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Abstract. In this article we study asymptotic properties of weighted
samples produced by the auxiliary particle filter (APF) proposed by Pitt
and Shephard [17]. Besides establishing a central limit theorem (CLT) for
smoothed particle estimates, we also derive bounds on the Lp error and bias
of the same for a finite particle sample size. By examining the recursive
formula for the asymptotic variance of the CLT we identify first-stage im-
portance weights for which the increase of asymptotic variance at a single
iteration of the algorithm is minimal. In the light of these findings, we dis-
cuss and demonstrate on several examples how the APF algorithm can be
improved.
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1. INTRODUCTION

In this paper we consider a state space model where a sequence Y , {Yk}∞k=0

is modeled as a noisy observation of a Markov chain X , {Xk}∞k=0, called the
state sequence, which is hidden. The observed values of Y are conditionally inde-
pendent given the hidden states X and the corresponding conditional distribution of
Yk depends on Xk only. When operating on a model of this form the joint smooth-
ing distribution, that is, the joint distribution of (X0, . . . , Xn) given (Y0, . . . , Yn),
and its marginals will be of interest. Of particular interest is the filter distribution,
defined as the marginal of this law with respect to the component Xn is referred
to. Computing these posterior distributions will be the key issue when filtering
the hidden states as well as performing inference on unknown model parameters.
The posterior distribution can be recursively updated as new observations become
available – making single-sweep processing of the data possible – by means of the
so-called smoothing recursion. However, in general, this recursion cannot be ap-
plied directly since it involves the evaluation of complicated high-dimensional in-
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tegrals. In fact, closed form solutions are obtainable only for linear/Gaussian mod-
els (where the solutions are acquired using the disturbance smoother) and models
where the state space of the latent Markov chain is finite.

Sequential Monte Carlo (SMC) methods, often alternatively termed particle
filters, provide a helpful tool for computing approximate solutions to the smooth-
ing recursion for general state space models, and the field has seen a drastic in-
crease in interest over recent years. These methods are based on the principle of,
recursively in time, approximating the smoothing distribution with the empirical
measure associated with a weighted sample of particles. At present time there are
various techniques for producing and updating such a particle sample (see [8], [6]
and [13]). For a comprehensive treatment of the theoretical aspects of SMC meth-
ods we refer to the work by Del Moral [4].

In this article we analyse the auxiliary particle filter (APF) proposed by Pitt
and Shephard [17], which has proved to be one of the most useful and widely
adopted implementations of the SMC methodology. Unlike the traditional boot-
strap particle filter [9], the APF enables the user to affect the particle sample al-
location by designing freely a set of first-stage importance weights involved in the
selection procedure. Prevalently, this has been used for assigning large weight to
particles whose offsprings are likely to land up in zones of the state space having
high posterior probability. Despite its obvious appeal, it is however not clear how
to optimally exploit this additional degree of freedom.

In order to better understand this issue, we present an asymptotical analy-
sis (being a continuation of [15] and based on recent results by [3], [12], [5] on
weighted systems of particles) of the algorithm. More specifically, we establish
CLTs (Theorems 3.1 and 3.2), with explicit expressions of the asymptotic vari-
ances, for two different versions (differentiated by the absence/presence of a con-
cluding resampling pass at the end of each loop) of the algorithm under general
model specifications. The convergence bear upon an increasing number of parti-
cles, and a recent result in the same spirit has, independently of [15], been stated
in the manuscript [7]. Using these results, we also – and this is the main contribu-
tion of the paper – identify first-stage importance weights which are asymptotically
most efficient. This result provides important insights in optimal sample allocation
for particle filters in general, and we also give an interpretation of the finding in
terms of variance reduction for stratified sampling.

In addition, we prove (utilising a decomposition of the Monte Carlo error pro-
posed by Del Moral [4] and refined by Olsson et al. [14]) time uniform convergence
in Lp (Theorem 3.3) under more stringent assumptions of ergodicity of the condi-
tional hidden chain. With support of this stability result and the asymptotic analysis
we conclude that inserting a final selection step at the end of each loop is – at least
as long as the number of particles used in the two stages agree – superfluous, since
such an operation exclusively increases the asymptotic variance.

Finally, in the implementation section (Section 5) several heuristics, derived
from the obtained results, for designing efficient first-stage weights are discussed,
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and the improvement implied by approximating the asymptotically optimal first-
stage weights is demonstrated on several examples.

2. NOTATION AND BASIC CONCEPTS

2.1. Model description. We denote by (X,X ), Q, and ν the state space, transi-
tion kernel, and initial distribution of X , respectively, and assume that all random
variables are defined on a common probability space (Ω,P,A). In addition, we
denote by (Y,Y) the state space of Y and suppose that there exists a measure
λ and, for all x ∈ X, a non-negative function y 7→ g(y|x) such that, for k  0,
P (Yk ∈ A | Xk = x) =

∫
A

g(y|x)λ(dy), A ∈ Y . Introduce, for i ¬ j, the vector
notation Xi:j , (Xi, . . . , Xj); a similar notation will be used for other quantities.
The joint smoothing distribution is denoted by

φn(A) , P (X0:n ∈ A | Y 0:n = y0:n), A ∈ X⊗(n+1),

and a straightforward application of Bayes’s formula shows that

(2.1) φk+1(A) =

∫
A

g(yk+1|xk+1)Q(xk, dxk+1)φk(dx0:k)∫
Xk+2 g(yk+1|x′k+1)Q(x′k, dx′k+1)φk(dx′0:k)

for sets A ∈ X⊗(k+2). Throughout this paper we will assume that we are given a
sequence {yk; k  0} of fixed observations, and write, for x ∈ X, gk(x) , g(yk|x).
Moreover, from now on we let the dependence on these observations of all other
quantities be implicit, and denote, since the coming analysis is made exclusively
conditionally on the given observed record, by P and E the conditional probability
measure and expectation with respect to these observations.

2.2. The auxiliary particle filter. Let us recall the APF algorithm by Pitt and
Shephard [17]. Assume that at time k we have a particle sample {(ξN,i

0:k , ωN,i
k )}Ni=1

(each random variable ξN,i
0:k taking values in Xk+1) providing an approximation∑N

i=1 ωN,i
k δ

ξN,i
0:k

/ΩN
k of the joint smoothing distribution φk with ΩN

k ,
∑N

i=1 ωN,i
k

and ωN,i
k  0, 1 ¬ i ¬ N . Then, when the observation yk+1 becomes available, an

approximation of φk+1 is obtained by plugging this weighted empirical measure
into the recursion (2.1), yielding

φ̄N
k+1(A) ,

N∑

i=1

ωN,i
k Hu

k (ξN,i
0:k , Xk+2)

∑N

j=1
ωN,j

k Hu
k (ξN,j

0:k , Xk+2)
Hk(ξ

N,i
0:k , A), A ∈ X⊗(k+2).

Here we have introduced, for x0:k ∈ Xk+1 and A ∈ X⊗(k+2), the unnormalised
kernels

Hu
k (x0:k, A) ,

∫
A

gk+1(x′k+1)δx0:k
(dx′0:k)Q(x′k, dx′k+1)
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and Hk(x0:k, A) , Hu
k (x0:k, A)/Hu

k (x0:k, X
k+2). Simulating from Hk(x0:k, A)

consists in extending the trajectory x0:k ∈ Xk+1 with an additional component be-
ing distributed according to the optimal kernel, that is, the distribution of Xk+1

conditional on Xk = xk and the observation Yk+1 = yk+1. Now, since we want
to form a new weighted sample approximating φk+1, we need to find a convenient
mechanism for sampling from φ̄N

k+1 given {(ξN,i
0:k , ωN,i

k )}Ni=1. In most cases it is
possible – but generally computationally expensive – to simulate from φ̄N

k+1 di-
rectly using auxiliary accept-reject sampling (see [11], [12]). A computationally
cheaper solution (see [12], p. 1988, for a discussion of the acceptance probabil-
ity associated with the auxiliary accept-reject sampling approach) consists in pro-
ducing a weighted sample approximating φ̄N

k+1 by sampling from the importance
sampling distribution

ρN
k+1(A) ,

N∑

i=1

ωN,i
k τN,i

k∑N

j=1
ωN,j

k τN,j
k

Rp
k(ξN,i

0:k , A), A ∈ X⊗(k+2).

