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ABSTRACT

In parallel and distributed systems, validation of scheduling
heuristics is usually done by simulation on randomly gen-
erated synthetic workloads, typically represented by task
graphs. Since there is no single generation method that
models all possible workloads for scheduling problems, re-
searchers often re-implement the classical generation algo-
rithms or even implement ad hoc ones. A bad choice of
generation method can mislead the validation of the algo-
rithm due to biases it can induce. Moreover, different imple-
mentations of the same randomized generation method may
produce slightly different graphs. These problems can harm
the experimental comparison of scheduling algorithms. In
order to provide a comparison basis we propose GGen – a
unified and standard implementation of classical task graph
generation methods used in the scheduling domain. We
also provide an in-depth analysis of each generation method,
emphasizing important graph properties that may influence
scheduling algorithms.

Categories and Subject Descriptors

I.6.3 [Simulation and Modeling]: Applications

General Terms

Performance, experimentation

Keywords
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1. INTRODUCTION
Scheduling in parallel and distributed systems is a classic

Computer Science area. Although well studied both in the-
oretical and experimental aspects, scheduling is still a hot
research topic.
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Highly distributed computational environments like the
ones provided by grid computing technologies interlink thou-
sands of computers that can, together, solve complex prob-
lems. To choose how to spread the work that must be done
among such large number of machines is, however, a very
difficult task. Optimally choosing how to schedule a set of
sequential jobs with different sizes between two processors
in order to finish all jobs as soon as possible1 is a NP-Hard
problem [?] unless P = NP.
If performance is a critical issue, the developer must per-

form a case-by-case analysis to tune-up the used scheduling
algorithm. This usually means the theoretical study of the
problem and a new scheduling algorithm that must be val-
idated. Typically, this validation is done through the sim-
ulation of the new algorithm against a synthetic workload,
created either using execution logs collected from real users
or, more often, by random generation.
In this article we argue that random generation methods

can create biased results that can mislead the analysis of
scheduling algorithms. The developer must know what are
the properties of the generated workload and how they af-
fect the performance of the classical scheduling algorithms.
In this work we present some classic generation methods
and how the generated graphs can affect the validation of
scheduling algorithms.
The remaining of the article is organized as follows. An

informal introduction to the scheduling problem is presented
in Section 2. Section 3 describes the classical methods used
by researchers to generate random task graphs for valida-
tion of scheduling algorithms. Section 4 presents GGen, a
set of tools intended to help developers to better understand
the typical workload of their applications; GGen generates
random graphs of tasks that better represents this work-
load. An experimental analysis of the classical generation
methods is discussed in Section 5 and a case-study with real
scheduling algorithms is shown in Section 6. Finally, Sec-
tion 7 presents some conclusions and future works.

2. SCHEDULING TASK GRAPHS
Scheduling a set of tasks among the (usually scarce) avail-

able computational resources (machines, processors, etc.)
with the objective of optimize one or more performance met-
ric is a fundamental problem in parallel and distributed sys-
tems [?].
An instance of the problem is composed by a directed

acyclic graph G = (V,E), by an integer m representing the

1In Graham’s notation [?], this scheduling problem is known
as 2 | pj | Cmax.



available resources and by the running time pij of job i on
resource j, where i ∈ V and j ∈ [1,m]. The edges E repre-
sent the precedence constraints. If (i, j) ∈ E then job j can
not start before the completion of job i. A given schedul-
ing is a function σ : V → N × [1,m] that gives the start
time and the resource allocated for each job. We denote the
completion time of job i in scheduling σ as Cσ

i = σ(i) + pi.
Through the remaining of the article, we use the acronym
DAG or the word graph to refer to directed acyclic graph,
unless stated otherwise.

Makespan (the completion time of the last job to finish
in schedule σ, denoted as Cmax = max{Cσ

i }), the average

completion time (
∑

Cσ
i

|V |
), the stretch (Sj =

Cj−rj

pj
, where

ri is the release date of the job), etc. are some examples
of the performance metrics whose values researchers want
to minimize. The problem of obtaining optimal scheduling
regarding these objectives is know to be NP-Complete [?].

Representing jobs and their precedences constraints as a
DAG is very convenient. It gives some interesting informa-
tion about the problem like the degree of parallelism that
application can attain, the minimum amount of time re-
quired by the application (the critical path of the graph),
etc. These properties have been used on the development of
heuristics to solve scheduling problems.

