
∫ T

t
‖∇uσ

n(s)‖∞ exp

(
Φ1

2(λ1)

∫ s

t
‖∇uσ

n(r)‖∞dr

)
ds

+‖∇u0‖∞ exp

(
Φ1

2(λ1)

∫ T

t
‖∇uσ

n(r)‖∞dr

)

Let us define the constant

C1 = 2eΦ1
1(λ1)T ‖∇u0‖∞

and the decreasing function ηC1 on [0, T ] by

ηC1(t) := eΦ1
1(λ1)T

(
eΦ1

2(λ1)C1(T−t) (Cg,φ,λ1 + ‖∇u0‖∞)− Cg,φ,λ1

)
(4.116)

where

Cg,φ,λ1 :=
‖∇xg‖∞
Φ1

2(λ1)C1
+
‖∇yg‖∞
Φ1

2(λ1)
.(4.117)

Let us choose T0 < T such that ηC1(T0) = C1, that is

T0 := T − 1

Φ1
2(λ1)C1

log

(
Cg,φ,λ1 + 2‖∇u0‖∞
Cg,φ,λ1 + ‖∇u0‖∞

)
.(4.118)

Let us prove by induction that

sup
n∈N, t∈[T0,T ]

‖∇un(t)‖∞ ≤ C1.(4.119)

So assume for some n that for all t ∈ [T0, T ], ‖∇un(t)‖∞ ≤ C1. Hence,

e−Φ1
1(λ1)T

∣∣∇uσ
n+1(t, x)

∣∣ ≤ ‖∇xg‖∞
∫ T

t
exp

(
Φ1

2(λ1)C1(s− t)
)
ds

+‖∇yg‖∞
∫ T

t
‖∇uσ

n(s)‖ exp
(
Φ1

2(λ1)C1(s− t)
)
ds

+‖∇u0‖∞ exp
(
Φ1

2(λ1)C1(T − t)
)
,
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and

e−Φ1
1(λ1)T

∣∣∇uσ
n+1(t, x)

∣∣ ≤ ‖∇xg‖∞
Φ1

2(λ1)C1

(
eΦ1

2(λ1)C1(T−t) − 1
)

+
‖∇yg‖∞
Φ1

2(λ1)

(
eΦ1

2(λ1)C1(T−t) − 1
)

+‖∇u0‖ exp
(
Φ1

2(λ1)C1(T − t)
)
.

Therefore
∣∣∇uσ

n+1(t, x)
∣∣ ≤ ηC1(t) ≤ ηC1(T0) = C1, T0 ≤ t ≤ T,

which proves (4.119).

Let us now prove that |∇2X
(n)
t,x (s)| ≤ C + C

∫ s
t ‖∇2uσ

n(r)‖∞dr, where C is a constant indepen-
dent of n and σ. First write:

∇2X
(n)
t,x (s) =

∫ s

t
∇2wσ

n(r, X
(n)
t,x (r))∇X

(n)
t,x (r)dr +

∫ s

t
∇wσ

n(r, X
(n)
t,x (r))∇2X

(n)
t,x (r)dr.

From (3.20–3.21) and the uniform bound (4.119) we obtain for all n ∈ N and all σ ∈ Σ

‖∇wn(r)‖∞ ≤ C

‖∇2wn(r)‖∞ ≤ C + C‖∇2uσ
n(r)‖∞.

(Recall that C can change from line to line) Moreover from (4.115–4.119), we deduce that

sup
x,n, T0≤t≤s≤T

|∇X
(n)
t,x (s)| <∞.

Thus

|∇2X
(n)
t,x (s)| ≤ C + C

∫ s

t
‖∇2uσ

n(r)‖∞dr + C

∫ s

t
|∇2X

(n)
t,x (r)|dr.

Therefore by Gronwall’s lemma

|∇2X
(n)
t,x (s)| ≤ C + C

∫ s

t
‖∇2uσ

n(r)‖∞dr.