Here τN,i
k , 1 ¬ i ¬ N , are positive numbers referred to as first-stage weights (Pitt

and Shephard [17] use the term adjustment multiplier weights) and in this article
we consider first-stage weights of type

(2.1) τN,i
k = tk(ξ

N,i
0:k )

for some function tk : Xk+1 → R+. Moreover, the pathwise proposal kernel Rp
k is,

for x0:k ∈ Xk+1 and A ∈ X⊗(k+2), of the form

Rp
k(x0:k, A) =

∫
A

δx0:k
(dx′0:k)Rk(x′k, dx′k+1)

with Rk being such that Q(x, ·) � Rk(x, ·) for all x ∈ X. Thus, a draw from
Rp

k(x0:k, ·) is produced by extending the trajectory x0:k ∈ Xk+1 with an additional
component obtained by simulating from Rk(xk, ·). It is easily checked that for
x0:k+1 ∈ Xk+2

(2.2)
dφ̄N

k+1

dρN
k+1

(x0:k+1) ∝ wk+1(x0:k+1)

,
N∑

i=1

1
ξN,i
0:k

(x0:k)
gk+1(xk+1)

τN,i
k

dQ(xk, ·)
dRk(xk, ·)(xk+1).

An updated weighted particle sample {(ξ̃N,i
0:k+1, ω̃

N,i
k+1)}MN

i=1 targeting φ̄N
k+1 is hence

generated by simulating MN particles ξ̃
N,i
0:k+1, 1 ¬ i ¬ MN , from the proposal

ρN
k+1 and associating with these second-stage weights ω̃N,i

k+1 , wk+1(ξ̃
N,i
0:k+1), 1 ¬
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i ¬MN . By the identity function in (2.2), only a single term of the sum will con-
tribute to the second-stage weight of a particle.

Finally, in an optional second-stage resampling pass a uniformly weighted
particle sample {(ξ̃N,i

0:k+1, 1)}Ni=1, still targeting φ̄N
k+1, is obtained by resampling

N of the particles ξ̃
N,i
0:k+1, 1 ¬ i ¬MN , according to the normalised second-stage

weights. Note that the number of particles in the last two samples, MN and N ,
may be different. The procedure is now repeated recursively (with ωN,i

k+1 ≡ 1,
1 ¬ i ¬ N ) and is initialised by drawing ξN,i

0 , 1 ¬ i ¬ N , independently of ς ,
where ν � ς , yielding ωN,i

0 = w0(ξ
N,i
0 ) with w0(x) , g0(x) dν/dς(x), x ∈ X.

To summarise, we obtain, depending on whether second-stage resampling is per-
formed or not, the procedures described in Algorithms 1 and 2.

Algorithm 1 Two-Stage Sampling Particle Filter (TSSPF)

Ensure: {(ξN,i
0:k , ωN,i

k )}Ni=1 approximates φk.
1: for i = 1, . . . , MN do . First stage
2: draw indices IN,i

k from the set {1, . . . , N} multinomially with respect to
the normalised weights ωN,j

k τN,j
k /

∑N
`=1 ωN,`

k τN,`
k , 1 ¬ j ¬ N ;

3: simulate ξ̃
N,i
0:k+1(k + 1) ∼ Rk[ξ

N,IN,i
k

0:k (k), ·], and

4: set ξ̃
N,i
0:k+1 , [ξN,IN,i

k
0:k , ξ̃

N,i
0:k+1(k + 1)] and ω̃N,i

k+1 , wk+1(ξ̃
N,i
0:k+1).

5: end for
6: for i = 1, . . . , N do . Second stage
7: draw indices JN,i

k+1 from the set {1, . . . , MN} multinomially with respect
to the normalised weights ω̃N,j

k+1/
∑N

`=1 ω̃N,`
k+1, 1 ¬ j ¬ N , and

8: set ξN,i
0:k+1 , ξ̃

N,JN,i
k+1

0:k+1 .
9: Finally, reset the weights: ωN,i

k+1 = 1.
10: end for
11: Take {(ξN,i

0:k+1, 1)}Ni=1 as an approximation of φk+1.

We will use the term APF as a family name for both these algorithms and refer
to them separately as two-stage sampling particle filter (TSSPF) and single-stage
auxiliary particle filter (SSAPF). Note that by letting τN,i

k ≡ 1, 1 ¬ i ¬ N , in Al-
gorithm 2 we obtain the bootstrap particle filter suggested by Gordon et al. [9].

The resampling steps of the APF can of course be implemented using tech-
niques (e.g., residual or systematic resampling) different from multinomial resam-
pling, leading to straightforward adaptations not discussed here. We believe how-
ever that the results of the coming analysis are generally applicable and extendable
to a large class of selection schemes.

The issue whether second-stage resampling should be performed or not has
been treated by several authors, and the theoretical results on the particle approxi-
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Algorithm 2 Single-Stage Auxiliary Particle Filter (SSAPF)

Ensure: {(ξN,i
0:k , ωN,i

k )}Ni=1 approximates φk.
1: for i = 1, . . . , N do
2: draw indices IN,i

k from the set {1, . . . , N} multinomially with respect to
the normalised weights ωN,j

k τN,j
k /

∑N
`=1 ωN,`

k τN,`
k , 1 ¬ j ¬ N ;

3: simulate ξ̃
N,i
0:k+1(k + 1) ∼ Rk[ξ

N,IN,i
k

0:k (k), ·], and

4: set ξ̃
N,i
0:k+1 , [ξN,IN,i

k
0:k , ξ̃

N,i
0:k+1(k + 1)] and ω̃N,i

k+1 , wk+1(ξ̃
N,i
0:k+1).

5: end for
6: Take {(ξ̃N,i

0:k+1, ω̃
N,i
k+1)}Ni=1 as an approximation of φk+1.

mation stability and asymptotic variance presented in the next section will indicate
that the second-stage selection pass should, at least for the case MN = N , be can-
celed, since this exclusively increases the sampling variance. Thus, the idea that
the second-stage resampling pass is necessary for preventing the particle approxi-
mation from degenerating does not apparently hold. Recently, a similar conclusion
was reached in the manuscript [7].

The advantage of the APF not possessed by standard SMC methods is the
possibility of, firstly, choosing the first-stage weights τN,i

k arbitrarily and, secondly,
letting N and MN be different (TSSPF only). Appealing to common sense, SMC
methods work efficiently when the particle weights are well-balanced, and Pitt and
Shephard [17] propose several strategies for achieving this by adapting the first-
stage weights. In some cases it is possible to fully adapt the filter to the model
(see Section 5), providing exactly equal importance weights; otherwise, Pitt and
Shephard [17] suggest, in the case Rk ≡ Q and X = Rd, the generic first-stage
importance weight function

tP&S
k (x0:k) , gk+1

[ ∫
Rd

x′Q(xk, dx′)
]
, x0:k ∈ Rk+1.

The analysis that follows will however show that this way of adapting the first-
stage weights is not necessarily good in terms of asymptotic (as N tends to infin-
ity) sample variance; indeed, using first-stage weights given by tP&S

k can be even
detrimental for some models.

3. BOUNDS AND ASYMPTOTICS FOR PRODUCED APPROXIMATIONS

3.1. Asymptotic properties. Introduce, for any probability measure µ on some
measurable space (E, E) and µ-measurable function f satisfying

∫
E
|f(x)|µ(dx) <

∞, the notation µf ,
∫

E
f(x)µ(dx). Moreover, for any two transition kernels K

and T from (E1, E1) to (E2, E2) and (E2, E2) to (E3, E3), respectively, we define
the product transition kernel KT (x,A) ,

∫
E2

T (z, A)K(x, dz) for x ∈ E1 and
A ∈ E3. A set C of real-valued functions on Xm is said to be proper if the following
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conditions hold: (i) C is a linear space; (ii) if g ∈ C and f is measurable with
|f | ¬ |g|, then |f | ∈ C; (iii) for all c ∈ R, the constant function f ≡ c belongs
to C.

From [5] we adapt the following definitions.

DEFINITION 3.1 (Consistency). A weighted sample {(ξN,i
0:m, ωN,i

m )}MN
i=1 on the

space Xm+1 is said to be consistent for the probability measure µ and the (proper)
set C ⊆ L1(Xm+1, µ) if, for any f ∈ C, as N →∞,

(ΩN
m)−1

MN∑

i=1

ωN,i
m f(ξN,i

0:m) P−→ µf,

(ΩN
m)−1 max

1¬i¬MN

ωN,i
m

P−→ 0.

DEFINITION 3.2 (Asymptotic normality). A sample {(ξN,i
0:m, ωN,i

m )}MN
i=1 on

Xm+1 is called asymptotically normal for (µ,A, W, σ, γ, {aN}∞N=1) if, as N →∞,

aN (ΩN
m)−1

MN∑

i=1

ωN,i
m [f(ξN,i

0:m)− µf ] D−→ N [0, σ2(f)] for any f ∈ A,

a2
N (ΩN

m)−1
MN∑

i=1

(ωN,i
m )2f(ξN,i

0:m) P−→ γf for any f ∈W,

aN (ΩN
m)−1 max

1¬i¬MN

ωN,i
m

P−→ 0.

