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Change of variable formulas for non-anticipative functionals on path space

Rama Cont, David-Antoine Fournie

In his seminal paper Calcul d'Ito sans probabilités [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF], Hans Föllmer proposed a non-probabilistic version of the Ito formula [START_REF] Ito | On a stochastic integral equation[END_REF]: Föllmer showed that if a real-valued cadlag (right continuous with left limits) function x has finite quadratic variation along a sequence π n = (t n k ) k=0..n of subdivisions of [0, T ] with step size decreasing to zero, in the sense that the sequence of discrete measures

n-1 k=0 |x(t n k+1 ) -x(t n k )| 2 δ t n k
converges vaguely to a Radon measure with Lebesgue decomposition ξ + t∈[0,T ] |∆x(t)| 2 δ t then for f ∈ C 1 (R) one can define the pathwise integral

T 0 f (x(t))d π x = lim n→∞ n-1 i=0 f (x(t n i )).(x(t n i+1 ) -x(t n i )) (1) 
as a limit of Riemann sums along the subdivision π = (π n ) n≥1 . In particular if X = (X t ) t∈[0,T ] is a semimartingale [START_REF] Dellacherie | Probabilities and potential[END_REF][START_REF] Meyer | Un cours sur les integrales stochastiques[END_REF][START_REF] Protter | Stochastic integration and differential equations[END_REF], which is the classical setting for stochastic calculus, the paths of X have finite quadratic variation along such subsequences: when applied to the paths of X, Föllmer's integral (1) then coincides, with probability one, with the Ito stochastic integral T 0 f (X)dX with respect to the semimartingale X. This construction may in fact be carried out for a more general class of processes, including the class of Dirichlet processes [START_REF] Coquet | On non-continuous Dirichlet processes[END_REF][START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF][START_REF] Föllmer | Dirichlet processes[END_REF][START_REF] Lyons | Decomposition of Dirichlet processes and its application[END_REF].

Of course, the Ito stochastic integral with respect to a semimartingale X may be defined for a much larger class of integrands: in particular, for a caglad process Y defined as a non-anticipative functional Y (t) = F t (X(u), 0 ≤ u ≤ t) of X, the stochastic integral T 0 Y dX may be defined as a limit of non-anticipative Riemann sums [START_REF] Protter | Stochastic integration and differential equations[END_REF].

Using a notion of directional derivative for functionals proposed by Dupire [START_REF] Dupire | Functional Itô calculus[END_REF], we extend Föllmer's pathwise change of variable formula to non-anticipative functionals on the space D([0, T ], R d ) of cadlag paths (Theorem 3). The requirement on the functionals is to possess certain directional derivatives which may be computed pathwise. Our construction allows to define a pathwise integral F t (x)dx, defined as a limit of Riemann sums, for a class of functionals F of a cadlag path x with finite quadratic variation. Our results lead to functional extensions of the Ito formula for semimartingales (Section 6) and Dirichlet processes (Section 5). In particular, we show the stability of the the class of semimartingales under functional transformations verifying a regularity condition. These results yield a non-probabilistic proof for functional Ito formulas obtained in [START_REF] Cont | A functional extension of the Ito formula[END_REF][START_REF] Cont | Functional Ito calculus and stochastic integral representation of martingales[END_REF][START_REF] Dupire | Functional Itô calculus[END_REF] using probabilistic methods and extend them to the case of discontinuous semimartingales. Notation For a path x ∈ D([0, T ], R d ), denote by x(t) the value of x at t and by x t = (x(u), 0 ≤ u ≤ t) the restriction of x to [0, t]. Thus x t ∈ D([0, t], R d ). For a stochastic process X we shall similarly denote X(t) its value at t and X t = (X(u), 0 ≤ u ≤ t) its path on [0, t].

1 Non-anticipative functionals on spaces of paths Let T > 0, and U ⊂ R d be an open subset of R d and S ⊂ R m be a Borel subset of R m . We call "U -valued cadlag function" a right-continuous function f : [0, T ] → U with left limits such that for each t ∈]0, T ], f (t-) ∈ U . Denote by U t = D([0, t], U ) (resp. S t = D([0, t], S) the space of U -valued cadlag functions (resp. S), and C 0 ([0, t], U ) the set of continuous functions with values in U .

When dealing with functionals of a path x(t) indexed by time, an important class is formed by those which are non-anticipative, in the sense that they only depend on the past values of x. A family Y : [0, T ] × U T → R of functionals is said to be non-anticipative if, for all (t, x) ∈ [0, T ] × U T , Y (t, x) = Y (t, x t ) where x t = x |[0,t] denotes the restriction of the path x to [0, t]. A non-anticipative functional may thus be represented as Y (t, x) = F t (x t ) where (F t ) t∈[0,T ] is a family of maps F t : U t → R. This motivates the following definition: Definition 1 (Non-anticipative functionals on path space). A non-anticipative functional on U T is a family F = (F t ) t∈[0,T ] of maps

F t : U t → R
Consider, on the product space U T × S T , the filtration (F t ) generated by the canonical process (X, V ) :

U T × S T × [0, T ] → U × S (x, v), t → (X, V )((x, v), t) = (x(t), v(t))
F t is the smallest sigma-algebra on U T × S T such that all coordinate maps (X(., s), V (., s)), s

∈ [0, t] are F t -measurable. The optional sigma-algebra O on U T × S T × [0, T ] is the sigma-algebra on U T × S T × [0, T ] generated by all mappings f : U T × S T × [0, T ] → R
the set into which, for every ω ∈ U T × S T , are right continuous in t, have limits from the left and are adapted to (F t ) t∈[0,T ] . The predictable sigma-algebra P is the sigma-algebra on U T × S T × [0, T ] generated by all mappings f : U T × S T × [0, T ] → R the set into which, for every ω ∈ U T × S T , are left-continuous in t and are adapted to

(F t ) t∈[0,T ] . A positive map τ : U T × S T → [0, ∞[ is called an optional time if {ω ∈ U T × S T , τ (ω) < t} ∈ F t for every t ∈ [0, T ].
In this setting, a map Y : [0, T ] × U T → R is P-measurable (predictable) if, for all (t, x) ∈ [0, T ] × U T , Y (t, x) = Y (t, x t-) where x t-denotes the function defined on [0, t] by

x t-(u) = x(u) u ∈ [0, t[ x t-(t) = x(t-)
Typical examples of predictable functionals are integral functionals, e.g.

Y (t, x) = t 0 G s (x s )ds
where G is a non-anticipative, locally integrable functional. If Y is predictable then Y is non-anticipative, but predictability is a stronger property. Note that x t-is cadlag and should not be confused with the caglad path u → x(u-).

We consider throughout this paper non-anticipative functionals

F = (F t ) t∈[0,T ] F t : U t × S t → R
where F has a predictable dependence with respect to the second argument:

∀t ≤ T, ∀(x, v) ∈ U t × S t , F t (x t , v t ) = F t (x t , v t-) (2) 
F can be viewed as a functional on the vector bundle Υ = t∈[0,T ] U t × S t . We will also consider non-anticipative functionals F = (F t ) t∈[0,T [ indexed by [0, T [.

Horizontal and vertical perturbation of a path

Consider a path x ∈ D([0, T ]), U ) and denote by x t ∈ U t its restriction to [0, t] for t < T . For h ≥ 0, the horizontal extension

x t,h ∈ D([0, t + h], R d ) of x t to [0, t + h] is defined as x t,h (u) = x(u) u ∈ [0, t] ; x t,h (u) = x(t) u ∈]t, t + h] (3) 
For h ∈ R d small enough, we define the vertical perturbation x h t of x t as the cadlag path obtained by shifting the endpoint by h:

x h t (u) = x t (u) u ∈ [0, t[ x h t (t) = x(t) + h (4) 
or in other words x h t (u) = x t (u) + h1 t=u . By convention, x u t,h = (x u t ) t,h , ie the vertical perturbation precedes the horizontal extension.

We now define a distance between two paths, not necessarily defined on the same time interval.