The validation of a new scheduling algorithm involves
a test suite composed by representative workloads. Some
researchers test their algorithms against some well-known
static workload, like the execution logs of the Parallel Work-
loads Archive [?], maintained by Dror Feitelson. These static
workloads are used as a comparison basis for the analysis of
different works.

But it is also important to validate a new scheduling al-
gorithm against some random workloads. The use of ran-
domly generated data is a very important step in the design
of scheduling algorithms because:

• it may help finding a counter-example for the algo-
rithm. Even if the algorithm has been theoretically
proved to be correct, random input data may help to
find bugs in the implementation or help to identify
performance bottlenecks;

• it helps to evaluate the performance of the algorithm
in contexts not yet theoretically analyzed. It may help
the developer to predict how the algorithm will per-
form in “real” conditions if used by users with different
utilization profiles.

Ideally a new scheduling algorithm under evaluation should
be tested against all possible use-cases. This would require a
random graph generator able to generate all possible graph
structures with the same probability. The notion of “classes
of structures” is formally described by the notion of graph
isomorphism.

Formally, two graphs G and H are isomorphic if there is
a mapping ϕ : V (G) → V (H) such that (u, v) ∈ E(V ) ⇐⇒
(ϕ(u), ϕ(v)) ∈ E(H), ∀u, v ∈ V (G). A scheduling algorithm
probably will produce the same result for two isomorphic
graphs, even if they are very different from each other2.

2For instance, isomorphic task graphs with vertices and
edges properties (task duration, communication costs, etc.)
generated with a uniform distribution will generally induce
similar performances on scheduling algorithms.

The large number of unlabeled acyclic digraphs makes
impractical (even for a small number of vertices) any gen-
eration method based on the enumeration of the complete
set of possible graphs. Table 2 shows the number of non-
isomorphic DAGs with a number of vertices up to 10 (re-
produced from sequence A003087 in [?]). To the best of our
knowledge, there is no method that uniformly generates non-
isomorphic graphs. Interestingly, the graph isomorphism
problem is suspected to be neither in P nor NP-complete
classes of complexity [?].
The unavailability of a general method for creating truly

random non-isomorphic task graphs implies that scheduling
algorithm designers must choose which generation methods
are more appropriate for the workload expected for their
algorithm. This is a complex choice that must be carefully
analyzed case-by-case.

3. GENERATION METHODS
In order to help scheduling algorithm designers to choose

which is the more appropriate method for their needs, we
present in this section the classical task generation algo-
rithms used by researchers in the validation of their schedul-
ing algorithms. An experimental study about the particu-
larities of the graphs generated by each one of the methods
described in this section is presented in Section 5.
For clarity, on the pseudo-algorithms presented in this sec-

tion we use the auxiliary function Random(), that returns
a real number uniformly distributed on the interval [0, 1[.

3.1 The Erdős-Rényi methods
Paul Erdős and Alfréd Rényi defined in 1959 [?] two straight-

forward graph generation methods that are among the most
popular methods. These two methods are referenced in the
literature as the G(n, p) and the G(n,M) methods.

3.1.1 The G(n, p) method

This is the most intuitive and most widely utilized graph
generation method.

Definition 1. For a given n number of vertices, the G(n, p)
method generates a graph where each element of the

(

n

2

)

pos-

sible edges is present with independent probability p.

Erdős and Rényi first defined this method for non-oriented
graphs, but it is easy to adapt this for DAG generation:

Algorithm 1 G(n, p) method.

Require: n ∈ N, p ∈ R.
Ensure: a graph with n nodes.

Let M be an adjacency matrix n×n initialized as the zero
matrix.
for all i = 1 to n do

for all j = 1 to i do
if Random() < p then

M[i][j] = 1
else

M[i][j] = 0
return the graph represented by M.

Erdős and Rényi proved [?] several properties about the
graphs generated by the G(n, p) method. From these prop-
erties, we can cite some that may be particularly interesting
for scheduling algorithm designers:



Number of vertices 1 2 3 4 5 6 7 8 9 10
Number of DAGs 1 2 6 31 302 5984 243668 20286025 3424938010 1165948612902

Table 1: Number of acyclic digraphs with unlabeled vertices.

• For sufficiently large values of n the number of edges
in the generated graphs tends to p

(

n

2

)

;

• If np tends to a constant bigger than 1, then with high
probability there exists a weakly connected subgraph
with the majority of the nodes and no other connected
component exists with more than O(log n) nodes;

• If p > (1+ǫ) lnn

n
, then with high probability the gener-

ated graph will not have any isolated vertices.