The main contribution of this section are the following results, which establish
consistency and asymptotic normality of weighted samples produced by the TSSPF
and SSAPF algorithms. For all k  0, we define a transformation Φk on the set of
φk-integrable functions by

(3.1) Φk[f ](x0:k) , f(x0:k)− φkf, x0:k ∈ Xk+1.

In addition, we impose the following assumptions:

(A1) For all k  1, tk ∈ L2(Xk+1, φk) and wk ∈ L1(Xk+1, φk), where tk and
wk are defined in (2.1) and (2.2), respectively.

(A2) (i) A0 ⊆ L1(X, φ0) is a proper set and σ0 : A0 → R+ is a function
satisfying, for all f ∈ A0 and a ∈ R,

σ0(af) = |a|σ0(f).

(ii) The initial sample {(ξN,i
0 , 1)}Ni=1 is consistent for [L1(X, φ0), φ0] and asymp-

totically normal for [φ0,A0,W0, σ0, γ0, {
√

N}∞N=1].
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THEOREM 3.1. Assume (A1) and (A2) with (W0, γ0) = [L1(X, φ0), φ0]. In
the setting of Algorithm 1, suppose that the limit β , limN→∞N/MN exists,
where β ∈ [0, 1]. Define recursively the family {Ak}∞k=1 by

(3.2) Ak+1 , {f ∈ L2(Xk+2, φk+1) : Rp
k(·, wk+1|f |)Hu

k (·, |f |) ∈ L1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ak ∩ L2(Xk+1, φk), wk+1f

2 ∈ L1(Xk+2, φk+1)}.
Moreover, define recursively the family {σk}∞k=1 of functionals σk : Ak → R+ by

(3.3) σ2
k+1(f) , φk+1Φ2

k+1[f ]

+
σ2

k{Hu
k (·,Φk+1[f ])}+ βφk{tkRp

k(·, w2
k+1Φ

2
k+1[f ])}φktk

[φkH
u
k (Xk+2)]2

.

Then all sets Ak, k  1, are proper; moreover, all samples {(ξN,i
0:k , 1)}Ni=1 produced

by Algorithm 1 are consistent and asymptotically normal for [L1(Xk+1, φk), φk]
and [φk, Ak, L

1(Xk+1, φk), σk, φk, {
√

N}∞N=1], respectively.

The proof is given in Section 6, and as a by-product a similar result for the
SSAPF (Algorithm 2) is obtained.

THEOREM 3.2. Assume (A1) and (A2). Define the families {W̃k}∞k=0 and
{Ãk}∞k=0 by

W̃k , {f ∈ L1(Xk+1, φk) : wk+1f ∈ L1(Xk+1, φk)}, W̃0 , W0,

and, with Ã0 , A0,

(3.4) Ãk+1 , {f ∈ L1(Xk+2, φk+1) : Rp
k(·, wk+1|f |)Hu

k (·, |f |) ∈ L1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ãk, [Hu

k (·, |f |)]2 ∈ W̃k, wk+1f
2 ∈ L1(Xk+2, φk+1)}.

Moreover, define recursively the family {σ̃k}∞k=0 of functionals σ̃k : Ak → R+ by
(3.5)

σ̃2
k+1(f) ,

σ̃2
k{Hu

k (·,Φk+1[f ])}+ φk{tkRp
k(·, w2

k+1Φ
2
k+1[f ])}φktk

[φkH
u
k (Xk+2)]2

, σ̃0 , σ0,

and the measures {γ̃k}∞k=1 by

γ̃k+1f , φk+1(wk+1f) φktk
φkH

u
k (Xk+2)

, f ∈ W̃k+1.

Then all Ãk, k  1, are proper; moreover, all samples {(ξ̃N,i
0:k , ω̃N,i

k )}Ni=1 produced
by Algorithm 2 are consistent and asymptotically normal for [L1(Xk+1, φk), φk]
and [φk, Ãk, W̃k, σ̃k, γ̃k, {

√
N}∞N=1], respectively.
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Under the assumption of bounded likelihood and second-stage importance
weight functions gk and wk, one can show that the CLTs stated in Theorems 3.1
and 3.2 indeed include any functions having finite second moments with respect to
the joint smoothing distributions; that is, under these assumptions the supplemen-
tary constraints on the sets (3.2) and (3.4) are automatically fulfilled. This is the
contents of the statement below.

(A3) For all k  0, ‖gk‖X,∞ <∞ and ‖wk‖Xk+1,∞ <∞.

COROLLARY 3.1. Assume (A3) and let {Ak}∞k=0 and {Ãk}∞k=0 be defined
by (3.2) and (3.4), respectively, with Ã0 = A0 , L2(X, φ0). Then, for all k  1,
Ak = L2(Xk+1, φk) and L2(Xk+1, φk) ⊆ Ãk.

For a proof, see Section 6.2.
Interestingly, the expressions of σ̃2

k+1(f) and σ2
k+1(f) differ, for β = 1, only

on the additive term φk+1Φ2
k+1[f ], that is, the variance of f under φk+1. This quan-

tity represents the cost of introducing the second-stage resampling pass, which was
proposed as a mean for preventing the particle approximation from degenerating.
In the coming Section 3.2 we will however show that the approximations produced
by the SSAPF are already stable for a finite time horizon, and that additional re-
sampling is superfluous. Thus, there are indeed reasons for strongly questioning
whether second-stage resampling should be performed at all, at least when the
same number of particles are used in the two stages.

3.2. Bounds on Lp error and bias. In this part we examine, under suitable
regularity conditions and for a finite particle population, the errors of the approx-
imations obtained by the APF in terms of Lp bounds and bounds on the bias. We
preface our main result with some definitions and assumptions. Denote by Bb(Xm)
a space of bounded measurable functions on Xm furnished with the supremum
norm ‖f‖Xm,∞ , supx∈Xm |f(x)|. Let, for f ∈ Bb(Xm), the oscillation semi-
norm (alternatively termed the global modus of continuity) be defined by osc(f) ,
sup(x,x′)∈Xm×Xm |f(x) − f(x′)|. Furthermore, the Lp norm of a stochastic vari-
able X is denoted by ‖X‖p , E1/p[|X|p]. When considering sums, we will make
use of the standard convention

∑b
k=a ck = 0 if b < a.

In the following we will assume that all measures Q(x, ·), x ∈ X, have densi-
ties q(x, ·) with respect to a common dominating measure µ on (X, X ). Moreover,
we suppose that the following holds.

(A4) (i) ε− , inf(x,x′)∈X2 q(x, x′) > 0, ε+ , sup(x,x′)∈X2 q(x, x′) <∞.
(ii) For all y ∈ Y,

∫
X

g(y|x) µ(dx) > 0.
Under (A4) we define

(3.6) ρ , 1− ε−
ε+

.

(A5) For all k  0, ‖tk‖Xk+1,∞ <∞.
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Assumption (A4) is now standard and is often satisfied when the state space
X is compact and implies that the hidden chain, when evolving conditionally on
the observations, is geometrical ergodic with a mixing rate given by ρ < 1. For
comprehensive treatments of such stability properties within the framework of state
space models we refer to Del Moral [4]. Finally, let Ci(Xn+1) be the set of bounded
measurable functions f on Xn+1 of type f(x0:n) = f̄(xi:n) for some function
f̄ : Xn−i+1 → R. In this setting we have the following result, which is proved in
Section 6.3.

THEOREM 3.3. Assume (A3), (A4), (A5), and let f ∈Ci(Xn+1) for 0 ¬ i ¬ n.
Let {(ξ̃N,i

0:k , ω̃N,i
k )}RN (r)

i=1 be a weighted particle sample produced by Algorithm r,

r = {1, 2}, with RN (r) , 1{r = 1}MN + 1{r = 2}N . Then the following holds
true for all N  1 and r = {1, 2}.

(i) For all p  2,

∥∥(Ω̃N
n )−1

RN (r)∑

j=1

ω̃N,j
n fi(ξ̃

N,j
0:n )− φnfi

∥∥
p

¬ Bp
osc(fi)
1− ρ

[
1

ε−
√

RN (r)

n∑

k=1

‖wk‖Xk+1,∞ ‖tk−1‖Xk,∞
µgk

ρ0∨(i−k)

+
1{r = 1}√

N

(
ρ

1− ρ
+ n− i

)
+
‖w0‖X,∞
νg0

√
N

ρi

]
.

(ii) We have

∣∣E[
(Ω̃N

n )−1
RN (r)∑

j=1

ω̃N,j
n fi(ξ̃

N,j
0:n )

]− φnfi

∣∣

¬ B
osc(fi)
(1− ρ)2

[
1

RN (r)ε2−

n∑

k=1

‖wk‖2Xk+1,∞ ‖tk−1‖2Xk,∞
(µgk)2

ρ0∨(i−k)

+
1{r = 1}

N

(
ρ

1− ρ
+ n− i

)
+
‖w0‖2X,∞
N(νg0)2

ρi

]
.

