
HAL Id: hal-00471464
https://hal.science/hal-00471464

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherent spin-networks
Eugenio Bianchi, Elena Magliaro, Claudio Perini

To cite this version:
Eugenio Bianchi, Elena Magliaro, Claudio Perini. Coherent spin-networks. Physical Review D, 2010,
82 (2), pp.024012. �10.1103/PhysRevD.82.024012�. �hal-00471464�

https://hal.science/hal-00471464
https://hal.archives-ouvertes.fr


Coherent spin-networks

Eugenio Bianchi,1 Elena Magliaro,1 and Claudio Perini1,2
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In this paper we discuss a proposal of coherent states for loop quantum gravity. These states are labeled

by a point in the phase space of general relativity as captured by a spin-network graph. They are defined as

the gauge-invariant projection of a product over links of Hall’s heat kernels for the cotangent bundle of

SUð2Þ. The labels of the state are written in terms of two unit vectors, a spin and an angle for each link of

the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the

spin-foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be

written as an element of SLð2;CÞ. These states coincide with Thiemann’s coherent states with the area

operator as complexifier. We study the properties of semiclassicality of these states and show that, for

large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-

Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a

Gaussian times a phase as originally proposed by Rovelli.

DOI: 10.1103/PhysRevD.82.024012 PACS numbers: 04.60.Pp

I. INTRODUCTION

In loop quantum gravity (LQG) [1–4], the recent con-
vergence of the canonical and the covariant (spin-foam)
formulation [5–7] is shedding a new light on the identifi-
cation of the classical regime of the theory. A key ingre-
dient in this analysis is semiclassical states, that is states
peaked on a prescribed intrinsic and extrinsic geometry of
space.

In the recent graviton propagator calculations [8–14],
semiclassical states associated to a spin-network graph �
are considered. In particular, the states used in [14] are
labeled by a spin j0e and an angle �e per link e of the graph,
and for each node a set of unit vectors ~n, one for each link
at that node. Such variables are suggested by the simplicial
interpretation of these states: the graph � is in fact assumed
to be dual to a simplicial decomposition of the spatial
manifold, the vectors ~n are associated to unit normals to
faces of tetrahedra, and the spin j0e is the average of the area
of a face. Moreover, the simplicial extrinsic curvature is an
angle associated to faces shared by tetrahedra and is iden-
tified with the label �e. Therefore, these states are labeled
by an intrinsic and extrinsic simplicial 3-geometry.

More in detail, the semiclassical states used in [14] are
obtained via a superposition over spins of spin-networks
having nodes labeled by Livine-Speziale coherent inter-
twiners [15–17]. The coefficients cj of the superposition

over spins are given by a Gaussian times a phase as
originally proposed by Rovelli in [8]

cjðj0; �Þ ¼ exp

�
�ðj� j0Þ2

2�0

�
expð�i�jÞ: (1)

Such a proposal is motivated by the need of having a state
peaked both on the area and on the extrinsic angle. The
dispersion is chosen to be given by �0 � ðj0Þk (with 0<
k< 2) so that, in the large j0 limit, both variables have
vanishing relative dispersions (as explained in [9]).
Moreover, a recent result of Freidel and Speziale strength-
ens the status of these classical labels [18,19]: they show
that the phase space associated to a graph in LQG can
actually be described in terms of the labels ðj0e; �e; ~ne; ~n

0
eÞ

associated to links of the graph.
While the states discussed above have good semiclassi-

cal properties and a clear geometrical interpretation, find-
ing a better top-down derivation of the coefficients (1) is
strongly desirable. The reason is not just aesthetic. A
derivation generally comes together with an understanding
of its origins and with new mathematical tools that allow
one to simplify calculations. This is one of the objectives of
this paper.
On the other hand, within the canonical framework,

Thiemann and collaborators have strongly advocated the
use of complexifier coherent states [20–29]. Such states are
labeled by a graph � and by an assignment of a SLð2;CÞ
group element to each of its links. The state is obtained
from the gauge-invariant projection of a product over links
of modified1 heat kernels for the complexification of
SUð2Þ. Their peakedness properties and geometric inter-
pretation within the canonical theory have been studied in
detail [21,27]. However the interpretation of the SLð2;CÞ

*Unité mixte de recherche (UMR 6207) du CNRS et des
Universités de Provence (Aix-Marseille I), de la Méditerranée
(Aix-Marseille II) et du Sud (Toulon-Var); laboratoire affilié à la
FRUMAM (FR 2291).