3.1.2 The G(n,M) method

Although less utilized, this model can be considered as
the most appropriate method for generating random graphs
with a fixed number of edges.

Definition 2. For a given number of nodes n and a given

number of edges M , the G(n,M ) method is defined as the

method that constructs the graph by choosing uniformly M
edges from the list of edges of the complete DAG on n ver-

tices.

This is equivalent to say that the method chooses uni-
formly a graph from the list of all possible DAGs with M
edges and n nodes.

3.2 Layer-by-Layer
This method was first proposed by Tobita and Kasahara [?].

It was designed specifically for the validation of scheduling
heuristics and is based in the concept that they called “lay-
ers”, i.e., an independent set of the graph with the additional
property that if there is an edge from layer a to layer b, then
there is no path from a vertex in b to a vertex in a. Edges
are created with probability p exactly like in Erdős’ G(n, p)
method.

Algorithm 2 Layer-by-Layer method.

Require: n, k, p ∈ N.
Distribute n vertices between k different sets enumerated
as L1, . . . , Lk.
Let layer(v) be the layer assigned to vertex v.
Let M be an adjacency matrix n×n initialized as the zero
matrix.
for all i = 1 to n do

for all j = 1 to n do
if layer(j) > layer(i) then

if Random() < p then
M[i][j] = 1

else
M[i][j] = 0

return a random DAG with k layers and n nodes.

Although very simple, this method is very useful in prac-
tice because we can limit the size of the critical path only
by limiting the value k.

3.3 Fan-in / Fan-out
Dick et al. [?] introduced the Fan-in/Fan-out method. Fan-

in/Fan-out constructs each graph incrementally, allowing more
control over properties like in-degree/out-degree of the ver-
tices or even over the general structure of the graph.
We describe here the method slightly adapted to use the

number of vertices as input instead of generating it auto-
matically (like described in [?]).

Algorithm 3 Fan-in/Fan-out method.

Require: n, id, od ∈ N.
Ensure: a graph with at least n nodes, where each node

has an out-degree ≤ od and an in-degree ≤ id.
Initialize G = (V,E), with E = ∅ and V = ∅.
Add an vertex to G.
while |V | ≤ n do

if Random() < 0.5 then {Fan-out phase}
Find the vertex v with the biggest difference between
its out-degree and od. Let mo be this difference.
Add a random number of vertices between 1 and mo

to V and add edges from v to these new vertices.
else {Fan-in phase}

Find the set S of all vertices that have out-degree
< od.
Compute a subset T of S of size at most id.
Add a new vertex v and add new edges (v, t) for all
t ∈ T .

We can think about the Fan-in and Fan-out phases as an
operation to expand/contract the graph. In some sense each
phase tries to emulate the scatter/gather phases of parallel
applications.

3.4 Random Orders
The Random Orders method utilizes properties from the

branch of mathematics called Order Theory to analyse and
generate random graphs. Proposed by Winkler [?], this
method generates random partially ordered sets that can be
used to generate task graphs. In fact, a DAG is a partial or-
der where the vertices are ordered by reachability. The idea
of the algorithm 4 is to create a partial order by intersecting
several total orders.

Algorithm 4 Random Orders method.

Require: n, k ∈ N.
Ensure: a graph with n vertices obtained from an order of

dimension at most equal to k.
Generate k total orders (random permutations of the ver-
tices).
Intersect the k generated orders to obtain a partial order.
Apply a transitive reduction to transform the partial order
obtained in a DAG.

It is hard to analyse the influence of the parameter k over
the structure of the generated graphs. We can note, how-
ever, that if we choose k = 1, then the generated graphs will



represent task chains, i.e., in this case the partial order will
also be a total order.

3.5 Related Tools
Although this work was motivated by scheduling simu-

lations, the use of random graph generators also interests
researchers from other Computer Science research areas. In
this section we list a few tools that are widely utilized for
graph manipulation.

Networking researchers utilize graphs extensively for the
analysis and simulation of distributed algorithms and pro-
tocols. In this context, NetworkX [?] provides a Python
implementation of some network topology generators and
a large list of utilities and algorithms that help researchers
to extract interesting graph properties from their network
topologies (connectivity, basic isomorphism, etc.). For the
same finality, the igraph [?] library was conceived to be eas-
ily embeddable into other high level languages. It is imple-
mented in C++ and in GNU R language, but is distributed
also as a Ruby and Python packages. Both libraries provide
a very interesting set of utilities for graph analysis, but they
do not directly help developers to create a consistent and
unbiased validation scheme for their algorithms.