Here ρ is defined in (3.6), and Bp and B are universal constants such that Bp

depends on p only.

Especially, assuming that all fractions ‖wk‖Xk+1,∞‖tk−1‖Xk,∞/µgk are uni-
formly bounded in k and applying Theorem 3.3 for i = n yields error bounds on
the approximate filter distribution which are uniformly bounded in n. From this
it is obvious that the first-stage resampling pass is enough to preserve the sample
stability. Indeed, by avoiding second-stage selection according to Algorithm 2 we
can obtain, since the middle terms in the bounds above cancel in this case, even
tighter control of the Lp error for a fixed number of particles.
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4. IDENTIFYING ASYMPTOTICALLY OPTIMAL FIRST-STAGE WEIGHTS

The formulas (3.3) and (3.5) for the asymptotic variances of the TSSPF and
SSAPF may look complicated at a first sight, but by careful examining the same
we will obtain important knowledge of how to choose the first-stage importance
weight functions tk in order to robustify the APF .

Assume that we have run the APF up to time k and are about to design suitable
first-stage weights for the next iteration. In this setting, we call a first-stage weight
function t′k[f ], possibly depending on the target function f ∈ Ak+1 and satisfying
(A1), optimal (at time k) if it provides a minimal increase of asymptotic variance at
a single iteration of the APF algorithm, that is, if σ2

k+1{t′k[f ]}(f) ¬ σ2
k+1{t}(f)

(or σ̃2
k+1{t′k[f ]}(f) ¬ σ̃2

k+1{t}(f)) for all other measurable and positive weight
functions t. Here we let σ2

k+1{t}(f) denote the asymptotic variance induced by t.
Define, for x0:k ∈ Xk+1,

(4.1) t∗k[f ](x0:k)

,
√

∫
X

g2
k+1(xk+1)

[
dQ(xk, ·)
dRk(xk, ·)(xk+1)

]2

Φ2
k+1[f ](x0:k+1)Rk(xk, dxk+1),

and let w∗k+1[f ] denote the second-stage importance weight function induced by
t∗k[f ] according to (2.2). We are now ready to state the main result of this section.
The proof is found in Section 6.4.

THEOREM 4.1. Let k  0 and define t∗k by (4.1). Then the following is valid:
(i) Let the assumptions of Theorem 3.1 hold and suppose that f ∈ {f ′ ∈

Ak+1 : t∗k[f
′] ∈ L2(Xk+1, φk), w∗k+1[f

′] ∈ L1(Xk+2, φk+1)}. Then t∗k is optimal for
Algorithm 1 and the corresponding minimal variance is given by

σ2
k+1{t∗k}(f) = φk+1Φ2

k+1[f ] +
σ2

k

[
Hu

k (·, Φk+1[f ])
]
+ β(φkt

∗
k[f ])2

[φkH
u
k (Xk+2)]2

.

(ii) Let the assumptions of Theorem 3.2 hold and suppose that f ∈ {f ′ ∈
Ãk+1 : t∗k[f

′] ∈ L2(Xk+1, φk), w∗k+1[f
′] ∈ L1(Xk+2, φk+1)}. Then t∗k is optimal

for Algorithm 2 and the corresponding minimal variance is given by

σ̃2
k+1{t∗k}(f) =

σ̃2
k

[
Hu

k (·, Φk+1[f ])
]
+ (φkt

∗
k[f ])2

[φkH
u
k (Xk+2)]2

.

The functions t∗k have a natural interpretation in terms of optimal sample allo-
cation for stratified sampling. Consider the mixture π =

∑d
i=1 wiµi, each µi being

a measure on some measurable space (E, E) and
∑d

i=1 wi = 1, and the problem of
estimating, for some given π-integrable target function f , the expectation πf . In
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order to relate this to the particle filtering paradigm, we will make use of Algo-
rithm 3.

Algorithm 3 Stratified importance sampling
1: for i = 1, . . . , N do
2: draw an index Ji multinomially with respect to τj , 1 ¬ j ¬ d, so that∑d

j=1 τj = 1;
3: simulate ξi ∼ νJi , and

4: compute the weights ωi , wj

τj

dµj

dνj

∣∣∣
j=Ji

5: end for
6: Take {(ξi, ωi)}Ni=1 as an approximation of π.

In other words, we perform Monte Carlo estimation of πf by means of sam-
pling from some proposal mixture

∑d
j=1 τjνj and forming a self-normalised es-

timate; cf. the technique applied in Section 2.2 for sampling from φ̄N
k+1. In this

setting, the following CLT can be established under weak assumptions:

√
N

[ N∑

i=1

ωi
∑N

`=1
ω`

f(ξi)− πf

]
D−→ N

[
0,

d∑

j=1

w2
j αj(f)
τj

]

with, for x ∈ E,

αi(f) ,
∫
E

[
dµi

dνi
(x)

]2

Π2[f ](x) νi(dx) and Π[f ](x) , f(x)− πf.

Minimising the asymptotic variance
∑d

i=1[w
2
i αi(f)/τi] with respect to τi,

1 ¬ i ¬ d, e.g., by means of the Lagrange multiplicator method (the details are
simple), yields the optimal weights

τ∗i ∝ wi

√
αi(f) = wi

√
∫
E

[
dµi

dνi
(x)

]2

Π2[f ](x) νi(dx),

and the similarity between this expression and that of the optimal first-stage im-
portance weight functions t∗k is striking. This strongly supports the idea of inter-
preting optimal sample allocation for particle filters in terms of variance reduction
for stratified sampling.

5. IMPLEMENTATIONS

As shown in the previous section, the utilisation of the optimal weights (4.1)
provides, for a given sequence {Rk}∞k=0 of proposal kernels, the most efficient of
all particle filters belonging to the large class covered by Algorithm 2 (including
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the standard bootstrap filter and any fully adapted particle filter). However, exact
computation of the optimal weights is in general infeasible by two reasons: firstly,
they depend (via Φk+1[f ]) on the expectation φk+1f , that is, the quantity that we
aim to estimate, and, secondly, they involve the evaluation of a complicated in-
tegral. A comprehensive treatment of the important issue of how to approximate
the optimal weights is beyond the scope of this paper, but in the following three
examples we discuss some possible heuristics for doing this.

5.1. Nonlinear Gaussian model. In order to form an initial idea of the per-
formance of the optimal SSAPF in practice, we apply the method to a first order
(possibly nonlinear) autoregressive model observed in noise:

Xk+1 = m(Xk) + σw(Xk)Wk+1,

Yk = Xk + σvVk,

(5.1)

with {Wk}∞k=1 and {Vk}∞k=0 being mutually independent sets of standard normal
distributed variables such that Wk+1 is independent of (Xi, Yi), 0 ¬ i ¬ k, and Vk

is independent of Xk, (Xi, Yi), 0 ¬ i ¬ k − 1. Here the functions σw : R→ R+

and m : R → R are measurable, and X = R. As observed by Pitt and Shephard
[17], it is, for all models of the form (5.1), possible to propose a new particle using
the optimal kernel directly, yielding Rp

k = Hk and, for (x, x′) ∈ R2,

(5.2) rk(x, x′) =
1

σ̃k(x)
√

2π
exp

{
− [x′ − m̃k(x)]2

2σ̃2
k(x)

}
,

with rk denoting the density of Rk with respect to the Lebesgue measure, and

(5.3) m̃k(x) ,
[
yk+1

σ2
v

+
mk(x)
σ2

w(x)

]
σ̃2

k(x), σ̃2
k(x) , σ2

vσ
2
w(x)

σ2
v + σ2

w(x)
.

For the proposal (5.2) it is, for xk:k+1 ∈ R2, valid that

(5.4) gk+1(xk+1)
dQ(xk, ·)
dRk(xk, ·)(xk+1) ∝ hk(xk)

, σ̃k(xk)
σw(xk)

exp
[

m̃2
k(xk)

2σ̃2
k(xk)

− m2(xk)
2σ2

w(xk)

]
,

and since the right-hand side does not depend on xk+1, we can obtain, by letting
tk(x0:k) = hk(xk), x0:k ∈ Rk+1, second-stage weights being indeed unity (pro-
viding a sample of genuinely φ̄N

k+1-distributed particles). When this is achieved,
Pitt and Shephard [17] call the particle filter fully adapted. There is however noth-
ing in the previous theoretical analysis that supports the idea that aiming at evenly
distributed second-stage weights is always convenient, and this will also be illus-
trated in the simulations below. On the other hand, it is possible to find cases when
the fully adapted particle filter is very close to being optimal; see again the follow-
ing discussion.

In the following subsections we will study two special cases of (5.1).
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5.2. Linear/Gaussian model. Consider the case

m(Xk) = φXk and σw(Xk) ≡ σ.