1In particular, the modified heat kernels reduce to ordinary
Hall’s heat kernels for the complexification of SUð2Þ when the
complexifier is chosen to be the area operator.
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labels in terms of discrete geometries and the relation with
semiclassical states used in spin foams has largely re-
mained unexplored. Exploring these aspects is the other
objective of this paper.

Surprisingly, the two goals discussed above turn out to
be strictly related. In this paper we present a proposal of
coherent spin-network states: the proposal is to consider
the gauge-invariant projection of a product over links of
Hall’s heat kernels for the cotangent bundle of SUð2Þ
[30,31]. The labels of the state are the ones used in spin
foams: two normals, a spin and an angle for each link of the
graph. This set of labels can be written as an element of
SLð2;CÞ per link of the graph. Therefore, these states
coincide with Thiemann’s coherent states with the area
operator chosen as complexifier, the SLð2;CÞ labels writ-
ten in terms of the phase space variables ðj0e; �e; ~ne; ~n

0
eÞ and

the heat-kernel time given as a function of j0e.
We show that, for large j0e, coherent spin-networks re-

duce to the semiclassical states used in the spin-foam
framework. In particular we find that they reproduce a
superposition over spins of spin-networks with nodes
labeled by Livine-Speziale coherent intertwiners and co-
efficients cj given by a Gaussian times a phase as originally

proposed by Rovelli. This provides a clear interpretation of
the geometry these states are peaked on.

II. COHERENT SPIN-NETWORK STATES

The Hilbert space of LQG decomposes into sectors
K� ¼ L2ðSUð2ÞL=SUð2ÞN; d�LÞ associated to an em-
bedded graph � having L links and N nodes. States
�ðh1; . . . ; hLÞ in K� capture a finite number of degrees
of freedom of general relativity: the ones associated to the
classical phase space ðT�SUð2ÞÞL of holonomies of the
Ashtekar-Barbero connection along links of the graph
and fluxes through surfaces dual to links of the graph.
Here we consider states belonging to K� and labeled by
a point in phase space. Notice that the cotangent bundle
T�SUð2Þ is diffeomorphic to the group SLð2;CÞ.2 This fact
is largely exploited in the following: the states we consider
are in fact labeled by an element of SLð2;CÞ per link of the
graph.

Let us consider the heat kernelKtðh; h0Þ on SUð2Þ. It has
the following Peter-Weyl expansion:

Ktðh; h0Þ ¼
X
j

ð2jþ 1Þe�jðjþ1Þt�ðjÞðhh�1
0 Þ: (2)

It is easy to show that, as a function of h, it is peaked on the
conjugacy class of h0. Moreover, when seen as a LQG state

associated to a loop �, ��ðhÞ ¼ Ktðh; h0Þ, it is peaked on

small areas (that is small j). There is a rather simple variant
of Ktðh; h0Þ that allows to peak on a prescribed spin j0: it is
given by the complexified heat kernel, i.e. by Ktðh;H0Þ
with the group element H0 belonging to SLð2;CÞ. This is
the unique analytic continuation of the SUð2Þ heat kernel.
These objects are the building blocks of coherent spin-
networks.
To simplify the notation, in the following we assume that

� is a complete graph so that, if a; b; . . . ;¼ 1; . . . ; N label
nodes of the graph, then links are labeled by couples ab.
For instance, the holonomy associated to an oriented link is
hab and its inverse is hba. The generalization to arbitrary
graph is immediate.
Coherent spin-networks are defined as follows: we con-

sider the gauge-invariant projection of a product over links
of heat kernels,

��;Hab
ðhabÞ ¼

Z �Y
a

dga

�Y
ab

Ktabðhab; gaHabg
�1
b Þ: (3)

These states were first considered in [20]. The positive
numbers tab can be fixed in terms of the labels Hab as
explained later on. Now, notice that every element Hab of
SLð2;CÞ can be written in terms of two unit vectors inR3, a
positive real number and an angle, that is, exactly the labels
used in the semiclassical states adopted in spin foams [14],
the ones that in a simplicial setting correspond to ‘‘twisted
geometries’’ [19]. Let us see how.
An element Hab of SLð2;CÞ can be written in terms of a

positive real number �ab and two unrelated SUð2Þ group
elements gab and gba as3 [32]

Hab ¼ gabe
�ð�3=2Þg�1

ba : (4)

In turn, a SUð2Þ group element can be uniquely written in

terms of an angle ~� and a unit vector ~n. Let us define ~n via
its inclination and azimuth