The Stanford GraphBase (SGB) [?] and the Boost Graph
Library [?] are implementations of graph data structures and
algorithms to analyse graphs written in C and in C++ re-
spectively. The Boost Graph Library implements also some
random generation methods, but the main goal of both li-
braries is to provide an abstract data type independent of
its utilisation. GGen (that will be described in more details
in Section 4) is implemented on top of the Boost Graph
Library.

The Task Graphs for Free (TGFF) [?] is a tool designed
specifically for scheduling simulation. It offers an implemen-
tation of the method described in Section 3.3. A more recent
version3 provides an option to generate also series-parallel
DAGs. TGFF provides a built-in model to generate random
communication costs and deadlines. Unfortunately, there is
no way to control the random distribution of the attributes
generated by TGFF.

With the exception of the SGB, all the cited tools (in-
cluding GGen) have some kind of support (either native
of through the use of conversion scripts) for the DOT for-
mat [?], which makes these tools interoperable and comple-
mentary to each other.

4. GGEN: A GRAPH GENERATION TOOL
Suppose that a developer wants to validate a scheduling

algorithm that depends on a well-know graph property such
as the critical path. If the algorithm performance depends
on this property, the chosen generation method must ran-
domly generate graphs with a large variety of values for the
critical path. If the method has a tendency of generate
graphs with limited values of critical path, the validation
of the scheduling algorithm may be affected.

If the developer is not aware of the biases produced by
the utilized generation method, an algorithm validated by
simulation may perform poorly with a more heterogeneous
workload. Detecting which graph properties impact the per-
formance of the algorithm and creating an appropriate val-

3Publicly available to download at: http://ziyang.eecs.
umich.edu/~dickrp/tgff/

idation suite are very hard.
Motivated by the difficulty in how to characterize and gen-

erate a truly representative synthetic workload (for a good
introduction on the problem of workload modeling, please
refer to [?]), we started the development of GGen, a ran-
dom graph generator and graph analyzer. GGen’s genera-
tion and analysis algorithms were chosen to assist scheduling
algorithm designers to create a proper and representative
validation suite.
GGen is implemented in C++ on top of the Boost Graph

Library [?] and the GNU Scientific Library [?]. GGen in-
herits the efficient graph data structures implemented by
Boost and its extensibility, allowing the definition of new
graph internal representations if necessary. GGen was de-
signed to be easily extensible – it is straightforward to in-
clude a new graph generation or graph property analyser.
The source code is freely available at GGen’s website (http:
//ggen.ligforge.imag.fr/) and it is released under the
CeCILL4 free software license.

The tool provides three distinct interfaces for the user: a
graph generator, a graph analyzer and an interface that al-
lows the developer to add or remove independent properties
for the vertices and edges of the graph.
The graph generator is the most important interface to

GGen. It allows the generation of new graphs using some
generation methods found in scheduling literature. Up to
now, we have implemented the random graph generation
methods described in Section 3: Erdős’ G(n, p) and G(n,M),
Layer-by-Layer, Fan-in/Fan-out and Random Orders. We be-
lieve that the graphs generated by these methods present
the most interesting graph properties for algorithm design-
ers interested in scheduling.
The graph analyzer allows the developer to analyze a gen-

erated graph and collect some properties about it. The list
of properties that GGen can analyze includes, but are not
limited to, the Minimum Spanning Tree, the Max Indepen-
dent Set, the in/out-degree of the vertices, etc.
GGen can also randomly generate vertices and edges prop-

erties, i.e. a key-value pair associated to each graph compo-
nent (vertex and/or edge) that represents some application
semantic. This values can mean, for instance, the size of the
jobs associated to each vertex or the communications cost
involved on each job dependency associated to each edge.
The tool allows a fine control on the random distribution
used to generate these values.
Decoupling the generation of these properties of the gen-

eration of the graph per se allows a better control of the
experiments with less overhead of the graph generation. It
makes easy to experiment with different random distribu-
tions for these values, while keeping the same kind of graph
structures.
To make GGen interoperable with most of the available

graph analysis tools, we have chosen the Graphviz’s DOT
language [?] as the default graph representation format for
GGen.
The DOT language is a widely-adopted plain text for-

mat that provides syntax for describing graphs, nodes and
edges and the properties associated with the graph compo-
nents. All graphs generated by GGen can take advantage
of the set of tools distributed with Graphviz such as tools
to display graphs using different heuristics (dotty, neato,

4CeCILL is a GPL compatible license. See http://www.
cecill.info/ for more information.



etc.) or tools to modify graphs in an interactive (dotty) or
script/awk-like way (gvpr).