For T ≥ t = t + h ≥ t ≥ 0, (x, v) ∈ U t × S + t and (x , v ) ∈ D([0, t + h], R d ) × S t+h define d ∞ ( (x, v), (x , v ) ) = sup u∈[0,t+h] |x t,h (u) -x (u)| + sup u∈[0,t+h] |v t,h (u) -v (u)| + h (5) 
If the paths (x, v), (x , v ) are defined on the same time interval, then d ∞ ((x, v), (x , v )) is simply the distance in supremum norm.

Classes of non-anticipative functionals

Using the distance d ∞ defined above, we now introduce various notions of continuity for nonanticipative functionals.

Definition 2 (Continuity at fixed times). A non-anticipative functional F = (F t ) t∈[0,T ] is said to be continuous at fixed times if for any t ≤ T , F t : U t × S t → R is continuous for the supremum norm.

Definition 3 (Left-continuous functionals). Define F ∞ l as the set of functionals F = (F t , t ∈ [0, T ]) which verify:

∀t ∈ [0, T ], ∀ > 0, ∀(x, v) ∈ U t × S t , ∃η > 0, ∀h ∈ [0, t], ∀(x , v ) ∈ U t-h × S t-h , d ∞ ((x, v), (x , v )) < η ⇒ |F t (x, v) -F t-h (x , v )| < (6) Definition 4 (Right-continuous functionals). Define F ∞ r as the set of functionals F = (F t , t ∈ [0, T [) which verify ∀t ∈ [0, T ], ∀ > 0, ∀(x, v) ∈ U t × S t , ∃η > 0, ∀h ∈ [0, T -t], ∀(x , v ) ∈ U t+h × S t+h , d ∞ ((x, v), (x , v )) < η ⇒ |F t (x, v) -F t+h (x , v )| < (7) 
We denote F ∞ = F ∞ r ∩ F ∞ l the set of continuous non-anticipative functionals. We call a functional "boundedness preserving" if it is bounded on each bounded set of paths: Definition 5 ( Boundedness-preserving functionals). Define B as the set of non-anticipative functionals F such that for every compact subset K of U , every R > 0, there exists a constant C K,R such that:

∀t ≤ T, ∀(x, v) ∈ D([0, t], K) × S t , sup s∈[0,t] |v(s)| < R ⇒ |F t (x, v)| < C K,R (8) 
In particular if F ∈ B, it is "locally" bounded in the neighborhood of any given path i.e.

∀(x, v) ∈ U T × S T , ∃C > 0, η > 0, ∀t ∈ [0, T ], ∀(x , v ) ∈ U t × S t , d ∞ ((x t , v t ), (x , v )) < η ⇒ ∀t ∈ [0, T ], |F t (x , v )| ≤ C (9) 
The following result describes the behavior of paths generated by the functionals in the above classes:

Proposition 1 (Pathwise regularity).

1. If F ∈ F ∞ l then for any (x, v) ∈ U T × S T , the path t → F t (x t-, v t-) is left-continuous. 2. If F ∈ F ∞ r then for any (x, v) ∈ U T × S T , the path t → F t (x t , v t ) is right-continuous. 3. If F ∈ F ∞ then for any (x, v) ∈ U T × S T , the path t → F t (x t , v t
) is cadlag and continuous at all points where x and v are continuous.

4. If F ∈ F ∞ further verifies (2) then for any (x, v) ∈ U T × S T , the path t → F t (x t , v t ) is cadlag and continuous at all points where x is continuous.

5. If F ∈ B, then for any (x, v) ∈ U T × S T , the path t → F t (x t , v t ) is bounded.

Proof.

1. Let F ∈ F ∞ l and t ∈ [0, T ). For h > 0 sufficiently small,

d ∞ ((x t-h , v t-h ), (x t-, v t-)) = sup u∈(t-h,t) |x(u) -x(t-)| + sup u∈(t-h,t) |v(u) -v(t-)| + h (10)
Since x and v are cadlag, this quantity converges to 0 as h → 0+, so

F t-h (x t-h , v t-h ) -F t (x t-, v t-) h→0 + → 0 so t → F t (x t-, v t-) is left-continuous. 2. Let F ∈ F ∞ r and t ∈ [0, T ). For h > 0 sufficiently small, d ∞ ((x t+h , v t+h ), (x t , v t )) = sup u∈[t,t+h) |x(u) -x(t)| + sup u∈[t,t+h) |v(u) -v(t)| + h (11) 
Since x and v are cadlag, this quantity converges to 0 as h → 0+, so 

F t+h (x t+h , v t+h ) -F t (x t , v t ) h→0 + → 0 so t → F t (x t , v t ) is right-continuous.

Measurability properties

The following result, proved in Appendix B, clarifies the measurability properties of processes defined by functionals in

F ∞ l , F ∞ r : Theorem 2. If F is continuous at fixed time, then the process Y defined by Y ((x, v), t) = F t (x t , v t ) is F t -adapted. If F ∈ F ∞ l or F ∈ F ∞ r , then:
1. the process Y defined by Y ((x, v), t) = F t (x t , v t ) is optional i.e. i.e. O-measurable.

2. the process Z defined by Z((x, v), t) = F t (x t-, v t-) is predictable i.e. P-measurable.

Pathwise derivatives of non-anticipative functionals

We define two notions of pathwise derivatives for a non-anticipative functional F = (F t ) t∈[0,T ] : the horizontal derivative, which is a derivative with respect to time, and the vertical derivative, which is a derivative with respect to the current value of underlying path x [2, 3, 6].

Horizontal derivative

Definition 6 (Horizontal derivative). The horizontal derivative at (x, v) ∈ U t ×S t of non-anticipative functional F = (F t ) t∈[0,T [ is defined as

D t F (x, v) = lim h→0 + F t+h (x t,h , v t,h ) -F t (x, v) h ( 12 
)
if the corresponding limit exists. If [START_REF] Malliavin | Stochastic analysis[END_REF] is defined for all (x, v) ∈ Υ the map

D t F : U t × S t → R d (x, v) → D t F (x, v) (13) 
defines a non-anticipative functional DF = (D t F ) t∈[0,T [ , the horizontal derivative of F .

We will occasionally use the following "local Lipschitz property" that is weaker than horizontal differentiability: Definition 7. A non-anticipative functional F is said to have the horizontal local Lipschitz property if and only if:

∀(x, v) ∈ U T × S T , ∃C > 0, η > 0, ∀t 1 < t 2 ≤ T, ∀(x , v ) ∈ U t1 × S t1 , d ∞ ((x t1 , v t1 ), (x , v )) < η ⇒ |F t2 (x t1,t2-t1 , v t1,t2-t1 ) -F t1 ((x t1 , v t1 ))| < C(t 2 -t 1 ) (14) 

Vertical derivative

Dupire [START_REF] Dupire | Functional Itô calculus[END_REF] introduced a pathwise spatial derivative for non-anticipative functionals, which we now introduce. Denote (e i , i = 1..d) the canonical basis in R d .

Definition 8. A non-anticipative functional F = (F t ) t∈[0,T ] is said to be vertically differentiable at (x, v) ∈ D([0, t]), R d ) × D([0, t], S + d ) if R d → R e → F t (x e t , v t ) is differentiable at 0. Its gradient at 0 ∇ x F t (x, v) = (∂ i F t (x, v), i = 1..d)
where

∂ i F t (x, v) = lim h→0 F t (x hei t , v) -F t (x, v) h (15) 
is called the vertical derivative of F t at (x, v). If ( 15) is defined for all (x, v) ∈ Υ, the vertical derivative

∇ x F : U t × S t → R d (x, v) → ∇ x F t (x, v) (16) 
define a non-anticipative functional

∇ x F = (∇ x F t ) t∈[0,T ] with values in R d .
Remark 1. If a vertically differentiable functional verifies (2), its vertical derivative also verifies (2). Remark 2. ∂ i F t (x, v) is simply the directional derivative of F t in direction (1 {t} e i , 0). Note that this involves examining cadlag perturbations of the path x, even if x is continuous. Also note that, unlike the Fréchet or Malliavin derivatives [START_REF] Malliavin | Stochastic analysis[END_REF][START_REF] Stroock | The Malliavin calculus, a functional analytic approach[END_REF], the computation of

∇ x F involves local perturbations of x. Remark 3. If F t (x, v) = f (t, x(t)) with f ∈ C 1,1 ([0, T [×R d
) then we retrieve the usual partial derivatives:

D t F (x, v) = ∂ t f (t, x(t)) ∇ x F t (x t , v t ) = ∇ x f (t, x(t)).
Remark 4. Note that the assumption (2) that F is predictable with respect to the second variable entails that for any t ∈ [0, T ], F t (x t , v e t ) = F t (x t , v t ) so an analogous notion of derivative with respect to v would be identically zero under assumption [START_REF] Cont | A functional extension of the Ito formula[END_REF].