~n ¼ ðsin� cos�; sin� sin�; cos�Þ; (5)

and introduce the associated group element n 2 SUð2Þ
defined as

n ¼ e�i�ð�3=2Þe�i�ð�2=2Þ: (6)

Then the SUð2Þ group element g is given by g ¼
neþi ~�ð�3=2Þ. Using such parametrization in (4) we finally
find

Hab ¼ nabe
�izabð�3=2Þn�1

ba ; (7)

with zab ¼ �ab þ i�ab and �ab ¼ ~�ba � ~�ab. Therefore,
for each link we have as labels the set ð ~nab; ~nba; �ab; �abÞ.
These variables admit the following classical interpreta-
tion: a link connects two nodes living inside two adjacent
chunks of space; the interface between them is a surface

2In fact, since SUð2Þ is a Lie group, its tangent bundle is
trivial: T�SUð2Þ ’ SUð2Þ � suð2Þ� ’ SUð2Þ � suð2Þ; then ob-
serve that every element in SLð2;CÞ is of the form x expðiyÞ
with x 2 SUð2Þ and y 2 suð2Þ. Moreover, the complex structure
of SLð2;CÞ and the symplectic structure of T�SUð2Þ fit together
so as to form a Kähler manifold. 3In the following �i are Hermitian Pauli matrices.
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dual to the link; let us choose a frame in each of the two
chunks; the variable ~nab can be interpreted as the (unit) flux
of the electric field Ei in the chunk a through the surface;
similarly ~nba can be viewed as the flux in b through this
surface. In general, the two vectors are different as we have
not chosen the same frame. There is a rotation R such that

R ~nab ¼ � ~nba. The product Re
�i� ~nab�ð ~�=2Þ 2 SUð2Þ can be

understood as the holonomy of the Ashtekar-Barbero con-
nection, Ai ¼ �i þ �Ki. Finally, the positive parameter
�ab can be related to the area of the surface, i.e. to the
spin jab.

III. SEMICLASSICAL PROPERTIES

In order to test and strengthen our geometric interpreta-
tion of the SLð2;CÞ labels, in the following we study the
asymptotics of coherent spin-networks for large parameter
�ab. This allows one to test the proposal against candidate
semiclassical states that have been studied previously.

The state (3) can be expanded on the spin-network basis
��;jab;iaðhabÞ. Its components fjab;ia ,

��;Hab
ðhabÞ ¼

X
jab

X
ia

fjab;ia��;jab;iaðhabÞ (8)

are given by4,5

fjab;ia ¼
�Y

ab

ð2jab þ 1Þe�jabðjabþ1ÞtabDðjabÞðHabÞ
�

�
�Y

a

via

�
; (9)

where from now on Hab is given by (7). Here we are
interested in its asymptotics for �ab � 1. First of all,
notice that, in the limit �ab ! þ1, we have the following
asymptotic behavior:

DðjabÞðe�izabð�3=2ÞÞmm0 ¼ 	m
m0e�imzab

¼ 	m
m0eþ�abjabð	m;jabe

�i�abjab

þOðe��abÞÞ: (10)

Therefore, introducing the projector Pþ ¼ jjab;þjabi�
hjab;þjabj onto the highest magnetic number, we can write
it as

DðjabÞðe�izabð�3=2ÞÞ � e�i�abjabeþ�abjabPþ: (11)

Recall that the coherent intertwiners �að ~nabÞ introduced

by Livine and Speziale [15] have components on a ortho-
normal basis via in intertwiner space, �að ~nabÞm1���mr ¼P

ia
�iað ~nabÞvm1���mr

ia
, given by

�iað ~nabÞ ¼ via �
�O

b

jjab; ~nabi
�
; (12)

where jjab; ~nabi ¼ nabjjab;þjabi. Moreover, notice that

� jðjþ 1Þtþ j� ¼ �
�
j� �� t

2t

�
2
tþ ð�� tÞ2

4t
: (13)

Therefore, up to an overall normalization of the state, we
find the following asymptotics for our states:

fjab;ia �
�Y

ab

ð2jab þ 1Þ exp
�
�ðjab � j0abÞ2

2�0
ab

�
e�i�abjab

�

�
�Y

a

�iaðnabÞ
�

(14)

with

ð2j0ab þ 1Þ � �ab

tab
and �0

ab � 1

2tab
: (15)

Finally, introducing spin-networks with nodes labeled by
coherent intertwiners as in [14],

��;jab;�að ~nabÞðhabÞ ¼
X
ia

�Y
a

�iað ~nabÞ
�
��;jab;iaðhabÞ; (16)

we find that the coherent spin-networks considered in this
paper, for large �ab, are given by the following superposi-
tion:

��;Hab
ðhabÞ �

X
jab

�Y
ab

ð2jab þ 1Þ exp
�
�ðjab � j0abÞ2

2�0
ab

�

� e�i�abjab

�
��;jab;�að ~nabÞðhabÞ: (17)

These are exactly the states considered by the authors as
boundary semiclassical states in the analysis of the gravi-
ton propagator [14]. There, the graph � is assumed to be
the one dual to the boundary of a topological 4-simplex, the
quantities j0ab and ~nab are areas and normals of faces of

tetrahedra chosen so to reproduce the intrinsic geometry of
the boundary of a regular Euclidean 4-simplex. Moreover,
the parameters �ab are chosen so to reproduce its extrinsic
curvature. The analysis of the correlation function of met-
ric operators confirms that the appropriate value is �ab ¼
�Kab ¼ � arccosð�1=4Þ. This result confirms the geomet-
ric interpretation of our variables and extends the validity
of the semiclassical states used in [14] well beyond the
simplicial setting: coherent spin-networks are defined in
full LQG.
In order to better test the interpretation of our variables,

we consider a rather simple example: the coherent loop.

4The notation � in (9) stands for a contraction of dual spaces.
To be more explicit we recall that, if VðjÞ is the vector space
where the representation j of SUð2Þ acts, then the tensor product
of representations DðjeÞðheÞ lives in �eðVðjeÞ� � VðjeÞÞ while the
tensor product of intertwiners lives precisely in the dual of this
space. An orthonormal basis in intertwiner space is denoted via .5Notice that here the sum over spins runs over half-integers
including zero. Thus, strictly speaking, a coherent spin-network
does not live on a single graph � but on a superposition of all the
subgraphs of �.
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This example allows us to discuss the importance of the
appropriate choice of heat-kernel time tab in (3).

When the graph is given by a loop �, the dependence of
the state on the normals ~n in (3) drops out and the state is
simply labeled by a complex number z ¼ �þ i�,

��;zðhÞ ¼
X
j

e�jðjþ1Þt sinðð2jþ 1Þz=2Þ
sinðz=2Þ �ðjÞðhÞ: (18)

For large �, we find

��;�þi�ðhÞ ¼
X
j

exp

�
�ðj� j0Þ2

2�0

�
e�i�j�ðjÞðhÞ (19)

with j0 and �0 given in terms of � and t by (15). Now we
compute the expectation value of the area operatorA for a
surface that is punctured once by the loop. As is well
known, we have

Â�ðjÞðhÞ ¼ �L2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

q
�ðjÞðhÞ: (20)

Therefore

Â��;�þi�ðhÞ ¼ �L2
P

X
j

exp

�
�ðj� j0Þ2

2�0

�

� e�i�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

q
�ðjÞðhÞ: (21)

In the limit of large � and large j0, the expectation value of
the area operator is easily computed

hAi ¼ ð��;�þi�;Â��;�þi�Þ
ð��;�þi�;��;�þi�Þ ¼ �L2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0ðj0 þ 1Þ

q
(22)

and confirms the interpretation of � as the quantity that
prescribes the expectation value of the area.

Now we consider the other observable acting on the
Hilbert space K�: the Wilson loop operator W�. Recall

that it acts on basis vectors as

Ŵ ��
ðjÞðhÞ � �ð1=2ÞðhÞ�ðjÞðhÞ

¼ �½jþð1=2Þ	ðhÞ þ �½j�ð1=2Þ	ðhÞ: (23)

As a result, we find

hW�i ¼ 2 cosð�=2Þe�t=8: (24)

Therefore, in the limit t ! 0 compatible with � and j0
large, the parameter � identifies the conjugacy class of the
group element h0 where the Ashtekar-Barbero connection
is peaked on. According to the Aharonov-Bohm picture of
LQG [33], the angle � is thus the expectation value of the
flux of the magnetic field through a line defect encircled by
the loop �.