For a linear/Gaussian model of this kind, exact expressions of the optimal weights
can be obtained using the Kalman filter. We set φ = 0.9 and let the latent chain
be put at stationarity from the beginning, that is, X0 ∼ N [0, σ2/(1 − φ2)]. In
this setting, we simulated, for σ = σv = 0.1, a record y0:10 of observations and
estimated the filter posterior means (corresponding to projection target functions
πk(x0:k) , xk, x0:k ∈ Rk+1) along this trajectory by applying (1) SSAPF based
on true optimal weights, (2) SSAPF based on the generic weights tP&S

k of Pitt and
Shephard [17], and (3) the standard bootstrap particle filter (that is, SSAPF with
tk ≡ 1). In this first experiment, the prior kernel Q was taken as proposal in all
cases, and since the optimal weights are derived using asymptotic arguments, we
used as many as 100,000 particles for all algorithms. The result is displayed in
Figure 1 (a), and it is clear that operating with true optimal allocation weights
improves – as expected – the MSE performance in comparison with the other
methods.

The main motivation of Pitt and Shephard [17] for introducing auxiliary parti-
cle filtering was to robustify the particle approximation to outliers. Thus, we mimic
Cappé et al. [2], Example 7.2.3, and repeat the experiment above for the obser-
vation record y0:5 = (−0.652,−0.345,−0.676, 1.142, 0.721, 20), standard devia-
tions σv = 1, σ = 0.1, and the smaller particle sample size N = 10,000. Note the
large discrepancy of the last observation y5, which in this case is located at a dis-
tance of 20 standard deviations from the mean of the stationary distribution. The
outcome is plotted in Figure 1 (b) from which it is evident that the particle filter
based on the optimal weights is the most efficient also in this case; moreover, the
performance of the standard auxiliary particle filter is improved in comparison with
the bootstrap filter. Figure 2 displays a plot of the weight functions t∗4 and tP&S

4 for
the same observation record. It is clear that tP&S

4 is not too far away from the opti-
mal weight function (which is close to symmetric in this extreme situation) in this
case, even if the distance between the functions as measured with the supremum
norm is still significant.

Finally, we implement the fully adapted filter (with proposal kernels and first-
stage weights given by (5.2) and (5.4), respectively) and compare this with the
SSAPF based on the same proposal (5.4) and optimal first-stage weights, the latter
being given, for x0:k ∈ Rk+1 and hk defined in (5.4), by

(5.5) t∗k[πk+1](x0:k) ∝ hk(xk)
√∫
R

Φ2
k+1[πk+1](xk+1)Rk(xk, dxk+1)

= hk(xk)
√

σ̃2
k(xk) + m̃2

k(xk)− 2m̃k(xk)φk+1πk+1 + φ2
k+1πk+1

in this case. We note that hk, that is, the first-stage weight function for the fully
adapted filter, enters as a factor in the optimal weight function (5.5). Moreover,
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Figure 1. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF
based on optimal weights (¤), and the SSAPF based on the generic weights tP&S

k of Pitt and Shep-
hard [17] (◦). The MSE values are founded on 100,000 particles and 400 runs of each algorithm

Figure 2. Plot of the first-stage importance weight functions t∗4 (unbroken line) and tP&S
4 (dashed

line) in the presence of an outlier

recall the definitions (5.3) of m̃k and σ̃k; in the case of very informative observa-
tions, corresponding to σv � σ, it holds that σ̃k(x) ≈ σv and m̃k(x) ≈ yk+1 with
good precision for moderate values of x ∈ R (that is, values not too far away from
the mean of the stationary distribution of X). Thus, the factor beside hk in (5.5)
is more or less constant in this case, implying that the fully adapted and optimal
first-stage weight filters are close to equivalent. This observation is perfectly con-
firmed in Figure 3 (a) which presents MSE performances for σv = 0.1, σ = 1, and
N = 10,000. In the same figure, the bootstrap filter and the standard auxiliary filter
based on generic weights are included for a comparison, and these (particularly the
latter) are marred with significantly larger Monte Carlo errors. On the contrary, in
the case of non-informative observations, that is, σv � σ, we note that σ̃k(x) ≈ σ,
m̃k(x) ≈ φx and conclude that the optimal kernel is close the prior kernel Q. In
addition, the exponent of hk vanishes, implying uniform first-stage weights for the
fully adapted particle filter. Thus, the fully adapted filter will be close to the boot-
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strap filter in this case, and Figure 3 (b) seems to confirm this remark. Moreover,
the optimal first-stage weight filter does clearly better than the others in terms of
MSE performance.
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Figure 3. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF
based on optimal weights (¤), the SSAPF based on the generic weights tP&S

k (◦), and the fully
adapted SSAPF (×) for the linear/Gaussian model in Section 5.2. The MSE values are computed

using 10,000 particles and 400 runs of each algorithm

5.3. ARCH model. Now, let instead

m(Xk) ≡ 0 and σw(Xk) =
√

β0 + β1X2
k .

Here we deal with the classical Gaussian autoregressive conditional heteroscedas-
ticity (ARCH) model (see [1]) observed in noise. Since the nonlinear state equa-
tion precludes exact computation of the filtered means, implementing the optimal
first-stage weight SSAPF is considerably more challenging in this case. The prob-
lem can however be tackled by means of an introductory zero-stage simulation
pass, based on R� N particles, in which a crude estimate of φk+1f is obtained.
For instance, this can be achieved by applying the standard bootstrap filter with
multinomial resampling. Using this approach, we computed again MSE values
for the bootstrap filter, the standard SSAPF based on generic weights, the fully
adapted SSAPF, and the (approximate) optimal first-stage weight SSAPF, the lat-
ter using the optimal proposal kernel. Each algorithm used 10,000 particles and
the number of particles in the prefatory pass was set to R = N/10 = 1000, im-
plying only a minor additional computational work. An imitation of the true fil-
ter means was obtained by running the bootstrap filter with as many as 500,000
particles. In compliance with the foregoing, we considered the case of informa-
tive (Figure 4 (a)) as well as non-informative (Figure 4 (b)) observations, cor-
responding to (β0, β1, σv) = (9, 5, 1) and (β0, β1, σv) = (0.1, 1, 3), respectively.
Since σ̃k(x) ≈ σv, m̃k(x) ≈ yk+1 in the latter case, we should, in accordance with
the previous discussion, again expect the fully adapted filter to be close to that
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based on optimal first-stage weights. This is also confirmed in the plot. For the for-
mer parameter set, the fully adapted SSAPF exhibits an MSE performance close
to that of the bootstrap filter, while the optimal first-stage weight SSAPF is clearly
superior.

Figure 4. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF
based on optimal weights (¤), the SSAPF based on the generic weights tP&S

k (◦), and the fully
adapted SSAPF (×) for the ARCH model in Section 5.3. The MSE values are computed using 10,000

particles and 400 runs of each algorithm

5.4. Stochastic volatility. As a final example let us consider the canonical
discrete-time stochastic volatility (SV) model [10] given by

Xk+1 = φXk + σWk+1,

Yk = β exp(Xk/2)Vk,

where X = R, and {Wk}∞k=1 and {Vk}∞k=0 are as in Example 5.1. Here X and Y
are log-volatility and log-returns, respectively, where the former are assumed to be
stationary. Also this model was treated by Pitt and Shephard [17], who discussed
approximate full adaptation of the particle filter by means of a second order Taylor
approximation of the concave function x′ 7→ log gk+1(x′). More specifically, by
multiplying the approximate observation density obtained in this way with q(x, x′),
(x, x′) ∈ R2, yielding a Gaussian approximation of the optimal kernel density,
nearly even second-stage weights can be obtained. We proceed in the same spirit,
approximating however directly the (log-concave) function x′ 7→ gk+1(x′)q(x, x′)
by means of a second order Taylor expansion of x′ 7→ log[gk+1(x′)q(x, x′)] around
the mode m̄k(x) (obtained using Newton iterations) of the same:

gk+1(x′)q(x, x′)

≈ ru
k(x, x′) , gk+1[m̄k(x)]q[x, m̄k(x)] exp

{
− 1

2σ̄2
k(x)

[x′ − m̄k(x)]2
}

,

with (we refer to [2], pp. 225–228, for details) σ̄2
k(x) being the inverted negative

of the second order derivative, evaluated at m̄k(x), of x′ 7→ log[gk+1(x′)q(x, x′)].
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Thus, by letting, for (x, x′) ∈ R2, rk(x, x′) = ru
k(x, x′)/

∫
R ru

k(x, x′′)dx′′, we
obtain

(5.6) gk+1(xk+1)
dQ(xk, ·)
dRk(xk, ·)(xk+1)

≈
∫
R

ru
k(xk, x

′) dx′ ∝ σ̄k(xk)gk+1[m̄k(xk)]q[xk, m̄k(xk)],

and letting, for x0:k ∈ Rk+1, tk(x0:k) = σ̄k(xk)gk+1[m̄k(xk)]q[xk, m̄k(xk)] will
imply a nearly fully adapted particle filter. Moreover, by applying the approximate
relation (5.6) to the expression (4.1) of the optimal weights, we get (cf. (5.5))

(5.7) t∗k[πk+1](x0:k) ≈
∫
R

ru
k(xk, x

′)dx′
√∫
R

Φ2
k+1[πk+1](x)Rk(xk, dx)

∝
√

σ̄2
k(xk) + m̄2

k(xk)− 2m̄k(xk)φk+1πk+1 + φ2
k+1πk+1

× σ̄k(xk)gk+1[m̄k(xk)]q[xk, m̄k(xk)].