We then compute ∇2un+1 using (4.116), and we deduce from the last inequality

‖∇2uσ
n+1(t)‖∞ ≤ C + C

∫ T

t
‖∇2uσ

n(r)‖∞dr.

So we finally obtain a constant C2 such for all σ and n

‖∇2uσ
n+1(t)‖∞ ≤ C2, t ∈ [T0, T ].

Using similar reasonings, we obtain uniform bounds C3 and C4 in n, σ ∈ Σ and t ∈ [T0, T ] for
‖∇3uσ

n+1‖∞ and ‖∇4uσ
n+1‖∞. Setting C∗

1 = max{λ1, Cj , 1 ≤ j ≤ 4}, we conclude the Lemma. �

Let us now prove the following

Lemma 4.3. There exists a constant C∗
1 such that for all t ∈ [T0, T ], all σ ∈ Σ and all n ≥ 0

‖(uσ
n+1 − uσ

n)(t)‖∞ ≤ C∗
1

∫ T

t
‖(uσ

n − uσ
n−1)(r)‖∞dr + C∗

1

√∫ T

t
(σn−1(r)− σn(r))2dr.
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Proof. We write

(uσ
n+1 − uσ

n)(t, x) = E

∫ T

t

(
g(s, X

(n)
t,x (s), uσ

n(s, X
(n)
t,x (s)))− g(s, X

(n−1)
t,x (s), uσ

n(s, X
(n)
t,x (s)))

+ g(s, X
(n−1)
t,x (s), uσ

n(s, X
(n)
t,x (s)))− g(s, X

(n−1)
t,x (s), uσ

n(s, X
(n−1)
t,x (s)))

+ g(s, X
(n−1)
t,x (s), uσ

n(s, X
(n−1)
t,x (s)))− g(s, X

(n−1)
t,x (s), uσ

n−1(s, X
(n−1)
t,x (s)))

)
ds

+E
[
u0(X

(n)
t,x (T ))− u0(X

(n−1)
t,x (T ))

]
.

Due to the uniform bounds of ∇xg, ∇yg∇uσ
n, ∇yg and ∇u0 in n and σ ∈ Σ, we deduce a constant

d0 independent of σ and n such that

|uσ
n+1 − uσ

n|(t, x) ≤ d0

∫ T

t
E
∣∣∣X(n)

t,x (s)−X
(n−1)
t,x (s)

∣∣∣ ds

+d0

∫ T

t
‖uσ

n(s)− uσ
n−1(s)‖∞ds

+E
∣∣∣X(n)

t,x (T )−X
(n−1)
t,x (T )

∣∣∣ .(4.120)

But

X
(n)
t,x (s)−X

(n−1)
t,x (s) =

∫ s

t

(
wn(r, X

(n)
t,x (r))− wn−1(r, X

(n)
t,x (r))

)
dr

+

∫ s

t

(
wn−1(r, X

(n)
t,x (r))− wn−1(r, X

(n−1)
t,x (r))

)
dr

+

∫ T

t
(σn−1(r)− σn(r))dWt,0(r).

Therefore, due to the uniform bounds of ∇φ and ∇uσ
n, and Ito’s isometry, we deduce a constant

d1 independent of σ and n such that

E
∣∣∣X(n)

t,x (s)−X
(n−1)
t,x (s)

∣∣∣ ≤ d1

∫ T

t
‖uσ

n(r)− uσ
n−1(r)‖∞dr

+d1

∫ s

t
E
∣∣∣X(n)

t,x (s)−X
(n−1)
t,x (r)

∣∣∣ dr

+

√∫ T

t
(σn−1(r)− σn(r))2dr.

We use Gronwall’s Lemma to obtain a constant d2 independent of σ and n such that

E
∣∣∣X(n)

t,x (s)−X
(n−1)
t,x (s)

∣∣∣ ≤ d2

∫ T

t
‖uσ

n(r)− uσ
n−1(r)‖∞dr

+d2

√∫ T

t
(σn−1(r)− σn(r))2dr.