Similarly, we can compute the dispersions of the area
operator and of the Wilson loop. We find

�A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i � hAi2

q
¼ 1

2�L
2
P

ffiffiffiffiffiffiffiffiffi
2�0

p
; (25)

and

�W� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2

�i � hW�i2
q

¼ sinð�=2Þ 1ffiffiffiffiffiffiffiffiffi
2�0

p : (26)

Now notice that, due to the relation (15), the limit ‘‘large �
and large j0’’ can be attained only if we assume that t
scales with j0 as

t
 ðj0Þk with k >�1: (27)

Moreover, as the area and theWilson loop are noncommut-
ing operators, we cannot make both their dispersions van-
ish at the same time. Small heat-kernel time means that the
state is sharply peaked on the holonomy, while large heat-
kernel time means that the state is sharply peaked on the
spin. A good requirement of semiclassicality is that the
relative dispersions of both operators vanish in the large j0
limit. Using the results derived above, we find the follow-
ing behavior for relative dispersions:

�A
hAi 
 ðj0Þ�ðkþ2Þ=2 and

�W�

hW�i 
 ðj0Þk=2: (28)

The first requires k >�2 and the second k < 0. Taking
into account the three bounds (27) and (28) we find that the
coherent loop behaves semiclassically when the heat-
kernel time scales as ðj0Þk with �1< k< 0. For instance,
the choice t ¼ 1=

ffiffiffiffiffi
j0

p
guarantees the semiclassicality of the

state.

IV. RESOLUTION OF THE IDENTITY

In the previous section we focused on the properties of
semiclassicality of coherent spin-networks: peakedness on
a classical configuration with small dispersions. In this
section we discuss their coherence properties: for a given
choice of parameters tab, coherent spin-networks provide a
holomorphic representation for loop quantum gravity. This
result was obtained long ago by Ashtekar, Lewandowski,
Marolf, Mourão, and Thiemann [31] and is based on the
Segal-Bargmann transform for compact Lie groups intro-
duced by Hall [30]. Here we report their result in the
formalism of this paper and comment on its relevance for
the analysis of the semiclassical behavior of loop quantum
gravity.
Let us consider the SLð2;CÞ heat kernel6 FtðHÞ and

introduce a function �tðHÞ on SLð2;CÞ given by

�tðHÞ ¼
Z
SUð2Þ

FtðHgÞdg: (29)

This function is just the heat kernel on SLð2;CÞ=SUð2Þ,
regarded as a SUð2Þ-invariant function on SLð2;CÞ. A key
result of Hall [30] is that the delta function on SUð2Þ can be

6The SLð2;CÞ heat kernel FtðH;H0Þ is not to be confused with
the analytic continuation to SLð2;CÞ of the SUð2Þ heat kernel
Ktðh; h0Þ.
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written in terms of the following SLð2;CÞ integral:

	ðh; h0Þ ¼
Z
SLð2;CÞ

KtðhH�1ÞKtðh0H�1Þ�2tðHÞdH; (30)

where dH is the Haar measure on SLð2;CÞ. This expres-
sion admits a straightforward generalization in terms of
coherent spin-networks.

We recall that, in the holonomy representation, the
identity operator 1� on the Hilbert space K� is given by
the distribution 	�ðhab; h0abÞ on SUð2ÞL=SUð2ÞN. It can be

written in terms of the spin-network basis as

	�ðhab; h0abÞ ¼
Z �Y

a

dga

��Y
a

dg0a
�

�Y
ab

	ðg�1
a habgb; g

0�1
a h0abg

0
bÞ

¼ X
jabia

��;jab;iaðhabÞ��;jab;iaðh0abÞ: (31)

The resolution of the identity for coherent spin-networks is
given by

	�ðhab; h0abÞ ¼
Z
SLð2;CÞL

��;Hab
ðhabÞ��;Hab

ðh0abÞ

�
�Y

ab

�2tabðHabÞdHab

�
(32)

with the measure on SLð2;CÞL that factors in a product of
measures per link given by the SUð2Þ-averaged heat kernel
for SLð2;CÞ at time 2t, times the Haar measure dHab.
Expression (32) for the resolution of the identity can be
easily proved using formula (30), the definition of coherent
spin-networks (3) and expression (31) for 	�ðhab; h0abÞ.

As shown in [31], coherent spin-networks provide a
Segal-Bargmann transform for loop quantum gravity. In
fact, given a state ��;fðhabÞ, its scalar product with a

coherent spin-network ��;Hab
ðhabÞ defines a function

��;fðHabÞ that is holomorphic in Hab,

��;fðHabÞ ¼
Z
SUð2ÞL

��;Hab
ðhabÞ��;fðhabÞ

Y
ab

dhab;

(33)

and belongs to the Hilbert space
HL2ðSLð2;CÞL; ð�2tdHÞLÞ of holomorphic functions
normalizable with respect to the measure ð�2tdHÞL.
Moreover, from expression (32) follows that the transform
preserves the scalar product,

Z
SUð2ÞL

��;f1ðhabÞ��;f2ðhabÞ
Y
ab

dhab

¼
Z
SLð2;CÞL

��;f1ðHabÞ��;f2ðHabÞ
�Y

ab

�2tabðHabÞdHab

�
:

What is now available is a representation for loop quantum
gravity where states are functions of classical variables

Hab that admit a clear geometric interpretation in terms
of areas, extrinsic angles and normals, ð�ab; �ab; ~nabÞ, the
variables generally used in the spin-foam setting.