If F admits a horizontal (resp. vertical) derivative DF (resp. ∇ x F ) we may iterate the operations described above and define higher order horizontal and vertical derivatives. Definition 9. Define C j,k as the set of functionals F which are

• continuous at fixed times,

• admit j horizontal derivatives and k vertical derivatives at all (x, v)

∈ U t × S t , t ∈ [0, T [ • D m F, m ≤ j, ∇ n
x F, n ≤ k are continuous at fixed times.

Change of variable formula for functionals of a continuous path

We now state our first main result, a functional change of variable formula which extends the Itô formula without probability due to Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] to functionals. We denote here S + d the set of positive symmetric d × d matrices.

Definition 10. Let Π n = (t n 0 , . . . , t n k(n) ), where 0 = t n 0 ≤ t n 1 ≤ . . . ≤ t n k(n) = T , be a sequence of subdivisions of [0, T ] with step decreasing to 0 as n → ∞. f ∈ C 0 ([0, T ], R
) is said to have finite quadratic variation along (π n ) if the sequence of discrete measures:

ξ n = k(n)-1 i=0 (f (t n i+1 ) -f (t n i )) 2 δ t n i ( 17 
)
where δ t is the Dirac measure at t, converge vaguely to a Radon measure ξ on [0, T ] whose atomic part is null. The increasing function [f ] defined by

[f ](t) = ξ([0, t])
is then called the quadratic variation of f along the sequence (π n ).

x

∈ C 0 ([0, T ], U ) is said to have finite quadratic variation along the sequence (π n ) if the functions x i , 1 ≤ i ≤ d and x i + x j , 1 ≤ i < j ≤ d do. The quadratic variation of x along (π n ) is the S + d -valued function x defined by: [x] ii = [x i ], [x] ij = 1 2 ([x i + x j ] -[x i ] -[x j ]), i = j (18)
Theorem 3 (Change of variable formula for functionals of continuous paths). Let (x, v) ∈ C 0 ([0, T ], U )× S T such that x has finite quadratic variation along (π n ) and verifies sup t∈[0,T ]-πn |v(t) -v(t-)| → 0. Denote:

x n (t) = k(n)-1 i=0 x(t i+1 )1 [ti,ti+1[ (t) + +x(T )1 {T } (t) v n (t) = k(n)-1 i=0 v(t i )1 [ti,ti+1[ (t) + v(T )1 {T } (t), h n i = t n i+1 -t n i ( 19 
)
Then for any non-anticipative functional F ∈ C 1,2 such that:

1. F, ∇ x F, ∇ 2 x F ∈ F ∞ l 2. ∇ 2
x F, DF satisfy the local boundedness property (9)

the following limit

lim n→∞ k(n)-1 i=0 ∇ x F t n i (x n t n i -, v n t n i -)(x(t n i+1 ) -x(t n i )) (20) 
exists. Denoting this limit by

T 0 ∇ x F (x u , v u )d π x we have F T (x T , v T ) -F 0 (x 0 , v 0 ) = T 0 D t F t (x u , v u )du + T 0 1 2 tr t ∇ 2 x F t (x u , v u )d[x](u) + T 0 ∇ x F (x u , v u )d π x (21)
Remark 5 (Föllmer integral). The limit (20), which we call the Föllmer integral, was defined in [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] for integrands of the form f (X(t)) where f ∈ C 1 (R d ). It depends a priori on the sequence π of subdivisions, hence the notation

T 0 ∇ x F (x u , v u )d π x.
We will see in Section 6 that when x is the sample path of a semimartingale, the limit is in fact almost-surely independent of the choice of π. Remark 6. The regularity conditions on F are given independently of (x, v) and of the sequence of subdivisions (π n ).

Proof. Denote δx n i = x(t n i+1 ) -x(t n i ).
Since x is continuous hence uniformly continuous on [0, T ], and using Lemma 8 for v, the quantity

η n = sup{|v(u) -v(t n i )| + |x(u) -x(t n i )| + |t n i+1 -t n i |, 0 ≤ i ≤ k(n) -1, u ∈ [t n i , t n i+1 )} (22) converges to 0 as n → ∞. Since ∇ 2
x F, DF satisfy the local boundedness property ( 9), for n sufficiently large there exists C > 0 such that

∀t < T, ∀(x , v ) ∈ U t × S t , d ∞ ((x t , v t ), (x , v )) < η n ⇒ |D t F t (x , v )| ≤ C, |∇ 2 x F t (x , v )| ≤ C Denoting K = {x(u), s ≤ u ≤ t} which is a compact subset of U , and U c = R -U its complement,
one can also assume n sufficiently large so that d(K, U c ) > η n . For i ≤ k(n) -1, consider the decomposition:

F t n i+1 (x n t n i+1 -, v n t n i+1 -) -F t n i (x n t n i -, v n t n i -) = F t n i+1 (x n t n i+1 -, v n t n i ,h n i ) -F t n i (x n t n i , v n t n i ) + F t n i (x n t n i , v n t n i -) -F t n i (x n t n i -, v n t n i -) (23) 
where we have used property (2) to have

F t n i (x n t n i , v n t n i ) = F t n i (x n t n i , v n t n i -).
The first term can be written ψ(h n i ) -ψ(0) where:

ψ(u) = F t n i +u (x n t n i ,u , v n t n i ,u ) (24) 
Since F ∈ C 1,2 ([0, T ]), ψ is right-differentiable, and moreover by lemma 4, ψ is left-continuous, so:

F t n i+1 (x n t n i ,h n i , v n t n i ,h n i ) -F t n i (x n t n i , v n t n i ) = t n i+1 -t n i 0 D t n i +u F (x n t n i ,u , v n t n i ,u )du (25) 
The second term can be written φ(δx n i ) -φ(0), where:

φ(u) = F t n i (x n,u t n i -, v n t n i -) (26) Since F ∈ C 1,2 ([0, T ]), φ is well-defined and C 2 on the convex set B(x(t n i ), η n ) ⊂ U , with: φ (u) = ∇ x F t n i (x n,u t n i -, v n t n i -) φ (u) = ∇ 2 x F t n i (x n,u t n i -, v n t n i -) (27) 10 
So a second order Taylor expansion of φ at u = 0 yields:

F t n i (x n t n i , v n t n i -) -F t n i (x n t n i -, v n t n i -) = ∇ x F t n i (x n t n i -, v n t n i -)δx n i + 1 2 tr ∇ 2 x F t n i (x n t n i -, v n t n i -) t δx n i δx n i + r n i (28)
where r n i is bounded by

K|δx n i | 2 sup x∈B(x(t n i ),ηn) |∇ 2 x F t n i (x n,x-x(t n i ) t n i - , v n t n i -) -∇ 2 x F t n i (x n t n i -, v n t n i -)| (29) Denote i n (t) the index such that t ∈ [t n i n (t) , t n i n (t)+1
). We now sum all the terms above from i = 0 to k(n) -1:.

• The left-hand side of (23) yields

F T (x n T -, v n T -)-F 0 (x 0 , v 0 ), which converges to F T (x T -, v T -)- F 0 (x 0 , v 0 )
by left-continuity of F , and this quantity equals F T (x T , v T ) -F 0 (x 0 , v 0 ) since x is continuous and F is predictable in the second variable.