In this setting, a numerical experiment was conducted where the two filters
above were run, again together with the bootstrap filter and the auxiliary filter based
on the generic weights tP&S

k , for parameters (φ, β, σ) = (0.9702, 0.5992, 0.178)
(estimated by Pitt and Shephard [18] from daily returns on the U.S. dollar against
the U. K. pound stearling from the first day of trading in 1997 and for the next
200 days). To make the filtering problem more challenging, we used a simulated
record y0:10 of observations arising from the initial state x0 = 2.19, being above
the 2% quantile of the stationary distribution of X , implying a sequence of rel-
atively impetuously fluctuating log-returns. The number of particles was set to
N = 5000 for all filters, and the number of particles used in the prefatory filtering

Figure 5. Plot of MSE perfomances (on log-scale) of the bootstrap particle filter (∗), the SSAPF
based on optimal weights (¤), the SSAPF based on the generic weights tP&S

k (◦), and the fully
adapted SSAPF (×) for the SV model in Section 5.4. The MSE values are computed using 5000

particles and 400 runs of each algorithm
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pass (in which a rough approximation of φk+1πk+1 in (5.7) was computed using
the bootstrap filter) of the SSAPF filter based on optimal first-stage weights was
set to R = N/5 = 1000; thus, running the optimal first-stage weight filter is only
marginally more demanding than running the fully adapted filter. The outcome is
displayed in Figure 5. It is once more obvious that introducing approximate optimal
first-stage weights significantly improves the performance also for the SV model,
which is recognised as being specially demanding as regards state estimation.

6. APPENDIX — PROOFS

6.1. Proof of Theorem 3.1. Let us recall the updating scheme described in
Algorithm 1 and formulate it in the following four isolated steps:

(6.1) {(ξN,i
0:k , 1)}Ni=1

I: Weighting−−−−−→ {(ξN,i
0:k , τN,i

k )}Ni=1 →
II: Resampling (1st stage)−−−−−−−−−−−→ {(ξ̂N,i

0:k , 1)}MN
i=1

III: Mutation−−−−−→ {(ξ̃N,i
0:k+1, ω̃

N,i
k+1)}MN

i=1 →
IV: Resampling (2nd stage)−−−−−−−−−−−−→ {(ξN,i

0:k+1, 1)}Ni=1,

where we have set ξ̂
N,i

0:k , ξ
N,IN,i

k
0:k , 1 ¬ i ¬ MN . Now, the asymptotic properties

stated in Theorem 3.1 are established by a chain of applications of Theorems 1–4
in [5]. We will proceed by induction: assume that the uniformly weighted particle
sample {(ξN,i

0:k , 1)}Ni=1 is consistent for [L1(Xk+1, φk), φk] and asymptotically nor-
mal for [φk, Ak, L

1(Xk+1, φk), σk, φk, {
√

N}∞N=1], with Ak being a proper set and
σk such that σk(af) = |a|σk(f), f ∈ Ak, a ∈ R. We prove, by analysing each of
the steps I–IV, that this property is preserved through one iteration of the algorithm.

I. Define the measure

µk(A) , φk(tk1A)
φktk

, A ∈ X⊗(k+1).

Using Theorem 1 of [5] for R(x0:k, ·) = δx0:k
(·), L(x0:k, ·) = tk(x0:k) δx0:k

(·),
µ = µk, and ν = φk, we conclude that the sample {(ξN,i

0:k , τN,i
k )}Ni=1 is consistent

for [{f ∈ L1(Xk+1, µk) : tk|f | ∈ L1(Xk+1, φk)}, µk] = [L1(Xk+1, µk), µk]. Here
the equality is based on the fact that φk(tk|f |) = µk|f |φktk, where the second fac-
tor on the right-hand side is bounded by Assumption (A1). In addition, by applying
Theorem 1 of [5] we conclude that {(ξN,i

0:k , τN,i
k )}Ni=1 is asymptotically normal for

(µk,AI,k,WI,k, σI,k, γI,k, {
√

N}∞N=1), where

AI,k , {f ∈ L1(Xk+1, µk) : tk|f | ∈ Ak, tkf ∈ L2(Xk+1, φk)}
= {f ∈ L1(Xk+1, µk) : tkf ∈ Ak ∩ L2(Xk+1, φk)},

WI,k , {f ∈ L1(Xk+1, µk) : t2k|f | ∈ L1(Xk+1, φk)}
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are proper sets, and

σ2
I,k(f) , σ2

k

[
tk(f − µkf)

φktk

]
=

σ2
k[tk(f − µkf)]

(φktk)2
, f ∈ AI,k,

γI,kf , φk(t2kf)
(φktk)2

, f ∈WI,k.

II. By Theorems 3 and 4 of [5], {(ξ̂N,i

0:k , 1)}MN
i=1 is consistent and asymptotically

normal for [L1(Xk+1, µk), µk] and [µk, AII,k, L
1(Xk+1, µk), σII,k, βµk, {

√
N}∞N=1],

respectively, where

AII,k , {f ∈ AI,k : f ∈ L2(Xk+1, µk)}
= {f ∈ L2(Xk+1, µk) : tkf ∈ Ak ∩ L2(Xk+1, φk)}

is a proper set, and

σ2
II,k(f) , βµk[(f − µkf)2] + σ2

I,k(f)

= βµk[(f − µkf)2] +
σ2

k[tk(f − µkf)]
(φktk)2

, f ∈ AII,k.

III. We argue as in step I, but this time for ν = µk, R = Rp
k , and L(·, A) =

Rp
k(·, wk+11A), A ∈ X⊗(k+2), providing the target distribution

(6.2) µ(A) =
µkR

p
k(wk+11A)

µkR
p
kwk+1

=
φkH

u
k (A)

φkH
u
k (Xk+2)

= φk+1(A), A ∈ X⊗(k+2).

This yields, applying Theorems 1 and 2 of [5], that {(ξ̃N,i
k+1, ω̃

N,i
k+1)}MN

i=1 is consistent
for

(6.3) [{f ∈ L1(Xk+2, φk+1), R
p
k(·, wk+1|f |) ∈ L1(Xk+1, µk)}, φk+1]

= [L1(Xk+2, φk+1), φk+1],

where (6.3) follows, since µkR
p
k(wk+1|f |) φktk = φkH

u
k (Xk+2) φk+1|f |, from

(A1), and asymptotically normal for (φk+1,AIII,k+1, WIII,k+1, σIII,k+1, γIII,k+1,

{√N}∞N=1). Here

AIII,k+1 , {f ∈ L1(Xk+2, φk+1) : Rp
k(·, wk+1|f |) ∈ AII,k,

Rp
k(·, w2

k+1f
2) ∈ L1(Xk+1, µk)}

= {f ∈ L1(Xk+2, φk+1) : Rp
k(·, wk+1|f |) ∈ L2(Xk+1, µk),

tkR
p
k(·, wk+1|f |) ∈ Ak ∩ L2(Xk+1, φk), R

p
k(·, w2

k+1f
2) ∈ L1(Xk+1, µk)}

= {f ∈ L1(Xk+2, φk+1) : Rp
k(·, wk+1|f |)Hu

k (·, |f |) ∈ L1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ak ∩ L2(Xk+1, φk), wk+1f

2 ∈ L1(Xk+2, φk+1)}
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and

WIII,k+1 , {f ∈ L1(Xk+2, φk+1) : Rp
k(·, w2

k+1|f |) ∈ L1(Xk+1, µk)}
= {f ∈ L1(Xk+2, φk+1) : wk+1f ∈ L1(Xk+2, φk+1)}

are proper sets. In addition, from the identity (6.2) we obtain

µkR
p
k(wk+1Φk+1[f ]) = 0,

where Φk+1 is defined in (3.1), yielding, for f ∈ AIII,k+1,

σ2
III,k+1(f) , σ2

II,k

{
Rp

k(·, wk+1Φk+1[f ])
µkR

p
kwk+1

}

+
βµkR

p
k

({wk+1Φk+1[f ]−Rp
k(·, wk+1Φk+1[f ])}2)

(µkR
p
kwk+1)2

=
βµk

({Rp
k(wk+1Φk+1[f ])}2)

(µkR
p
kwk+1)2

+
σ2

k{tkRp
k(·, wk+1Φk+1[f ])}

(φktk)2(µkR
p
kwk+1)2

+
βµkR

p
k

({wk+1Φk+1[f ]−Rp
k(·, wk+1Φk+1[f ])}2)

(µkR
p
kwk+1)2

.