V. CONCLUSIONS

We have discussed a proposal of coherent states for loop
quantum gravity and shown that, in a specific limit, they
reproduce the states used in the spin-foam framework.
Moreover, these states coincide with Thiemann’s com-
plexifier coherent states with the natural choice of com-
plexifier operator, a rather specific choice of heat-kernel
time and a clear geometrical interpretation for their
SLð2;CÞ labels.
Coherent spin-networks are candidate semiclassical

states for full loop quantum gravity. Given a space-time
metric (for instance the Minkowski one), we can identify
an intrinsic and extrinsic metric on a spatial slice �. Then,
we can consider a cellular decomposition of � and a graph
� embedded in � and dual to the decomposition. The data
captured by the graph are easy to determine: we can smear
the Ashtekar-Barbero connection on links of the graph and
the electric field on surfaces dual to links. This procedure
determines a finite amount of data that can be used as labels
for the coherent state. In the case of a simplicial decom-
position, we know that this data correspond to a Regge
geometry with dislocations. These geometries are studied
in [19] and are called ‘‘twisted.’’
The large area asymptotics of coherent spin-networks

reproduces Gaussian superpositions on spins, times Livine-
Speziale coherent intertwiners at nodes. A Gaussian on
spins in the asymptotics was to be expected and is not
surprising as the motivation of Hall-type coherent states is
exactly to generalize Gaussians to the group manifold. On
the other hand, the recovery of Livine-Speziale coherent
intertwiners at nodes is a surprising feature of coherent
spin-networks. This property was not suspected before and
is the central result of this paper.
The fact that, in the large spin limit, the states we

consider reproduce the Livine-Speziale coherent inter-
twiners on nodes guaranties that they are actually peaked
on a classical expectation value of noncommuting geomet-
ric operators. For instance, we know that the expectation
value of the volume of a region containing a 4-valent node
is given by the classical volume of a Euclidean tetrahedron
with the normals to faces and the areas as prescribed by the
labels of the coherent spin-network. What needs to be
better understood is the relation and the origin of the
tension with the results of Flori and Thiemann [28,29]
where they claim that only nodes of valency 6 can have a
semiclassical behavior.
There is a number of possible developments that we can

envision at this early stage. An aspect that needs further
investigation regards the redundancy of the labels of these
states. The situation is analogous to the one of the labels of
the Livine-Speziale coherent intertwiners (four unit nor-
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mals) [15] as opposed to the constrained labels of the same
states obtained by Conrady and Freidel via geometric
quantization of a classical tetrahedron [16,17]. Similarly,
it is possible that the coherent states obtained via geometric
quantization of the phase space of LQG associated to a
graph actually coincide with a subset of the coherent states
introduced here via heat-kernel methods. This would be an
instance of Guillemin-Sternberg’s ‘‘quantization commut-
ing with reduction.’’ Notice that the situation here is
slightly more involved: geometric quantization seemingly
knows nothing about heat kernels. Nevertheless, explicit
computations by Hall [34] show that amazingly the two
approaches give precisely the same coherent states in all
the studied cases. This aspect deserves to be understood
better.

A surprising property of the states we have discussed is
that they bring together so many (apparently conflicting)
ideas that have been proposed in the search for semiclas-
sical states in loop quantum gravity. We consider this
convergence to be a measure of the robustness of the
theory.
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APPENDIX: PROOF OF FORMULA (30)

The representation of the delta function of SUð2Þ in
terms of an integral on SLð2;CÞ, formula (30), is a key
ingredient in the proof of the resolution of the identity
provided by coherent spin-networks. To make the paper
self-contained, in this Appendix we report an elementary
proof of formula (30). The proof is by direct computation
and is similar to the derivation of [21] (Sec. 4.4). A more
general proof for compact Lie groups can be found in [30]
(Sec. 7).

Let us use the polar decomposition

H ¼ ge ~p�ð ~�=2Þ (A1)

to parametrize an element H of SLð2;CÞ in terms of an
element g of SUð2Þ and a vector ~p inR3. In these variables,
the Haar measure dH on SLð2;CÞ factors into a SUð2Þ term
and a R3 term

dH ¼ ðsinhj ~pjÞ2
j ~pj2 d3 ~pdg; (A2)

where dg is the Haar measure on SUð2Þ and d3 ~p is the
Lebesgue measure on R3.