• The first line in the right-hand side can be written:

T 0 D u F (x n t n i n (u) ,u-t n i n (u) , v n t n i n (u) ,u-t n i n (u)
)du (30

)
where the integrand converges to D u F (x u , v u-) and is bounded by C. Hence the dominated convergence theorem applies and (30) converges to:

T 0 D u F (x u , v u-)du = T 0 D u F (x u , v u ) (31) 
since v u = v u-, du-almost everywhere.

• The second line can be written:

k(n)-1 i=0 ∇ x F t n i (x n t n i -, v n t n i -)(x t n i+1 -x t n i ) + k(n)-1 i=0 1 2 tr[∇ 2 x F t n i (x n t n i -, v n t n i -)] t δx n i δx n i ] + k(n)-1 i=0 r n i (32) [∇ 2 x F t n i (x n t n i -, v n t n i -)]1 t∈]t n i ,t n i+1
] is bounded by C, and converges to ∇ 2 x F t (x t , v t-) by left-continuity of ∇ 2

x F , and the paths of both are left-continuous by lemma 4. Since x and the subdivision (π n ) are as in definition 10, lemma 12 in appendix C applies and gives as limit:

T 0 1 2 tr[ t ∇ 2 x F t (x u , v u-)]d[x](u)] = T 0 1 2 tr[ t ∇ 2 x F t (x u , v u )]d[x](u)] ( 33 
) since ∇ 2
x F is predictable in the second variable i.e. verifies [START_REF] Cont | A functional extension of the Ito formula[END_REF]. Using the same lemma, since

|r n i | is bounded by n i |δx n i | 2
where n i converges to 0 and is bounded by 2C,

i n (t)-1 i=i n (s)+1 r n i converges to 0.
Since all other terms converge, the limit:

lim n k(n)-1 i=0 ∇ x F t n i (x n t n i -, v n t n i -)(x(t n i+1 ) -x(t n i )) (34) 
exists, and the result is established.

Change of variable formula for functionals of a cadlag path

We will now extend the previous result to functionals of cadlag paths. The following definition is a taken from Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF]:

Definition 11. Let π n = (t n 0 , . . . , t n k(n) ), where 0 = t n 0 ≤ t n 1 ≤ . . . ≤ t n k(n) =
T be a sequence of subdivisions of [0, T ] with step decreasing to 0 as n → ∞. f ∈ D([0, T ], R) is said to have finite quadratic variation along (π n ) if the sequence of discrete measures:

ξ n = k(n)-1 i=0 (f (t n i+1 ) -f (t n i )) 2 δ t n i ( 35 
)
where δ t is the Dirac measure at t, converge vaguely to a Radon measure ξ on [0, T ] such that

[f ](t) = ξ([0, t]) = [f ] c (t) + 0<s≤t (∆f (s)) 2 (36) where [f ] c is the continuous part of [f ]. [f ] is called quadratic variation of f along the sequence (π n ).
x ∈ U T is said to have finite quadratic variation along the sequence (π n ) if the functions

x i , 1 ≤ i ≤ d and x i + x j , 1 ≤ i < j ≤ d do. The quadratic variation of x along (π n ) is the S + d -valued function x defined by: [x] ii = [x i ], [x] ij = 1 2 ([x i + x j ] -[x i ] -[x j ]), i = j (37) 
Theorem 4 (Change of variable formula for functionals of discontinuous paths). Let (x, v) ∈ U T ×S T where x has finite quadratic variation along (π n ) and

sup t∈[0,T ]-πn |x(t) -x(t-)| + |v(t) -v(t-)| → 0 (38) Denote x n (t) = k(n)-1 i=0 x(t i+1 -)1 [ti,ti+1) (t) + x(T )1 {T } (t) v n (t) = k(n)-1 i=0 v(t i )1 [ti,ti+1) (t) + v(T )1 {T } (t), h n i = t n i+1 -t n i ( 39 
)
Then for any non-anticipative functional F ∈ C 1,2 such that:

1. F is predictable in the second variable in the sense of (2)

∇ 2

x F and DF have the local boundedness property (9)

3. F, ∇ x F, ∇ 2 x F ∈ F ∞ l 4. ∇ x F has the horizontal local Lipschitz property (14)
the Föllmer integral, defined as the limit ]0,T ]

∇ x F t (x t-, v t-)d π x := lim n→∞ k(n)-1 i=0 ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)(x(t n i+1 ) -x(t n i )) ( 40 
)
exists and 

F T (x T , v T ) -F 0 (x 0 , v 0 ) = ]0,T ] D t F t (x u-, v u-)du + ]0,T ] 1 2 tr t ∇ 2 x F t (x u-, v u-)d[x] c (u) + ]0,T ] ∇ x F t (x t-, v t-)d π x + u∈]0,T ] [F u (x u , v u ) -F u (x u-, v u-) -∇ x F u (x u-, v u-
η n = sup{|v(u) -v(t n i )| + |x(u) -x(t n i )| + |t n i+1 -t n i |, 0 ≤ i ≤ k(n) -1, u ∈ [t n i , t n i+1 )} n→∞ → 0 (42)
so for n sufficiently large there exists C > 0 such that, for any t < T , for any (x , v

) ∈ U t × S t , d ∞ ((x t , v t ), (x , v )) < η n ⇒ |D t F t (x , v )| ≤ C, |∇ 2 x F t (x , v )| ≤ C
, using the local boundedness property [START_REF] Ito | On a stochastic integral equation[END_REF].

For > 0, we separate the jump times of x in two sets: a finite set C 1 ( ) and a set C 2 ( ) such that s∈C2( ) |∆x s | 2 < 2 . We also separate the indices 0 ≤ i ≤ k(n) -1 in two sets: a set I n 1 ( ) such that (t i , t i+1 ] contains at least a time in C 1 ( ), and its complementary I n 2 ( ). Denoting K = {x(u), s ≤ u ≤ t} which is a compact subset of U , and U c = R -U , one may choose sufficiently small and n sufficiently large so that d(K, U c ) > + η n . Denote i n (t) the index such that t ∈ [t n i , t n i+1 ). Property (38) implies that for n sufficiently large,

C 1 ( ) ⊂ {t n i+1 , i = 1..k(n)} so 0≤i≤k(n)-1,i∈I n 1 ( ) F t n i+1 (x n,∆x(t n i+1 ) t n i+1 - , v n t n i+1 -) -F t n i (x n,∆x(t i n ) t n i - , v n t n i -) → u∈]0,T ]∪C1( ) F u (x u , v u ) -F u (x u-, v u-) (43)
as n → ∞, by left-continuity of F . Let us now consider, for i ∈ I n 2 ( ), i ≤ k(n) -1, the decomposition:

F t n i+1 (x n,∆x(t n i+1 ) t n i+1 - , v n t n i+1 -) -F t n i (x n,∆x(t n i ) t n i - , v n t n i -) = F t n i+1 (x n,∆x(t n i+1 ) t n i+1 - , v n t n i+1 -) -F t n i+1 (x n t n i+1 -, v n t n i+1 -) + F t n i+1 (x n t n i+1 -, v n t n i ,h n i ) -F t n i (x n t n i , v n t n i ) + F t n i (x n t n i , v n t n i -) -F t n i (x n,∆x(t n i ) t n i - , v n t n i -) (44) 
where we have used the property (2) to obtain

F t n i (x n t n i , v n t n i ) = F t n i (x n t n i , v n t n i -).
The second line in the right-hand side can be written ψ(h n i ) -ψ(0) where:

ψ(u) = F t n i +u (x n t n i ,u , v n t n i ,u ) (45) 
Since F ∈ C 1,2 ([0, T ]), ψ is right-differentiable, and moreover by lemma 4, ψ is continuous, so:

F t n i+1 (x n t n i ,h n i , v n t n i ,h n i ) -F t n i (x n t n i , v n t n i ) = t n i+1 -t n i 0 D t n i +u F (x n t n i ,u , v n t n i ,u )du (46) 
The third line can be written φ(x(t n i+1 -) -x(t n i )) -φ(0), where:

φ(u) = F t n i (x n,∆x(t n i )+u t n i - , v n t n i -) (47) 
Since F ∈ C 1,2 ([0, T ]), φ is well-defined and C 2 on the convex set B(x(t n i ), η n + ) ⊂ U , with:

φ (u) = ∇ x F t n i (x n,∆x(t n i )+u t n i - , v n t n i -)φ (u) = ∇ 2 x F t n i (x n,∆x(t n i )+u t n i - , v n t n i -) (48) 
So a second order Taylor expansion of φ at u = 0 yields:

F t n i (x n t n i , v n t n i -) -F t n i (x n,∆x(t n i ) t n i - , v n t n i -) = ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)(x(t n i+1 -) -x(t n i )) + 1 2 tr[∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)] t (x(t n i+1 -) -x(t n i ))(x(t n i+1 -) -x(t n i ))] + r n i ( 49 
)
where r n i,1 is bounded by

K|(x(t n i+1 -) -x(t n i ))| 2 sup x∈B(x(t n i ),ηn+ ) |∇ 2 x F t n i (x n,x-x(t n i ) t n i - , v n t n i -) -∇ 2 x F t n i (x n t n i -, v n t n i -)| (50) 
Similarly, the first line can be written φ(x(t n i+1 ) -

x(t n i )) -φ(x(t n i+1 -) -x(t n i )) where φ(u) = F t n i+1 (x n,∆x(t n i )+u t n i -,h n i , v n t n i-)
. So, a second order Taylor expansion of φ at u = 0 yields:

F t n i+1 (x n,∆x(t n i+1 ) t n i+1 - , v n t n i+1 -) -F t n i+1 (x n t n i+1 -, v n t n i+1 -) = ∇ x F t n i+1 (x n,∆x(t n i ) t n i -,h n i , v n t n i ,h n i )∆x(t n i+1 ) + 1 2 tr[∇ 2 x F t n i+1 (x n,∆x(t n i ) t n i -,h n i , v n t n i ,h n i )] t ∆x(t n i+1 )∆x(t n i+1 ) + r n i,2 (51) 
where r n i,2 is bounded by

K|∆x(t n i+1 )| 2 sup x∈B(x(t n i ),ηn+ ) |∇ 2 x F t n i (x n,x-x(t n i -) t n i - , v n t n i -) -∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)| (52) 
Using the horizontal local Lipschitz property ( 14) for ∇ x F , for n sufficiently large:

|∇ x F t n i+1 (x n,∆x(t n i ) t n i -,h n i , v n t n i ,h n i ) -∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)| < C(t n i+1 -t n i ) (53) 
On other hand, since ∇ 2 x F is bounded by C on all paths considered:

| tr ∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -) t (x(t n i+1 -) -x(t n i ))(x(t n i+1 -) -x(t n i )) +tr ∇ 2 x F t n i+1 (x n,∆x(t n i ) t n i -,h n i , v n t n i ,h n i )] t ∆x(t n i+1 )∆x(t n i+1 ) -tr ∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)] t δx n i δx n i | < 2C|∆x(t n i+1 )| 2 (54)
Hence, we have shown that:

F t n i+1 (x n,∆x(t n i+1 ) t n i+1 - , v n t n i+1 -) -F t n i+1 (x n t n i+1 -, v n t n i+1 -) + F t n i (x n t n i , v n t n i -) -F t n i (x n,∆x(t n i ) t n i - , v n t n i -) = ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)δx n i + 1 2 tr[∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)] t δx n i δx n i ] + r n i + q n i
where r n i is bounded by:

4K|δx n i | 2 sup x∈B(x(t n i ),ηn+ ) |∇ 2 x F t n i (x n,x-x(t n i -) t n i - , v n t n i -) -∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)| (55)
and q n i is bounded by:

C (h n i |∆x(t n i )| + |∆x(t n i )| 2 ) (56) Denote i n (t) the index such that t ∈ [t n i n (t) , t n i n (t)+1
[. Summing all the terms above for i ∈ C 2 ( ) ∩ {0, 1, ..k(n) -1}:

• The left-hand side of (44) yields

F T (x n T , v n T ) -F 0 (x 0 , v 0 ) - 0≤i≤k(n)-1,i∈I n 1 ( ) F t n i+1 (x n t n i+1 , v n t n i+1 ) -F t n i (x n t n i , v n t n i ) (57) 
which converges to

F T (x T , v T ) -F 0 (x 0 , v 0 ) - u∈]0,T ]∪C1( ) F u (x u , v u ) -F u (x u-, v u-) (58) 
• The sum of the first and third lines of (44) the right-hand side can be written:

0≤i≤k(n)-1,i∈I n 2 ( ) ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)δx n i + 0≤i≤k(n)-1,i∈I n 2 ( ) 1 2 tr ∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -) t δx n i δx n i + 0≤i≤k(n)-1,i∈I n 2 ( )
r n i + q n i (59) Consider the measures µ n ij = ξ n ij -0<s≤T,s∈C2( ) (∆f ij (s)) 2 δ s , where f ii = x i , 1 ≤ j ≤ d and f ij = x i + x j , 1 ≤ i < j ≤ d and ξ n ij is defined in Definition 11.
The second line of (59) can be decomposed as:

A n + 1 2 0<u≤T,u∈C2( ) tr ∇ 2 x F t n i (x n,∆x(t n i ) t n i - , v n t n i -) t ∆x(u)∆x(u) ( 60 
)
where

A n = tr ]0,T ] µ n (dt) 0≤i≤k(n)-1,i∈I n 2 ( ) ∇ 2 x F t n i n (t) (x n,∆x(t n i n (t) ) t n i n (t) - , v n t n i n (t) -) 1 t∈(t n i ,t n i+1 ]
where µ n denotes the matrix-valued measure with components µ n ij defined above. µ n ij converges vaguely to the atomless measure

[f ij ] c . Since 0≤i≤k(n)-1,i∈I n 2 ( ) ∇ 2 x F t n i n (t) (x n,∆x(t n i n (t) ) t n i n (t) - , v n t n i n (t) -) 1 (t n i ,t n i+1 ]
is bounded by C and converges to ∇ 2 x F t (x t-, v t-)1 t / ∈C1( ) by left-continuity of ∇ 2 x F , applying Lemma 12 to A n and yields that A n converges to:

]0,T ] 1 2 tr t ∇ 2 x F t (x u-, v u-)d[x] c (u) (61) 
The second term in (60) has the lim sup of its absolute value bounded by C 2 . Using the same argument, since |r n i | is bounded by s n i |δx n i | 2 for some s n i which converges to 0 and is bounded by some constant,

k(n)-1 i=0
|r n i | has its lim sup bounded by 2C 2 ; similarly, the lim sup of

k(n)-1 i=0
|q n i | is bounded by C (T + 2 ). The term in the first line of (59) can be written:

k(n)-1 i=0 ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)(x(t n i+1 ) -x(t n i )) - 0≤i≤k(n)-1,i∈I n 1 ( ) ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)(x t n i+1 -x t n i ) (62) 
where the second term converges to 0<u≤T,u∈C1( )

∇ x F u (x u-, v u-)∆x(u).
• The second line of (44):

T 0 D t F u (x n t n i n (u) ,u-t n i n (u) , v n t n i n (u) ,u-t n i n (u) )1 i n (u)∈I n 2 ( ) du (63) 
where the integrand converges to D t F u (x u-, v u-)1 u / ∈C1( ) and is bounded by C, hence by dominated convergence this term converges to:

T 0 D t F t (x u-, v u-)du (64)
Summing up, we have established that the difference between the lim sup and the lim inf of:

k(n)-1 i=0 ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)(x(t n i+1 ) -x(t n i )) (65) 
is bounded by C ( 2 + T ). Since this is true for any , this term has a limit.