Using (4.120), we finally reach the conclusion. �
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Let us fix T̃ > T and p0 ∈ N∗ such that

2

√
T̃

p0 + 1
≤ 1/2.(4.121)

Set C∗ = max

(
C∗

0 , C∗
1 ,

p0!
1

2(p0−1)

(T̃ − T )
p0

2(p0−1)

)
. In particular, we have:

C∗
p0(T̃ − T )p0/2

√
p0!

≥ C∗.(4.122)

Note that Lemma 4.3 holds if we replace C∗
1 by C∗. Finally, let us define for all t ∈ [0, T̃ ]

σ∗
n(t) :=

Cn+p0
∗ (T̃ − t)

n+p0
2

√
(n + p0 + 1)!

, n ≥ 1.(4.123)

Lemma 4.4. The sequence u = uσ∗

= (un) uniformly converges on [T0, T ]× Rd.

Proof. Since

0 ≤ σ∗
n+1

σ∗
n

(t) ≤ C∗T̃
1
2

√
(n + p0 + 2)

−−−→
n→∞

0,

there exists n0 such that (σ∗
n)n≥n0 is decreasing uniformly on [T0, T ] and we choose n0 sufficiently

large so that

Cn0
∗ (T̃ − t)

n0
2

√
n0!

√
(p0 + 1)! ≤ 1.(4.124)

Morevover, t 7→ σ∗
n(t) is decreasing [T0, T ] for all n ∈ N. Then

√∫ T

t
(σ∗

n(r)− σ∗
n+1(r))

2dr ≤

√∫ T

t
(σ∗

n(r))2dr

≤ σ∗
n(t)

√
T̃ − t.(4.125)

Consider the sequence (αn) defined for all n ∈ N as

αn(t) :=

{ ‖(un+1+n0 − un+n0)(t)‖∞, t ∈ [0, T ]

0, t ∈ [T, T̃ ].

Let us prove by induction that for all n and all t ∈ [T0, T̃ ]

αn(t) ≤ 2
Cp0+n
∗ (T̃ − t)(p0+n)/2

√
(p0 + n)!

.(4.126)

We can easily check that for all t ∈ [T0, T̃ ],

α0(t) ≤ 2
Cp0
∗ (T̃ − t)p0/2

√
p0!

,

due to (4.122) and the following inequality on the interval [T0, T ]:

‖(un0+1 − un0)(r)‖∞ ≤ ‖un0+1‖∞ + ‖un0‖∞ ≤ 2C∗
0 ≤ 2C∗.
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Let us now assume that for a given n, Inequality (4.126) holds. From Corollary 4.120 and

Inequality (4.125), we deduce that for all t ∈ [T0, T̃ ]

αn+1(t) ≤ C∗

∫ eT

t
αn(r)dr + C∗σ

∗
n+n0

(t)

√
T̃ − t

≤ 2
Cp0+n+1
∗ (T̃ − t)(p0+n+2)/2

√
(p0 + n)!

2

p0 + n + 2

+
Cn+p0+1
∗ (T̃ − t)

n+p0
2

√
(n + p0 + 1)!

√
T̃ − t

σ∗
n+n0

σ∗
n

(t).

But, with (4.124)

σ∗
n+n0

σ∗
n

(t) =
Cn0
∗ (T̃ − t)

n0
2

√
(n + p0 + 2) · · · (n + p0 + n0)

≤ Cn0
∗ (T̃ − t)

n0
2

√
n0!

√
(p0 + 1)! ≤ 1.

Thus

αn+1(t) ≤ 2
Cp0+n+1
∗ (T̃ − t)(p0+n+1)/2

√
(p0 + n + 1)!

2
√

T̃ − t√
p0 + n + 1

+
Cn+p0+1
∗ (T̃ − t)

n+p0+1
2

√
(n + p0 + 1)!

.