The SUð2Þ-averaged heat kernel on SLð2;CÞ coincides
with the heat kernel on the hyperboloid H3 ¼
SLð2;CÞ=SUð2Þ. Its explicit form in terms of the variables

(A1) can be found in [35] and is given by

�tðge ~p�ð ~�=2ÞÞ ¼ 1

ð
tÞ3=2 e
�t=4 j ~pj

sinhj ~pj e
�j ~pj2=t: (A3)

Therefore, the measure in the resolution of the identity (30)
is given by

�2tðHabÞdHab ¼ �tðj ~pjÞd3 ~pdg; (A4)

where

�tðj ~pjÞ ¼ 1

ð2
tÞ3=2 e
�t=2 sinhj ~pj

j ~pj e�ðj ~pj2=2tÞ: (A5)

Now wewant to compute the integral that appears on the
right-hand side of (30). Using the Peter-Weyl expansion of
the heat kernel we find

Z
SLð2;CÞ

KtðhH�1ÞKtðh0H�1Þ�2tðHÞdH

¼ X
j;j0

ð2jþ 1Þð2j0 þ 1Þe�jðjþ1Þte�j0ðj0þ1Þtfj;j0 ðh; h0Þ;

(A6)

where the coefficients in the sum are given by

fj;j0 ðh; h0Þ ¼
Z
SLð2;CÞ

�ðjÞðhH�1Þ�ðj0Þðh0H�1Þ�2tðHÞdH:

(A7)

This quantity can be computed in two steps: (i) first we
integrate over the subgroup SUð2Þ and obtain

fj;j0 ðh; h0Þ ¼ 	j;j0

2jþ 1
TrðDjðhh0�1ÞAÞ; (A8)

where A is a ð2jþ 1Þ � ð2jþ 1Þ matrix. Then, (ii) we
compute the matrix A. It is given by the following integral
over R3:

A ¼
Z
R3

DðjÞðe� ~p�ð ~�=2ÞÞ�tðj ~pjÞd3 ~p: (A9)

Notice that the matrix A commutes with the irreducible
representation j of SUð2Þ. Therefore it has to be a multiple
of the identity

A ¼ c

2jþ 1
1 (A10)

with the constant c given by the trace of the matrix. Such
constant can be computed explicitly performing the inte-
gral and is given by

c ¼ TrA ¼ 4

Z 1

0

sinhðð2jþ 1ÞpÞ
sinhðpÞ �tðpÞdp

¼ ð2jþ 1Þeþjðjþ1Þ2t: (A11)

Therefore the integral (A7) is simply given by
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fj;j0 ðh; h0Þ ¼ 	j;j0eþjðjþ1Þ2t�ðjÞðhh0�1Þ: (A12)

Inserting this result into the right-hand side of expression
(A6) we find the Peter-Weyl expansion of the delta func-
tion,

	ðh; h0Þ ¼ X
j

ð2jþ 1Þ�ðjÞðhh0�1Þ: (A13)

This proves expression (30).

[1] C. Rovelli, Quantum Gravity (Cambridge University
Press, Cambridge, England, 2004).

[2] L. Smolin, arXiv:hep-th/0408048.
[3] A. Ashtekar and J. Lewandowski, Classical Quantum

Gravity 21, R53 (2004).
[4] T. Thiemann, Modern Canonical Quantum General

Relativity (Cambridge University Press, Cambridge,
England, 2007), p. 819.

[5] J. Engle, E. Livine, R. Pereira, and C. Rovelli, Nucl. Phys.
B799, 136 (2008).

[6] L. Freidel and K. Krasnov, Classical Quantum Gravity 25,
125018 (2008).

[7] W. Kaminski, M. Kisielowski, and J. Lewandowski,
Classical Quantum Gravity 27, 095006 (2010).

[8] C. Rovelli, Phys. Rev. Lett. 97, 151301 (2006).
[9] E. Bianchi, L. Modesto, C. Rovelli, and S. Speziale,

Classical Quantum Gravity 23, 6989 (2006).
[10] E. R. Livine and S. Speziale, J. High Energy Phys. 11

(2006) 092.
[11] E. Alesci and C. Rovelli, Phys. Rev. D 76, 104012 (2007).
[12] E. Alesci and C. Rovelli, Phys. Rev. D 77, 044024 (2008).
[13] E. Alesci, E. Bianchi, and C. Rovelli, Classical Quantum

Gravity 26, 215001 (2009).
[14] E. Bianchi, E. Magliaro, and C. Perini, Nucl. Phys. B822,

245 (2009).
[15] E. R. Livine and S. Speziale, Phys. Rev. D 76, 084028

(2007).
[16] F. Conrady and L. Freidel, J. Math. Phys. (N.Y.) 50,

123510 (2009).
[17] L. Freidel, K. Krasnov, and E. R. Livine, Commun. Math.