Let us now write the equality we obtained for a fixed :

F T (x T , v tT ) -F 0 (x 0 , v 0 ) = ]0,T ] D t F t (x u-, v u-)du + ]0,T ] 1 2 tr[ t ∇ 2 x F t (x u-, v u-)d[x] c (u)] + lim n k(n)-1 i=0 ∇ x F t n i (x n,∆x(t n i ) t n i - , v n t n i -)(x(t n i+1 ) -x(t n i )) + u∈]0,T ]∪C1( ) [F u (x u , v u ) -F u (x u-, v u-) -∇ x F u (x u-, v u-)∆x(u)] + α( )
where α( ) ≤ C ( 2 + T ). The only point left to show is that:

u∈]0,T ]∪C1( ) [F u (x u , v u ) -F u (x u-, v u-) -∇ x F u (x u-, v u-)∆x(u)] (66) 
converges to:

u∈]0,T ] [F u (x u , v u ) -F u (x u-, v u-) -∇ x F u (x u-, v u-)∆x(u)] (67) 
which is to say that the sum above is absolutely convergent. We can first choose d(K, U c ) > η > 0 such that:

∀u ∈ [0, T ], ∀(x , v ) ∈ U u × S u , d ∞ ((x t , v t ), (x , v )) ≤ η ⇒ |∇ 2 x F u (x(u), v(u))| < C (68)
The jumps of x of magnitude greater than η are in finite number. Then, if u is a jump time of x of magnitude less than η, then x(u-) + h∆x(u) ∈ U for h ∈ [0, 1], so that we can write:

F u (x u , v u ) -F u (x u-, v u-) -∇ x F u (x u-, v u-)∆x(u) = 1 0 (1 -v)[ t ∇ 2 x F u (x h∆x(u) u- , v u-) t ∆x(u)∆x(u)] ≤ 1 2 C|∆x(u)| 2
Hence, the theorem is established.

Remark 8. If the vertical derivatives are right-continuous instead of left-continuous, and without requiring [START_REF] Protter | Stochastic integration and differential equations[END_REF] for ∇ x F we can still define:

x n (t) = k(n)-1 i=0 x(t i )1 [ti,ti+1) (t) + x(T )1 {T } (t) v n (t) = k(n)-1 i=0 v(t i )1 [ti,ti+1) (t) + v(T )1 {T } (t) h n i = t n i+1 -t n i (69) 
Following the same argument as in the proof with the decomposition:

F t n i+1 (x n t n i+1 , v t n i+1 ) -F t n i (x n t n i , v t n i ) = F t n i+1 (x n t n i+1 , v t n i+1 ) -F t n i+1 (x n t n i+1 , v t n i ,h n i ) + F t n i+1 (x n t n i+1 , v t n i ,h n i ) -F t n i+1 (x n t n i ,h n i , v t n i ,h n i ) + F t n i+1 (x n t n i ,h n i , v t n i ,h n i ) -F t n i (x n t n i , v t n i ) (70) 
we obtain an analogue of formula (41) where the Föllmer integral (40) is replaced by

lim n k(n)-1 i=0 ∇ x F t n i+1 (x n t n i ,h i , v n t n i ,h n i )(x(t n i+1 ) -x(t n i )) (71) 

Functionals of Dirichlet processes

A Dirichlet process [START_REF] Föllmer | Dirichlet processes[END_REF][START_REF] Coquet | On non-continuous Dirichlet processes[END_REF], or finite energy process, on a filtered probability space (Ω, B, (B t ), P) is an adapted cadlag process that can be represented as the sum of a semimartingale and an adapted continuous process with zero quadratic variation along dyadic subdivisions. For continuous Dirichlet processes, a pathwise Itô calculus was introduced by H. Föllmer in [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF][START_REF] Föllmer | Dirichlet processes[END_REF][START_REF] Lyons | Decomposition of Dirichlet processes and its application[END_REF]. Coquet, Mémin and Slominski [START_REF] Coquet | On non-continuous Dirichlet processes[END_REF] extended these results to discontinuous Dirichlet processes [START_REF] Stricker | Variation conditionnelle des processus stochastiques[END_REF]. Using Theorem 4 we can extend these results to functionals of Dirichlet processes; this yields in particular a pathwise construction of stochastic integrals for functionals of a Dirichlet process.

Let Y (t) = X(t) + B(t) be a U -valued Dirichlet process defined as the sum of a semimartingale X on some filtered probability space (Ω, B, B t , P) and B an adapted continuous process B with zero quadratic variation along the dyadic subdivision. We denote by [X] the quadratic variation process associated to X, [X] c the continuous part of [X], and µ(dt dz) the integer-valued random measure describing the jumps of X (see [START_REF] Jacod | Limit theorems for stochastic processes[END_REF] for definitions).

Let A be an adapted process with S-valued cadlag paths. Note that A need not be a semimartingale.

We call

Π n = {0 = t n 0 < t n 1 < . . . < t n k(n) = T } a random subdivision if the t n i are stopping times with respect to (B t ) t∈[0,T ] .
Proposition 5 (Change of variable formula for Dirichlet processes).

Let Π n = {0 = t n 0 < t n 1 < . . . < t n k(n) =
T } be any sequence of random subdivisions of [0, T ] such that (i) X has finite quadratic variation along Π n and B has zero quadratic variation along Π n almostsurely, (ii) sup

t∈[0,T ]-Πn |Y (t) -Y (t-)| + |A(t) -A(t-)| n→∞ → 0 P -a.s.
Then there exists Ω 1 ⊂ Ω with P(Ω 1 ) = 1 such that for any non-anticipative functional F ∈ C 1,2 satisfying 1. F is predictable in the second variable in the sense of (2)

∇ 2

x F and DF satisfy the local boundedness property (9)

3. F, ∇ x F, ∇ 2 x F ∈ F ∞ l 4.
∇ x F has the horizontal local Lipschitz property [START_REF] Protter | Stochastic integration and differential equations[END_REF], the following equality holds on Ω 1 for all t ≤ T :

F t (Y t , A t ) -F 0 (Y 0 , A 0 ) = ]0,t] D u F (Y u-, A u-)du + ]0,t] 1 2 tr[ t ∇ 2 x F u (Y u-, A u-)d[X] c (u)] + ]0,t] R d [F u (Y z u-, A u -) -F u (Y u-, A u-) -z∇ x F u (Y u-, A u-)]µ(du, dz) + ]0,t] ∇ x F u (Y u-, A u-).dY (u) (72)
where the last term is the Föllmer integral (40) along the subdivision Π n , defined for ω ∈ Ω 1 by: ]0,t]

∇ x F u (Y u-, A u-).dY (u) := lim n k(n)-1 i=0 ∇ x F t n i (Y n,∆Y (t n i ) t n i - , A n t n i -)(Y (t n i+1 ) -Y (t n i ))1 ]0,t] (73) 
where (Y n , A n ) are the piecewise constant approximations along Π n , defined as in (39). Moreover, the Föllmer integral with respect to any other random subdivision verifying (i)-(ii), is almost-surely equal to (73).

Remark 9. Note that the convergence of (73) holds over a set Ω 1 which may be chosen independently of the choice of F ∈ C 1,2 .

Proof. Let (Π n ) be a sequence of random subdivisions verifying (i)-(ii). Then there exists a set Ω 1 with P(Ω 1 ) = 1 such that for ω ∈ Ω 1 (X, A) is a cadlag function and (i)-(ii) hold pathwise. Applying Theorem 4 to (Y (., ω), A(., ω)) along the subdivision Π n (ω) shows that (72) holds on Ω 1 .

To show independence of the limit in (73) from the chosen subdivision, we note that if Π 2 n another sequence of random subdivisions satisfies (i)-(ii), there exists Ω 2 ⊂ Ω with P(Ω 2 ) = 1 such that one can apply Theorem 4 pathwise for ω ∈ Ω 2 . So we have

]0,t] ∇ x F u (Y u-, A u-).d Π 2 Y (u) = ]0,t] ∇ x F u (Y u-, A u-).d Π Y (u)
on Ω 1 ∩ Ω 2 . Since P(Ω 1 ∩ Ω 2 ) = 1 we obtain the result.

6 Functionals of semimartingales Proposition 5 applies when X is a semimartingale. We will now show that in this case, under an additional assumption, the pathwise Föllmer integral (40) coincides almost-surely with the stochastic integral Y dX. Theorem 4 then yields an Itô formula for functionals of a semimartingale X.