Now, applying the equality

{Rp
k(·, wk+1Φk+1[f ])}2 + Rp

k

(·, {wk+1Φk+1[f ]−Rp
k(·, wk+1Φk+1[f ])}2)

= Rp
k(·, w2

k+1Φ
2
k+1[f ])

provides, for f ∈ AIII,k+1, the variance

(6.4) σ2
III,k+1(f) =

βφk{tkRp
k(·, w2

k+1Φ
2
k+1[f ])}φktk + σ2

k{Hu
k (·,Φk+1[f ])}

[φkH
u
k (Xk+2)]2

.

Finally, for f ∈WIII,k+1,

γIII,k+1f ,
βµkR

p
k(w2

k+1f)
(µkR

p
kwk+1)2

=
βφk+1(wk+1f) φktk

φkH
u
k (Xk+2)

.

IV. The consistency for [L1(Xk+2, φk+1), φk+1] of the uniformly weighted
particle sample {(ξN,i

0:k+1, 1)}Ni=1 follows from Theorem 3 in [5]. In addition, ap-
plying Theorem 4 of [5] yields that the same sample is asymptotically normal for
[φk+1,AIV,k+1, L1(Xk+2, φk+1), σIV,k+1, φk+1, {

√
N}∞N=1], with

AIV,k+1 , {f ∈ AIII,k+1 : f ∈ L2(Xk+2, φk+1)}
= {f ∈ L2(Xk+2, φk+1) : Rp

k(·, wk+1|f |)Hu
k (·, |f |) ∈ L1(Xk+1, φk),

Hu
k (·, |f |) ∈ Ak ∩ L2(Xk+1, φk), wk+1f

2 ∈ L1(Xk+2, φk+1)}
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being a proper set, and, for f ∈ AIV,k+1,

σ2
IV,k+1(f) , φk+1Φ2

k+1[f ] + σ2
III,k+1(f),

with σ2
III,k+1(f) being defined by (6.4). This concludes the proof of the theorem.

6.2. Proof of Corollary 3.1. We pick f ∈ L2(Xk+2, φk+1) and prove that the
constraints of the set Ak+1 defined in (3.2) are satisfied under Assumption (A3).
Firstly, by Jensen’s inequality,

φk[R
p
k(·, wk+1|f |)Hu

k (·, |f |)] = φk{tk[Rp
k(·, wk+1|f |)]2}

¬ φk[tkR
p
k(·, w2

k+1f
2)] = φkH

u
k (wk+1f

2)

¬ ‖wk+1‖Xk+2,∞ φkH
u
k (Xk+2)φk+1(f2) <∞,

and, similarly,

φk{[Hu
k (·, |f |)]2} ¬ ‖gk+1‖X,∞ φkH

u
k (Xk+2) φk+1(f2) <∞.

From this, together with the bound

φk+1(wk+1f
2) ¬ ‖wk+1‖Xk+2,∞ φk+1(f2) <∞,

we conclude that Ak+1 = L2(Xk+2, φk+1).
To prove L2(Xk+1, φk) ⊆ Ãk, note that Assumption (A3) implies the equality

W̃k = L1(Xk+1, φk) and repeat the arguments above.

6.3. Proof of Theorem 3.3. Define, for r ∈ {1, 2} and RN (r) as determined
in Theorem 3.3, the empirical measures

φN
k (A) , 1

N

N∑

i=1

δ
ξN,i
0:k

, φ̃N
k (A) ,

RN (r)∑

i=1

ω̃N,i
k

Ω̃N
k

δ
ξ̃

N,i
0:k

(A), A ∈ X⊗(k+1),

playing the role of approximations of the smoothing distribution φk. Let us define
F0 , σ(ξN,i

0 ; 1 ¬ i ¬ N); then the particle history up to the different steps of loop
m + 1, m  0, of Algorithm r, r ∈ {1, 2}, is modeled by the filtrations F̂m ,
Fm ∨ σ[IN,i

m ; 1 ¬ i ¬ RN (r)], F̃m+1 , Fm ∨ σ[ξ̃
N,i
0:m+1; 1 ¬ i ¬ RN (r)], and

Fm+1 ,
{
F̃m+1 ∨ σ(JN,i

m+1; 1 ¬ i ¬ N) for r = 1,

F̃m+1 for r = 2,

respectively. In the coming proof we will describe one iteration of the APF algo-
rithm by the following two operations:

{(ξN,i
0:k , ωN,i

k )}Ni=1

Sampling from ϕN
k+1−−−−−−−−−−−−−−→{(ξ̃N,i

0:k+1, ω̃
N,i
k+1)}RN (r)

i=1 →
r = 1: Sampling from φ̃N

0:k+1−−−−−−−−−−−−−−−−−−−−→{(ξN,i
0:k+1, 1)}Ni=1,
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where, for A ∈ X⊗(k+2),

ϕN
k+1(A) , P(ξ̃N,i0

0:k+1 ∈ A|Fk)

=
N∑

j=1

ωN,j
k τN,j

k∑N

`=1
ωN,`

k τN,`
k

Rp
k(ξN,j

0:k , A) =
φN

k [tkR
p
k(·, A)]

φN
k tk

(6.5)

for some index i0 ∈ {1, . . . , RN (r)} (given Fk, the particles ξ̃
N,i
0:k+1, 1 ¬ i ¬

RN (r), are i.i.d.). Here the initial weights {ωN,i
k }Ni=1 are all equal to one for r = 1.

The second operation is valid since, for any i0 ∈ {1, . . . , N},

P(ξN,i0
0:k+1 ∈ A|F̃k+1) =

RN (r)∑

j=1

ω̃N,j
k+1

Ω̃N
k+1

δ
ξ̃

N,j
0:k+1

(A) = φ̃N
0:k+1(A), A ∈ X⊗(k+2).

The fact that the evolution of the particles can be described by two Monte Carlo
operations involving conditionally i.i.d. variables makes it possible to analyse the
error using the Marcinkiewicz–Zygmund inequality (see [16], p. 62).

Using this, set, for 1 ¬ k ¬ n,

(6.6) αN
k (A) ,

∫
A

dαN
k

dϕN
k

(x0:k)ϕN
k (dx0:k), A ∈ X⊗(k+1),

with, for x0:k ∈ Xk+1,

dαN
k

dϕN
k

(x0:k) ,
wk(x0:k)Hu

k . . . Hu
n−1(x0:k, X

n+1) φN
k−1tk−1

φN
k−1H

u
k−1 . . . Hu

n−1(Xn+1)
.

Here we apply the standard convention Hu
` . . . Hu

m , Id if m < `. For k = 0 we
define

α0(A) ,
∫
A

dα0

dς
(x0)ς(dx0), A ∈ X ,

with, for x0 ∈ X,

dα0

dς
(x0) ,

w0(x0)Hu
0 . . . Hu

n−1(x0,X
n+1)

ν[g0Hu
0 . . . Hu

n−1(·, Xn+1)]
.

Similarly, put, for 0 ¬ k ¬ n− 1,

(6.7) βN
k (A) ,

∫
A

dβN
k

dφ̃N
k

(x0:k)φ̃N
k (dx0:k), A ∈ X⊗(k+1),

where, for x0:k ∈ Xk+1,

dβN
k

dφ̃N
k

(x0:k) ,
Hu

k . . .Hu
n−1(x0:k, X

n+1)

φ̃N
k Hu

k . . . Hu
n−1(Xn+1)

.
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The following powerful decomposition is an adaption of a similar one derived
by Olsson et al. [14], Lemma 7.2 (the standard SISR case), being in turn a refine-
ment of a decomposition originally presented by Del Moral [4].

