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Abstract. To set the values of the hyperparameters of a support vector machine
(SVM), one can use cross-validation. Its leave-one-out variant produces an estima-
tor of the generalization error which is almost unbiased. Its major drawback rests
in its time requirement. To overcome this difficulty, several upper bounds on the
leave-one-out error of the pattern recognition SVM have been derived. The most
popular one is the radius-margin bound. In this article, we introduce a generalized
radius-margin bound dedicated to the multi-class SVM of Lee, Lin and Wahba.
Keywords: M-SVMs, model selection, leave-one-out error, radius-margin bound.

1 Introduction

Using a SVM [9] requires to set the values of two types of hyperparameters:
the soft margin parameter C and the parameters of the kernel. Several ap-
proaches are available to perform this model selection task (see for instance
[6]). The solution of choice consists in applying a cross-validation procedure.
The leave-one-out one presents the advantage to produce an estimator of the
generalization error which is almost unbiased [9], and the drawback to be
highly time consuming. Consequently, in recent years, a number of upper
bounds on the leave-one-out error of the pattern recognition SVM have been
proposed in literature (see [2] for a survey). Although the tightest one is the
span bound [10], the results of Chapelle and co-workers [2] show that another
bound, the radius-margin one [9], achieves equivalent performance for model
selection while being far simpler to compute. This is the reason why it is
currently the most popular bound. In this article, we introduce a generalized
radius-margin bound on the leave-one-out error of the hard margin version of
the multi-class SVM (M-SVM) of Lee, Lin and Wahba [5]. For lack of space,
its proof is omitted. It can be found in the accompanying research report [4].

The organization of this paper is as follows. Section 2 offers a general
introduction to the M-SVMs. Section 3 focuses on the M-SVM of Lee, Lin
and Wahba (LLW-M-SVM). Section 4 is devoted to the formulation of the
corresponding multi-class radius-margin bound. At last, we draw conclusions
and outline our ongoing research in Section 5.



2 Multi-Class SVMs

Like the SVMs, the M-SVMs are large margin classifiers which are devised
in the framework of Vapnik’s statistical learning theory [9].

2.1 Formalization of the learning problem

We consider Q-category classification problems with 3 ≤ Q < ∞. An object
is represented by its description x ∈ X and the set of categories Y can
be identified with the set [[ 1, Q ]]. We assume that the link between objects
and categories can be described by an unknown probability measure P on
X × Y. The learning problem consists in selecting in a class G of functions
g = (gk)1≤k≤Q from X into R

Q a function classifying data in an optimal
way. g assigns x ∈ X to the category l if and only if gl(x) > maxk 6=l gk(x).
In case of ex æquo, x is assigned to a dummy category denoted by ∗. Let
f be the decision function (from X to Y

⋃

{∗}) associated with g. Ideally,
the objective function to be minimized over G is the probability of error
P (f (X) 6= Y ). In practice, since P is unknown, other criteria are used and
the optimization process is based on empirical data. We assume that there
exists a random pair (X, Y ) distributed according to P , and we are provided
with a m-sample Dm = ((Xi, Yi))1≤i≤m of independent copies of (X, Y ).
Such learning problems raise two questions: how to choose G and how to
determine the best candidate g∗ in this class, using only Dm. We focus on
the first one, named model selection, when the model considered is a M-SVM.

2.2 Architecture and training algorithms

M-SVMs, like all the SVMs, are kernel machines [7]. They operate on a class
of functions spanned by a positive semidefinite function/kernel.

Definition 1 (Positive semidefinite function). A real-valued function κ

on X 2 is called a positive semidefinite function if it is symmetric and

∀n ∈ N
∗, ∀ (xi)1≤i≤n ∈ Xn, ∀ (ai)1≤i≤n ∈ R

n,

n
∑

i=1

n
∑

j=1

aiajκ (xi, xj) ≥ 0.

Definition 2 (Reproducing kernel Hilbert space [1]). Let (H, 〈·, ·〉
H

)
be a Hilbert space of real-valued functions on X . A real-valued function κ

on X 2 is a reproducing kernel of H if and only if

1. ∀x ∈ X , κx = κ (x, ·) ∈ H;
2. ∀x ∈ X ,∀h ∈ H, 〈h, κx〉H = h(x) (reproducing property).

A Hilbert space of real-valued functions which possesses a reproducing kernel
is called a reproducing kernel Hilbert space (RKHS) or a proper Hilbert space.

The connection between positive semidefinite functions and RKHSs is pro-
vided by the Moore-Aronszajn theorem.