Cadlag semimartingales

Let X be a cadlag semimartingale and A an adapted cadlag process on (Ω, B, B t , P). We use the notations [X] , [X] c , µ(dt dz) defined in Section 5.

Proposition 6 (Functional Itô formula for a semimartingale). Let F ∈ C 1,2 be a non-anticipative functional satisfying 1. F is predictable in the second variable, i.e. verifies (2),

2. ∇ x F, ∇ 2 x F, DF ∈ B, 3. F, ∇ x F, ∇ 2
x F ∈ F ∞ l , 4. ∇ x F has the horizontal local Lipschitz property 14.

Then:

F t (X t , A t ) -F 0 (X 0 , A 0 ) = ]0,t] D u F (X u-, A u-)du+ ]0,t] 1 2 tr[ t ∇ 2 x F u (X u-, A u-)d[X] c (u)] + ]0,t] ∇ x F u (X u-, A u-).dX(u) + ]0,t] R d [F u (X z u-, A u -) -F u (X u-, A u-) -z.∇ x F u (X u-, A u-)]µ(du, dz), P-a.s. ( 74 
)
where the stochastic integral is the Itô integral with respect to a semimartingale. In particular, Y (t) = F t (X t , A t ) is a semimartingale.

Remark 10. These results yield a non-probabilistic proof for functional Ito formulas obtained for continuous semimartingales [START_REF] Cont | A functional extension of the Ito formula[END_REF][START_REF] Cont | Functional Ito calculus and stochastic integral representation of martingales[END_REF][START_REF] Dupire | Functional Itô calculus[END_REF] using probabilistic methods and extend them to the case of discontinous semimartingales.

Proof. Assume first that the process X does not exit a compact set K ⊂ U , and that A is bounded by some constant R > 0. We define the following sequence of stopping times:

τ n 0 = 0 τ n k = inf{u > τ n k-1 |2 n u ∈ N or |A(u) -A(u-)| ∨ |X(u) -X(u-)| > 1 n } ∧ T (75) 
Then the coordinate processes X i and their sums X i + X j satisfy the property:

τi<s (Z(τ i ) -Z(τ i-1 )) 2 P → n→∞ [Z](s) (76) 
in probability. There exists a subsequence of subdivisions such that the convergence happens almost surely for all s rational, and hence it happens almost surely for all s because both sides of (76) are right-continuous. Let Ω 1 be the set on which this convergence happens, and on which the paths of X and A are U -valued cadlag functions. For ω ∈ Ω 1 , Theorem 4 applies and yields

F t (X t , A t ) -F 0 (X 0 , A 0 ) = ]0,t] D u F (X u-, A u-)du + ]0,t] 1 2 tr[ t ∇ 2 x F u (X u-, A u-)d[X] c (u)] (77) + ]0,t] R d [F u (X z u-, A u -) -F u (X u-, A u-) -z.∇ x F u (X u-, A u-)]µ(du, dz) + lim n→∞ k(n)-1 i=0 ∇ x F τ n i (X n,∆X(τ n i ) τ n i - , A n τ n i -)(X(τ n i+1 ) -X(τ n i ))
It remains to show that the last term, which may also be written as

lim n→∞ ]0,t] k(n)-1 i=0 1 ]τ n i ,τ n i+1 ] (t) ∇ x F τ n i (X n,∆X(τ n i ) τ n i - , A n τ n i -).dX(t) (78) 
coincides with the (Ito) stochastic integral of ∇ x F (X u-, A u-) with respect to the semimartingale X.

First, we note that since X, A are bounded and ∇ x F ∈ B, ∇ x F (X u-, A u-) is a bounded predictable process (by Theorem 2) hence its stochastic integral . 0 ∇ x F (X u-, A u-).dX(u) is welldefined. Since the integrand in (78) converges almost surely to ∇ x F t (X t-, A t-), and is bounded independently of n by a deterministic constant C, the dominated convergence theorem for stochastic integrals [14, Ch.IV Theorem32] ensures that (78) converges in probability to ]0,t] ∇ x F u (X u-, A u-).dX(u). Since it converges almost-surely by proposition 5, by almost-sure uniqueness of the limit in probability, the limit has to be ]0,t] ∇ x F u (X u-, A u-).dX(u). Now we consider the general case where X and A may be unbounded. Let U c = R d -U and denote τ n = inf{s < t|d(X(s), U c ) ≤ 1 n or |X(s)| ≥ n or |A(s)| ≥ n} ∧ t, which are stopping times.

Continuous semimartingales

In the case of a continuous semimartingale X and a continuous adapted process A, an Itô formula may also be obtained for functionals whose vertical derivative isright-continuous rather than leftcontinuous.

Proposition 7 (Functional Itô formula for a continuous semimartingale). Let X be a continuous semimartingale with quadratic variation process [X], and A a continuous adapted process, on some filtered probability space (Ω, B, B t , P). Then for any non-anticipative functional F ∈ C 1,2 satisfying 1. F has a predictable dependence with respect to the second variable, i.e. verifies (2),

2. ∇ x F, ∇ 2 x F, DF ∈ B, 3. F ∈ F ∞ l 4. ∇ x F, ∇ 2 x F ∈ F ∞ r we have F t (X t , A t ) -F 0 (X 0 , A 0 ) = t 0 D u F (X u , A u )du + t 0 1 2 tr[ t ∇ 2 x F u (X u , A u )d[X](u)] + t 0 ∇ x F u (X u , A u ).dX(u), P-a.s.
where last term is the Itô stochastic integral with respect to the X.

Proof. Assume first that X does not exit a compact set K ⊂ U and that A is bounded by some constant R > 0. Let 0 = t n 0 ≤ t n 1 . . . ≤ t n k(n) = t be a deterministic subdivision of [0, t]. Define the approximates (X n , A n ) of (X, A) as in remark 8, and notice that, with the same notations:

k(n)-1 i=0 ∇ x F t n i+1 (X n t n i ,h n i , A n t n i ,h n i )(X(t n i+1 ) -X(t n i )) = ]0,t] ∇ x F t n i+1 (X n t n i ,h n i , A n t n i ,h n i )1 ]t n i ,t n i+1 ] (t)dX(t)
which is a well-defined stochastic integral since the integrand is predictable (left-continuous and adapted by theorem 2), since the times t n i are deterministic; this would not be the case if we had to include jumps of X and/or A in the subdivision as in the case of the proof of proposition 6. By right-continuity of ∇ x F , the integrand converges to ∇ x F t (X t , A t ). It is moreover bounded independently of n and ω since ∇ x F is assumed to be boundedness-preserving. The dominated convergence theorem for the stochastic integrals [14, Ch.IV Theorem32] ensures that it converges in probability to ]0,t] ∇ x F u (X u-, A u-).dX(u). Using remark 8 concludes the proof. Consider now the general case. Let K n be an increasing sequence of compact sets with n≥0 K n = U and denote

τ n = inf{s < t|X s / ∈ K n or |A s | > n} ∧ t
which are optional times. Applying the previous result to the stopped process (X t∧τn , A t∧τn ) leads to:

F t (X t∧τn , A t∧τn ) -F 0 (X 0 , A 0 ) = t∧τn 0 D u F u (X u , A u )du + 1 2 t∧τn 0 tr t ∇ 2 x F u (X u , A u )d[X](u) + t∧τn 0 ∇ x F u (X u , A u ).dX + t t∧τ n D u F (X u∧τn , A u∧τn )du (85)
The terms in the first line converge almost surely to the integral up to time t since t ∧ τ n = t almost surely for n sufficiently large. For the same reason the last term converges almost surely to 0.

A Some results on cadlag functions

For a cadlag function f : [0, T ] → R d we shall denote ∆f (t) = f (t) -f (t-) its discontinuity at t. { sup

1≤i≤2 n |x(t -q i -1 2 n ) -x(t -q i 2 n )| > α} (90) 
thanks to the lemma 8 in Appendix A.