Phys. 297, 45 (2010).

[18] S. Speziale, ‘‘Twisted Geometries: A Geometric
Parametrization of SU(2) Phase Space,’’ Loops 2009,
Beijing.

[19] L. Freidel and S. Speziale, arXiv:1001.2748.
[20] T. Thiemann, Classical Quantum Gravity 18, 2025 (2001).
[21] T. Thiemann and O. Winkler, Classical Quantum Gravity

18, 2561 (2001).
[22] T. Thiemann and O. Winkler, Classical Quantum Gravity

18, 4629 (2001).
[23] T. Thiemann and O. Winkler, Classical Quantum Gravity

18, 4997 (2001).
[24] H. Sahlmann, T. Thiemann, and O. Winkler, Nucl. Phys.

B606, 401 (2001).
[25] T. Thiemann, Classical Quantum Gravity 23, 2063 (2006).
[26] B. Bahr and T. Thiemann, Classical Quantum Gravity 26,

045011 (2009).
[27] B. Bahr and T. Thiemann, Classical Quantum Gravity 26,

045012 (2009).
[28] C. Flori and T. Thiemann, arXiv:0812.1537.
[29] C. Flori, arXiv:0904.1303.
[30] B. C. Hall, J. Funct. Anal. 122, 103 (1994).
[31] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, and

T. Thiemann, J. Funct. Anal. 135, 519 (1996).
[32] M. Carmeli, Group Theory and General Relativity:

Representations of the Lorentz Group and Their
Applications to the Gravitational Field (Imperial
College Press, 2000).

[33] E. Bianchi, arXiv:0907.4388.
[34] B. C. Hall, Commun. Math. Phys. 226, 233 (2002).
[35] R. Gangolli, Acta Math. 121, 151 (1968).

COHERENT SPIN-NETWORKS PHYSICAL REVIEW D 82, 024012 (2010)

024012-7

http://arXiv.org/abs/hep-th/0408048
http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1088/0264-9381/27/9/095006
http://dx.doi.org/10.1103/PhysRevLett.97.151301
http://dx.doi.org/10.1088/0264-9381/23/23/024
http://dx.doi.org/10.1088/1126-6708/2006/11/092
http://dx.doi.org/10.1088/1126-6708/2006/11/092
http://dx.doi.org/10.1103/PhysRevD.76.104012
http://dx.doi.org/10.1103/PhysRevD.77.044024
http://dx.doi.org/10.1088/0264-9381/26/21/215001
http://dx.doi.org/10.1088/0264-9381/26/21/215001
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.016
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.016
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1063/1.3257109
http://dx.doi.org/10.1063/1.3257109
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1007/s00220-010-1036-5
http://arXiv.org/abs/1001.2748
http://dx.doi.org/10.1088/0264-9381/18/11/304
http://dx.doi.org/10.1088/0264-9381/18/14/301
http://dx.doi.org/10.1088/0264-9381/18/14/301
http://dx.doi.org/10.1088/0264-9381/18/21/315
http://dx.doi.org/10.1088/0264-9381/18/21/315
http://dx.doi.org/10.1088/0264-9381/18/23/302
http://dx.doi.org/10.1088/0264-9381/18/23/302
http://dx.doi.org/10.1016/S0550-3213(01)00226-7
http://dx.doi.org/10.1016/S0550-3213(01)00226-7
http://dx.doi.org/10.1088/0264-9381/23/6/013
http://dx.doi.org/10.1088/0264-9381/26/4/045011
http://dx.doi.org/10.1088/0264-9381/26/4/045011
http://dx.doi.org/10.1088/0264-9381/26/4/045012
http://dx.doi.org/10.1088/0264-9381/26/4/045012
http://arXiv.org/abs/0812.1537
http://arXiv.org/abs/0904.1303
http://dx.doi.org/10.1006/jfan.1994.1064
http://dx.doi.org/10.1006/jfan.1996.0018
http://arXiv.org/abs/0907.4388
http://dx.doi.org/10.1007/s002200200607
http://dx.doi.org/10.1007/BF02391912