Theorem 1 (Moore-Aronszajn theorem [1]). Let κ be a real-valued

positive semidefinite function on X 2. There exists only one Hilbert space
(

Hκ, 〈·, ·〉
Hκ

)

of real-valued functions on X with κ as reproducing kernel.

Proposition 1. Let κ be a real-valued positive semidefinite function on X 2.

There exists a map Φ from X into a Hilbert space
(

EΦ(X ), 〈·, ·〉
)

such that

∀(x, x′) ∈ X 2, κ(x, x′) = 〈Φ(x), Φ(x′)〉. (1)

Let κ be a kernel on X 2 and let
(

Hκ, 〈·, ·〉
Hκ

)

be the RKHS spanned by κ. Let

H̄ = HQ
κ and H = (Hκ + {1})

Q
. H is the class of functions h = (hk)1≤k≤Q

on X whose component functions are finite affine combinations of the form

hk(·) =

mk
∑

i=1

βikκ (xik, ·) + bk,

as well as the limits of these functions as the sets {xik : 1 ≤ i ≤ mk} become
dense in X , in the norm induced by the inner product 〈·, ·〉

Hκ
. Due to (1),

H is also a multivariate affine model on Φ (X ). Thus, h can be rewritten as

h(·) = (〈wk, ·〉 + bk)1≤k≤Q

where the vectors wk belong to EΦ(X ). It is then described by the pair (w,b)

with w = (wk)1≤k≤Q ∈ E
Q

Φ(X ) and b = (bk)1≤k≤Q ∈ R
Q. H̄ is a multivariate

linear model on Φ (X ), endowed with a norm ‖ · ‖H̄ given by

∀h̄ ∈ H̄,
∥

∥h̄
∥

∥

H̄
= ‖w‖ =

√

√

√

√

Q
∑

k=1

‖wk‖2 =

√

√

√

√

Q
∑

k=1

〈wk, wk〉.

A generic definition of the M-SVMs can then be formulated as follows.

Definition 3 (M-SVM [3]). Let ((xi, yi))1≤i≤m ∈ (X × Y)
m

and λ ∈ R
∗
+.

A Q-category M-SVM is a large margin classifier obtained by minimizing over
the hyperplane

∑Q

k=1 hk = 0 of H a penalized risk JM-SVM of the form

JM-SVM (h) =

m
∑

i=1

ℓM-SVM (yi, h (xi)) + λ
∥

∥h̄
∥

∥

2

H̄

where the loss function ℓM-SVM is nonnegative and convex. If a M-SVM is
trained subject to the constraint

∑m

i=1 ℓM-SVM (yi, h (xi)) = 0, it is called a
hard margin M-SVM. Otherwise, it is called a soft margin M-SVM.

2.3 Geometrical margins

The algorithms following Definition 3 select functions h∗ that tend to maxi-
mize globally the

(

Q
2

)

geometrical margins between the different categories.



Definition 4 (Geometrical margins). Let dn = {(xi, yi) : 1 ≤ i ≤ n} be
a set of n examples (belonging to X ×Y). If h ∈ H classifies these examples
without error, then its margin between categories k and l (computed with
respect to dn), γkl(h), is defined as the smallest distance of a point of dn

either in k or l to the hyperplane separating those categories. Let us denote

d(h) = min
1≤k<l≤Q

{

min
i:yi∈{k,l}

|hk(xi) − hl(xi)|

}

and for 1 ≤ k < l ≤ Q, let dkl(h) be

dkl(h) =
1

d(h)
min

i:yi∈{k,l}
|hk(xi) − hl(xi)| − 1.

Then we have

γkl(h) = d(h)
1 + dkl(h)

‖wk − wl‖
.

For the M-SVMs, the connection between the geometrical margins and the
penalizer of JM-SVM is given by

∑

k<l ‖wk − wl‖
2

= Q
∑Q

k=1 ‖wk‖
2.

3 The M-SVM of Lee, Lin and Wahba

Several models of M-SVMs can be found in literature (see [4] for a survey).
The M-SVM of Lee, Lin and Wahba [5] is the only one which is Fisher
consistent. It corresponds to the loss function ℓLLW given by

ℓLLW (y, h(x)) =
∑

k 6=y

max

{

hk(x) +
1

Q − 1
, 0

}

.

The substitution in Definition 3 of ℓM-SVM with ℓLLW provides us with the
expressions of the quadratic programming problems corresponding to the
training algorithms of the two versions of the machine.