If j ∈ J 1 , |f (u) -g(u)| < on [v j -η(v j ), v j ], and v j -η(u i(j) )) -v j+1 < ζ(u i(j)+1 ) = ζ(v j+1 ), because of the remark that v j -η vj < u i(j) -θ(u i(j) ). Hence: 

Lemma 8 .
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 1 vj ,vj+1] |f (u) -g(u)|dµ(u) ≤ [F (v j+1 ) -F (v j )] + 2M η(v j+1 ) (100) If j ∈ J 2 , |f (u) -g(u)| < on [v j+1 , v j ].So that summing up all terms we have the following inequality:[s,t] |f (u) -g(u)|dµ(u) ≤ (F (t) -F (s) + 2M (t -s))(101)because of the fact that: η(v j ) ≤ v j -v j+1 for j < M . The same argument applied to µ n yields:[s,t] |f (u) -g(u)|dµ n (u) ≤ [F n (t) -F n (s-)] +2M M n (v j+1 ) -F n (v j+1 -ζ(v j+1 ))(102)so that the lim sup satisfies (101) since F n (u) converges to F (u) for every u.On other hand, it is immediately observed thatlim n I g(u)dµ n (u) = I g(u)dµ(u)(103)since F n (u) and F n (u-) both converge to F (u) since µ has no atoms (g is a linear combination of indicators of intervals). So the lemma is established.Lemma 12. Let (f n ) n≥1 , f be left-continuous functions defined on [0, T ], satisfying:∀t ∈ [0, T ], lim n f n (t) = f (t) ∀t ∈ [0, T ], f n (t) ≤ K(104)Let also µ n be a sequence of Radon measures on [0, T ] such that µ(n) converges vaguely to a Radon measure µ with no atoms. Then for all 0 ≤ s < t ≤ T , with I being [s, t], (s, t] ,[s, t) or (s, t):I f n (u)dµ n (u) → n→∞ t s f (u)dµ(u) (105) Proof. Let > 0 and let n 0 such that µ({sup m≥n0 |f m -f | > }) < . The set {sup m≥n0 |f m -f | > }is a countable union of disjoint intervals since the functionals are left-continuous, hence it is a continuity set of µ since µ has no atoms; hence, since µ n converges vaguely to µ[START_REF] Billingsey | Convergence of Probability Measures[END_REF]:lim n µ n ({ sup m≥n0 |f m -f | > }) = µ({ sup m≥n0 |f m -f | > }) < (106)since µ n converges vaguely to µ which has no atoms.27So we have, for n ≥ n 0 :I |f n (u) -f (u)|dµ n (u) ≤ 2Kµ n { sup n≥n0 |f n -f | > } + µ n (I)(107)Hence the lim sup of this quantity is less or equal to: 2Kµ({ sup m≥n0 |f m -f | > } + µ(I) ≤ (2K + µ(I))by application of lemma 11.

  Proof. Assume the conclusion does not hold. Then there exists a sequence (x n , y n ) n≥1 such thatx n ≤ y n , y n -x n → 0 but |f (x n ) -f (y n )| > + sup t∈[xn,yn] {|∆f (t)|}.We can extract a convergent subsequence (x ψ(n) ) such that x ψ(n) → x. Noting that either an infinity of terms of the sequence are less than x or an infinity are more than x, we can extract monotone subsequences (u n , v n ) n≥1 of (x n , y n ) which converge to x. If (u n ), (v n ) both converge to x from above or from below, |f (u n )f (v n )| → 0 which yields a contradiction. If one converges from above and the other from below, sup t∈[un,vn] {|∆f (t)|} > |∆f (x)| but |f (u n ) -f (v n )| → |∆f (x)|,which results in a contradiction as well. Therefore (86) must hold.The following lemma is a consequence of lemma 8:Lemma 9 (Uniform approximation of cadlag functions by step functions).Let h be a cadlag function on [0, T ]. If (t n k ) n≥0,k=0..n is a sequence of subdivisions 0 = t n 0 < t 1 < ... < t n kn = t of [0, T ] such that: sup Lemma 10. Consider the canonical space U T endowed with the natural filtration of the canonical process X(x, t) = x(t). Let α ∈ R and σ be an optional time. Then the following functional:

						{|∆f (t)|}	(86)
		0≤i≤k-1	|t n i+1 -t n i | → n→∞ 0	u∈[0,T ]\{t n 0 ,...,t n kn } sup	|∆f (u)| → n→∞ 0
	then				
				kn-1	
		sup u∈[0,T ]	|h(u) -	i=0	h(t i )1 [t n i ,t n i+1 ) (u) + h(t n kn )1 {t n kn } (u)| → n→∞ 0	(87)
	B Proof of theorem 2
			τ (x) = inf{t > σ, |x(t) -x(t-)| > α}	(88)
	is a stopping time.			
	Proof. We can write that:		
		{τ (x) ≤ t} =		({σ ≤ t -q} { sup	|x(u) -x(u-)| > α}	(89)
			q∈Q [0,t)	t∈(t-q,t]
	and				
	{ sup	|x(u) -x(u-)| > α} =
	u∈(t-q,t]				n0>1 n>n0

Applying the previous result to the stopped processes (X τn-, A τn-) = (X(t ∧ τ n -), A(t ∧ τ n -)) leads to:

Since almost surely t ∧ τ n = t for n sufficiently large, taking the limit n → ∞ yields:

Adding the jump F t (X t , A t ) -F t (X t-, A t-) to both the left-hand side and the third line of the right-hand side, and adding ∇ x F t (X t-, A t-)∆X(t) to the second line and subtracting it from the third, leads to the desired result.

Example 1 (Doléans exponential). Let X be a scalar cadlag semimartingale, such that the continuous part of its quadratic variation can be represented as:

for some cadlag adapted process A. Consider the non-anticipative functional:

Then F ∈ C 1,∞ with:

and satisfies the assumptions of Proposition 6. The process

is the Doléans exponential of the semimartingale X and Proposition 6 yields the well-known relation

We can now prove Theorem 2 using lemma 8 from Appendix A. Proof of Theorem 2: Let's first prove point 1.; by lemma 4 it implies point 2. for right-continuous functionals and point 3. for left-continuous functionals. Introduce the following random subdivision of [0, t]:

From lemma 10, those functionals are stopping times for the natural filtration of the canonical process. We define the stepwise approximations of x t and v t along the subdivision of index N :

as well as their truncations of rank K:

First notice that:

for K sufficiently large. The truncations

are F t -measurable as they are continuous functionals of the measurable functions:

) is also F t -measurable. Thanks to lemma 9, x N t and v N t converge uniformly to x t and v t , hence F t (x N t , v N t ) converges to F t (x t , v t ) since F is continuous at fixed times. Now to show optionality of Y (t) for a left-continuous functional, we will exhibit it as limit of rightcontinuous adapted processes. For t ∈ [0, T ], define i n (t) to be the integer such that t ∈ [ iT n , (i+1)T n

). Define the process:

), which is piecewise-constant and has right-continuous trajectories, and is also adapted by the first part of the theorem. Now, by d ∞ left-continuity of F , Y n (t) → Y (t), which proves that Y is optional. We similarly prove predictability of Z(t) for a right-continuous functional. We will exhibit it as a limit of left-continuous adapted processes. For t ∈ [0, T ], define i n (t) to be the integer such

), which has left-continuous trajectories since as s → t-, t -s sufficiently small, i n (s) = i n (t) and (x s-, 

Proof. Let M be an upper bound for |f |, F n (t) = µ n ([0, t]) and F (t) = µ([0, t]) the cumulative distribution functions associated to µ n and µ. For > 0 and u ∈ (s, t], define:

and we have η(u) > 0 by right-continuity of f . Define similarly θ(u):

By uniform continuity of F on [0, T ] there also exists

where the u i are in [s, t], and in increasing order, and we can choose that u 0 = s and u N = t. Define the decreasing sequence v j by v 0 = t and, for j ≥ 0,

Denote M = max{j, v j ≥ s}, J 1 = {j = 1..M, u i(j) ≤ v j -η(v j )} J 2 = {1..M } -J 1 and define the following piecewise constant approximation of f on [s, t]:

f (v j )1 (vj+1,vj ] (u) (99)