We then conclude with (4.121) that

αn+1(t) ≤ 2
Cp0+n+1
∗ (T̃ − t)(p0+n+1)/2

√
(p0 + n + 1)!

.

Therefore the series
∑

αn is convergent uniformly on [T0, T ]. So the sequence (un) uniformly
converges on [T0, T ]× Rd. �

We now apply Theorem 15 p.80 in [4]. Let us define the following sequence of parabolic
operators:

(4.127) Gn = ∂t + φ(t, x, un) · ∇+
σn(t) + 1

2
∆.

We can write:

(4.128) Gnun+1 = fn +
1

2
∆un+1.

Let us verify the assumptions of Friedman’s Theorem on any bounded domain Ξ ⊂ [0, T ) × Rd

of the form Ξ = [0, T [×[m, M ]. First we know that (un) uniformly converges to a function u on
[T0, T ]× Rd. Second from Lemma 4.2 we deduce that

(4.129) sup
n≥0
‖∂tun‖∞ <∞,

and then

(4.130) sup
n≥0

(‖∂tun‖∞ + ‖un‖∞ + ‖∇un‖∞) <∞.
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Therefore

(4.131) sup
n≥0

(∥∥∥∥∂t(fn +
1

2
∆un+1)

∥∥∥∥
∞

+

∥∥∥∥∇
(

fn +
1

2
∆un+1

)∥∥∥∥
∞

+

∥∥∥∥fn +
1

2
∆un+1

∥∥∥∥
∞

)
<∞.

Condition (B) (See Appendix 5.1) i.e. the uniform parabolic condition obviously holds, whereas
Condition (A) holds due to (4.2). As a consequence, there exists a subsequence of (un+1) such
that its two first derivatives also converge uniformly on the domain Ξ. Moreover u is continuously
twice differentiable and verifies
(4.132)

(Guu)(t, x) =

(
∂tu + φ(t, x, u) · ∇u +

1

2
∆u

)
(t, x) = −g(t, x, u(t, x)) +

1

2
∆u(t, x), (t, x) ∈ Ξ.

As a conclusion, using Theorem 10 p.72 in [4], we deduce that u ∈ C2([0, T )× Rd).

Let us prove the uniqueness of the solution. Let u and v be two solutions and write:

∂tu(t, x) + (φ(u) · ∇)u(t, x) + σ∆u(t, x) = −g(t, x, u(t, x)) + σ∆u(t, x)

∂tv(t, x) + (φ(v) · ∇)v(t, x) + σ∆v(t, x) = −g(t, x, v(t, x)) + σ∆v(t, x).

Thus

(u− v)(t, x) = E

∫ T

t

{
g(s, Xu

t,x(s), u(s, Xu
t,x(s)))− g(s, Xv

t,x(s), u(s, Xu
t,x(s)))

+ g(s, Xv
t,x(s), u(s, Xu

t,x(s)))− g(s, Xv
t,x(s), u(s, Xv

t,x(s)))

+ g(s, Xv
t,x(s), u(s, Xv

t,x(s)))− g(s, Xv
t,x(s), v(s, Xv

t,x(s)))

+ σ
(
∆u(s, Xu

t,x(s))−∆u(s, Xv
t,x(s))

)

+ σ
(
∆u(s, Xv

t,x(s))−∆v(s, Xv
t,x(s))

)}
ds

+E
[
u0(X

u
t,x(T ))− u0(X

v
t,x(T ))

]
.

We then have

E
∣∣Xu

t,x(s)−Xv
t,x(s)

∣∣ ≤ a1

∫ T

t
‖u(r)− v(r)‖∞dr

+a1

∫ s

t
E
∣∣Xu

t,x(s)−Xv
t,x(r)

∣∣ dr.

Therefore

E
∣∣Xu

t,x(s)−Xv
t,x(s)

∣∣ ≤ a2

∫ T

t
‖u(r)− v(r)‖∞dr.