Problem 1 (Hard margin LLW-M-SVM, primal formulation).

min
w,b

{

1

2

Q
∑

k=1

‖wk‖
2

}

s.t.

{

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk, Φ(xi)〉 + bk ≤ − 1
Q−1

∑Q

k=1 wk = 0,
∑Q

k=1 bk = 0
.

Problem 2 (Soft margin LLW-M-SVM, primal formulation).

min
w,b,ξ







1

2

Q
∑

k=1

‖wk‖
2 + C

m
∑

i=1

∑

k 6=yi

ξik







s.t.











∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk, Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , ξik ≥ 0
∑Q

k=1 wk = 0,
∑Q

k=1 bk = 0

.



In Problem 2, the ξik are slack variables used to relax the constraints of good
classification. C is used to control the trade-off between prediction accuracy
on dm and smoothness of h∗. Instead of directly solving Problems 1 and 2, one
usually solves their dual. Let αik be the Lagrange multiplier corresponding
to the constraint 〈wk, Φ(xi)〉+ bk ≤ − 1

Q−1 or 〈wk, Φ(xi)〉+ bk ≤ − 1
Q−1 + ξik.

Let α be the vector of R
Qm
+ such that its component of index (i− 1)Q + k is

equal to αik if k 6= yi, and to 0 otherwise. The dual of Problem 1 is:

Problem 3 (Hard margin LLW-M-SVM, dual formulation).

max
α

{

−
1

2
αT Hα +

1

Q − 1
1T

Qmα

}

s.t.

{

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , αik ≥ 0

∀k ∈ [[ 1, Q − 1 ]] ,
∑m

i=1

∑Q

l=1

(

1
Q
− δk,l

)

αil = 0

with the general term of the Hessian matrix H being

hik,jl =

(

δk,l −
1

Q

)

κ(xi, xj).

The Wolfe dual of Problem 2 only differs from Problem 3 in the inequality
constraints. The constraints αik ≥ 0 are replaced by 0 ≤ αik ≤ C.

4 Multi-Class Radius-Margin Bound

The proof of our radius-margin bound rests on two partial results.

Lemma 1 (Multi-class key lemma). Let us consider a hard margin Q-

category LLW-M-SVM on X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training

set and α∗ its vector of dual variables. Consider now the same machine

trained on dm\{(xp, yp)}. If it makes an error on (xp, yp), then the inequality

max
k∈[[ 1,Q ]]

α∗
pk ≥

1

Q(Q − 1)D2
m

holds, where Dm is the diameter of the smallest sphere of EΦ(X ) containing

the set {Φ(xi) : 1 ≤ i ≤ m}.

The value of Dm is obtained by solving a quadratic programming problem.

Proposition 2. For the hard margin Q-category LLW-M-SVM,

d (h∗)
2

Q

∑

k<l

(

1 + dkl (h
∗)

γkl (h∗)

)2

=

Q
∑

k=1

‖w∗
k‖

2 = α∗T
Hα∗ =

1

Q − 1
1T

Qmα∗.

Theorem 2 (Multi-class radius-margin bound). Let us consider the

LLW-M-SVM of Lemma 1. Let Lm be the number of errors resulting from

applying a leave-one-out cross-validation procedure to this machine. Then,

using the notations of Definition 4, the following upper bound holds true:

Lm ≤ (Q − 1)2D2
md (h∗)

2
∑

k<l

(

1 + dkl (h
∗)

γkl (h∗)

)2

.



5 Conclusions and Ongoing Research

We have introduced a generalization of Vapnik’s radius-margin bound dedi-
cated to the M-SVM of Lee, Lin and Wahba. In doing so, we have highlighted
different features of the M-SVMs which make their study intrinsically more
difficult than the one of bi-class SVMs. For instance, the formula expressing
the geometrical margins as a function of the vector α∗ is far more complicated
than its bi-class counterpart. This work, which comes after the derivation
of guaranteed risks for classifiers taking values in R

Q [3], thus provides us
with new arguments suggesting that the study of multi-category classification
should be tackled independently of the one of dichotomy computation.

An open question is the possibility to use our bound to set the value of
C. It can be reformulated as follows: is there a variant of the soft margin
LLW-M-SVM such that its training algorithm is equivalent to the training
algorithm of a hard margin machine obtained by a simple change of kernel?
In the bi-class case, the answer is positive, and the corresponding variant
is the 2-norm SVM (see for instance Chapter 7 in [8]). Finding the answer
in the multi-class case is the subject of an ongoing research, as well as the
derivation of radius-margin bounds suitable for the other M-SVMs.
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