LEMMA 6.1. Let n  0. Then, for all f ∈ Bb(Xn+1), N  1, and r ∈ {1, 2},

(6.8) φ̃N
0:nf − φnf =

n∑

k=1

AN
k (f) + 1{r = 1}

n−1∑

k=0

BN
k (f) + CN (f),

where

AN
k (f) ,

∑RN (r)

i=1
(dαN

k /dϕN
k )(ξ̃

N,i
0:k )Ψk:n[f ](ξ̃

N,i
0:k )

∑RN (r)

j=1
(dαN

k /dϕN
k )(ξ̃

N,j
0:k )

− αN
k Ψk:n[f ],

BN
k (f) ,

∑N

i=1
(dβN

k /dφ̃N
k )(ξN,i

0:k )Ψk:n[f ](ξN,i
0:k )

∑N

j=1
(dβN

k /dφ̃N
k )(ξN,j

0:k )
− βN

k Ψk:n[f ],

CN (f) ,
∑N

i=1
(dβ0|n/dς)(ξN,i

0 )Ψ0:n[f ](ξN,i
0 )

∑N

j=1
(dβ0/dς)(ξN,i

0 )
− φnΨ0:n[f ],

and the operators Ψk:n : Bb(Xn+1)→ Bb(Xn+1), 0 ¬ k ¬ n, are, for some fixed
points x̂0:k ∈ Xk+1, defined by

Ψk:n[f ] : x0:k 7→
Hu

k . . .Hu
n−1f(x0:k)

Hu
k . . .Hu

n−1(x0:k, Xn+1)
− Hu

k . . . Hu
n−1f(x̂0:k)

Hu
k . . . Hu

n−1(x̂0:k, Xn+1)
.

P r o o f. Consider the decomposition

φ̃N
0:nf −φnf =

n∑

k=1

[
φ̃N

k Hu
k . . . Hu

n−1f

φ̃N
k Hu

k . . . Hu
n−1(Xn+1)

− φN
k−1H

u
k−1 . . . Hu

n−1f

φN
k−1H

u
k−1 . . . Hu

n−1(Xn+1)

]

+ 1{r = 1}
n−1∑

k=0

[
φN

k Hu
k . . . Hu

n−1f

φN
k Hu

k . . .Hu
n−1(Xn+1)

− φ̃N
k Hu

k . . . Hu
n−1f

φ̃N
k Hu

k . . .Hu
n−1(Xn+1)

]

+
φ̃N

0 Hu
0 . . . Hu

n−1f

φ̃N
0 Hu

0 . . . Hu
n−1(Xn+1)

− φnf.

We will show that the three parts of this decomposition are identical with the three
parts of (6.8). For k  1, using the definitions (6.5) and (6.6) of ϕN

k and αN
k ,
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respectively, and following the lines of Olsson et al. [14], Lemma 7.2, we obtain

φN
k−1H

u
k−1 . . . Hu

n−1H
u
n−1f

φN
k−1H

u
k−1 . . .Hu

n−1(Xn+1)
= ϕN

k

[
wk(·)Hu

k . . . Hu
n−1f(·)(φN

k−1tk−1)
φN

k−1H
u
k−1 . . .Hu

n−1(Xn+1)

]

= αN
k

[
Ψk:n[f ](·) +

Hu
k . . . Hu

n−1f(x̂0:k)
Hu

k . . . Hu
n−1(x̂0:k,Xn+1)

]

= αN
k Ψk:n[f ] +

Hu
k . . .Hu

n−1f(x̂0:k)
Hu

k . . .Hu
n−1(x̂0:k, Xn+1)

.

Moreover, by definition, we get

φ̃N
k Hu

k . . .Hu
n−1f

φ̃N
k Hu

k . . . Hu
n−1(Xn+1)

=

∑RN (r)

i=1
(dαN

k /dϕN
k )(ξ̃

N,i
0:k )Ψk:n[f ](ξ̃

N,i
0:k )

∑RN (r)

j=1
(dαN

k /dϕN
k )(ξ̃

N,j
0:k )

+
Hu

k . . .Hu
n−1f(x̂0:k)

Hu
k . . .Hu

n−1(x̂0:k, Xn+1)
,

which yields

φ̃N
k Hu

k . . .Hu
n−1f

φ̃N
k Hu

k . . . Hu
n−1(Xn+1)

− φN
k−1H

u
k−1 . . .Hu

n−1f

φN
k−1H

u
k−1 . . . Hu

n−1(Xn+1)
≡ AN

k (f).

Similarly, for r = 1, using the definition (6.7) of βN
k ,

φ̃N
0:kH

u
k−1 . . . Hu

n−1f

φ̃N
0:kH

u
k−1 . . .Hu

n−1(Xn+1)
= βN

k

[
Hu

k . . .Hu
n−1f(·)

Hu
k . . .Hu

n−1(Xn+1)

]

= βN
k

[
Ψk:n[f ](·) +

Hu
k . . . Hu

n−1f(x̂0:k)
Hu

k . . . Hu
n−1(x̂0:k, Xn+1)

]

= βN
k Ψk:n[f ] +

Hu
k . . . Hu

n−1f(x̂0:k)
Hu

k . . .Hu
n−1(x̂0:k, Xn+1)

,

and applying the obvious relation

φN
k Hu

k . . .Hu
n−1f

φN
k Hu

k . . . Hu
n−1(Xn+1)

=

∑N

i=1
(dβN

k /dφ̃N
k )(ξN,i

0:k )Ψk:n[f ](ξN,i
0:k )

∑N

j=1
(dβN

k /dφ̃N
k )(ξN,j

0:k )
+

Hu
k . . .Hu

n−1f(x̂0:k)
Hu

k . . .Hu
n−1(x̂0:k, Xn+1)

,

we obtain the identity

φN
k Hu

k . . .Hu
n−1f

φN
k Hu

k . . . Hu
n−1(Xn+1)

− φ̃N
k Hu

k . . .Hu
n−1f

φ̃N
k Hu

k . . . Hu
n−1(Xn+1)

≡ BN
k (f).
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The equality
φ̃N

0 Hu
0 . . .Hu

n−1f

φ̃N
0 Hu

0 . . . Hu
n−1(Xn+1)

− φnf ≡ CN (f)

follows analogously. This completes the proof of the lemma. ¥

P r o o f o f T h e o r e m 3.3. From here on the proof is a straightforward ex-
tension of Proposition 7.1 in [14]. To establish part (i), observe the following:

• A trivial adaption of Lemmas 7.3 and 7.4 of [14] gives

(6.9)

‖Ψk:n[fi]‖Xk+1,∞ ¬ osc(fi)ρ0∨(i−k),
∥∥∥∥

dαN
k

dϕN
k

∥∥∥∥
Xk+1,∞

¬ ‖wk‖Xk+1,∞ ‖tk−1‖Xk,∞
µgk(1− ρ)ε−

.

• By mimicking the proof of Proposition 7.1 (i) in [14], that is, applying
the identity a/b − c = (a/b)(1 − b) + a − c to each AN

k (fi) and using twice the
Marcinkiewicz–Zygmund inequality together with (6.9), we obtain the bound

√
RN (r)‖AN

k (fi)‖p ¬ Bp

osc(fi) ‖wk‖Xk+1,∞ ‖tk−1‖Xk,∞
µgk(1− ρ)ε−

ρ0∨(i−k),

where Bp is a constant depending on p only. We refer to [14], Proposition 7.1, for
details.

• For r = 1, inspecting the proof of Lemma 7.4 in [14] yields immediately
∥∥∥∥
dβN

k

dφ̃N
k

∥∥∥∥
Xk+1,∞

¬ 1
1− ρ

,

and repeating the arguments of the previous item for BN
k (fi) gives

√
N‖BN

k (fi)‖p ¬ Bp
osc(fi)
1− ρ

ρ0∨(i−k).

• The arguments above apply directly to CN (fi), providing

√
N‖CN (fi)‖p ¬ Bp

osc(fi) ‖w0‖X,∞
νg0(1− ρ)

ρi.

We conclude the proof of (i) by summing up.
The proof of (ii) (which mimics the proof of Proposition 7.1 (ii) in [14]) fol-

lows analogous lines; indeed, repeating the arguments of (i) above for the decom-
position a/b − c = (a/b)(1 − b)2 + (a − c)(1 − b) + c(1 − b) + a − c gives us
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the bounds

RN (r)|E[AN
k (fi)]| ¬ B

osc(fi) ‖wk‖2Xk+1,∞ ‖tk−1‖2Xk,∞
(µgk)2(1− ρ)2ε2−

ρ0∨(i−k),

N |E[BN
k (fi)]| ¬ B

osc(fi)
(1− ρ)2

ρ0∨(i−k),

N |E[CN (fi)]| ¬ B
osc(fi) ‖w0‖2X,∞
(νg0)2(1− ρ)2

ρi.

We refer again to [14], Proposition 7.1 (ii), for details, and summing up concludes
the proof. ¥

6.4. Proof of Theorem 4.1. The statement is a direct implication of Hölder’s
inequality. Indeed, let tk be any first-stage importance weight function and write

(6.10) (φkt
∗
k[f ])2 = {φk(t

1/2
k t

−1/2
k t∗k[f ])}2 ¬ φktk φk{t−1

k (t∗k[f ])2}.
Now the result follows by the formula (3.3), the identity

φk{t−1
k (t∗k[f ])2} = φk{tkRp

k(·, w2
k+1Φ

2
k+1[f ])},

and the fact that we have equality in (6.10) for tk = t∗k[f ].

Acknowledgements. The authors are grateful to Olivier Cappé who provided
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