As in the previous lemma, we can prove that there exists C such that for all σ ∈ (0, 1),

‖(u− v)(t)‖∞ ≤ C

∫ T

t
‖(u− v)(r)‖∞dr + σ

∫ T

T0

‖(∆u−∆v)(r)‖∞dr.

We then have by Gronwall’s Lemma:

‖(u− v)(t)‖∞ ≤ Cσ

∫ T

T0

‖(∆u−∆v)(r)‖∞dr,(4.133)

for all σ > 0. Therefore u = v.
�
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5. Appendix

5.1. Limit theorem for a sequence of parabolic PDEs. In the following we reformulate,
with the change of time t←→ T − t, Theorem 15 p. 80 from [4] we need in this paper. For this,
we first recall some notation needed for its formulation on a given domain Ξ ⊂ [0, T )×Rd of the
form [0, T ) × [m, M ] . Note that this latter can be chosen arbitrarily and the theorem we shall
recall remains true as asserted p. 61 in [4].

We define:

BT := {T} × [m, M ], Bτ := Ξ ∩ {t = τ}, Sτ := S ∩ {t ≥ τ}, Ξτ := Ξ ∩ {t > τ}
where S = [0, T [×{m, M} such that ∂Ξ = B0 ∪ BT ∪ S. We introduce the following norm of a
function u defined on Ξ for a given Holder coefficient α ∈]0, 1[ :

|u|Ξα = sup
y∈Ξ
|u(y)|+ sup

P=(t,x),Q=(t′,x′)∈Ξ
dα

P,Q

|u(P )− u(Q)|
dα(P,Q)

where d(P,Q) is the distance on Rd × [0, T ] defined as

d[(x, t), (x′, t′)] =
√
|x− x′|2 + |t− t′|

and for any point Q = (x, τ) ∈ Ξ, P ∈ Ξ

dQ := d(Q, B0 + Sτ ), dP,Q := min{dP , dQ}.
We also consider

|dv|Ξα := sup
P∈Ξ

dP |v(P )|+ sup
P,Q∈Ξ

d1+α
P,Q

|v(P )− v(Q)|
d(P,Q)α

.

(Here the notation dv does not designate a derivative.) Since Ξ is bounded, observe that the
quantities dP , dP,Q are uniformly bounded on P,Q ∈ Ξ. Moreover, if the first differential of v is

bounded, then |dv|Ξα is bounded for all α < 1.
We consider an operator

L =

n∑

i,j=1

ai,j(x, t)
∂2

∂xi∂xj
+

n∑

i=1

bi(x, t)
∂

∂xi
+

∂

∂t

defined on Ξ verifying:

(A) The coefficients of L are locally Holder continuous (exponent α) on Ξ, and there is a
constant K1 such that

|ai,j |Ξα ≤ K1, |dbi|Ξα ≤ K1.

(B) There exists K2 > 0 such that for all (x, t) ∈ Ξ and ξ ∈ Rd,

n∑

i,j=1

ai,j(x, t)ξiξj ≥ K2|ξ|2.

Theorem 5.1. Let {Lm}m be a sequence of parabolic operators satisfying (A), (B) for some
constants K1, K2 independent of m, and let {fm}m be a sequence of functions satisfying |fm|Ξα ≤
K3 where K3 is independent of m. Suppose that {um}m is a sequence of functions satisfying

Lmum = fm on Ξ.
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If supy∈Ξ |um(y)| ≤ K4, where K4 is independent of m, then for any subsequence {u(1)
m }m of

{um}m there exists a subsequence of it, say {u(2)
m }m, such that

u(2)
m , ∇u(2)

m , Hess[u(2)
m ], ∂tu

(2)
m

are uniformly convergent in any subdomain of Ξ to some function u and its corresponding deriva-
tives. Furthermore, u ∈ C2+α(Ξ). If, in particular, the coefficients of Lm converge to the cor-
responding coefficients of an operator L and fm converges to f , pointwise in Ξ, then Lu = f in
Ξ.
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