5. METHODS ANALYSIS
The previously discussed methods produce random graphs

that are structurally different. Unfortunately, few papers
presenting those methods try to analyse the nature of the
generated graphs. Since scheduling performance is tightly
related to the characteristics of the initial task graph, we
consider this analysis essential.

We conducted experiments that measure the impact of
variations in the parameters of each generation method de-
scribed in Section 3. For each parameter and for each method,
we generated a thousand random graphs with exactly one
hundred nodes (except for Fan-in/Fan-out, that generated
around 102 ± 2 nodes). We measured some of the graph
properties that are most likely to influence scheduling algo-
rithms.

All these measures were computed using GGen’s graph
analyzer. Each measurement is presented with a 95% con-
fidence interval. The confidence interval is indicated in all
figures, but due to its small size it is only visible in Figure 13.

5.1 Longest Path
The longest path in a DAG is defined as the path with

maximal length (i.e., the path with the biggest number of
nodes) in a given graph. This is one of the most studied
graph properties. In scheduling problems, the longest path
length gives a lower bound to the value of the minimum
completion time required to execute the application.
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Figure 1: Mean longest path length of graphs gen-
erated using G(n, p) for different probabilities.

Figure 1 shows how the probability of creating an edge
impacts the average length of the longest path in G(n, p)
method. As expected, increasing the probability implies a
bigger mean longest path length. Taking p = 0 and p = 1 we
get, respectively, the graph were all nodes are disconnected
and the complete graph where the longest path contains all
vertices.

The average length of the longest path increases almost
linearly with the number of allowed edges in the G(n,M)
method. Figure 2 illustrates this behaviour for M varying
from 100 to 4500 (which is approximately the maximal num-
ber of edges possible in a DAG with 100 vertices).
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Figure 2: Mean longest path length of graphs gen-
erated using G(n,M) for different number of edges.
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Figure 3: Mean longest path length of graphs gen-
erated using Layer-by-Layer for different numbers of
layers and probabilities (without the confidence in-
tervals to increase readability).

Graphs generated by the Layer-by-Layer method are less
sensitive to different probabilities when the number of lay-
ers is small. In this case, even for small probabilities, the
method have a tendency to produce graphs with the biggest
longest path possible. In Layer-by-Layer this value is equal
to the chosen number of layers.
Figure 3 presents the results taking 0.2 and 0.8 as proba-

bilities of connecting two nodes on different layers. The ad-
ditional constraint imposed by Layer-by-Layer (that forbids
edges between vertices in a same layer) makes the average
length of the longest path smaller than in the previous meth-
ods. It is interesting to note that the average longest path
length does not always correspond to the chosen number of
layers. The method distributes all vertices among the layers
but does not guarantee that each layer will have at least one
vertex. Moreover, even for high edge creation probabilities
there is no guarantee of the existence of a path that traverses
all layers.
The Fan-in/Fan-out method – described in Section 3.3 –

allows the generation of graphs with a fixed maximum in and
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Figure 4: Mean longest path length of graphs gener-
ated using Fan-in/Fan-out for different values of max-
imum allowed out-degrees and in-degrees.

out-degrees for all vertices. These constraints impose some
limits on the length of the longest path. Figure 4 shows
the mean length of the longest path for graphs generated by
the Fan-in/Fan-out method. Three curves are shown in this
figure. The curve on top shows that when the maximum
allowed out-degree for the vertices is exactly one, then the
method only generates chains, i.e. the length of the longest
path is exactly equal to the number of vertices. The curve
on the middle shows that for a fixed out-degree of 2, the
length of the longest path does not grow linearly with the
maximal in-degree. The Fan-in phase allows the clustering of
more vertices, resulting in bigger values for the mean length
of the longest path. Finally, the bottom curve shows that
a large value for the maximum allowed out-degree imposes
the generation of compact graphs with short longest paths.
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Figure 5: Mean longest path length of graphs gen-
erated using Random Orders for different number of
intersected total orders.

The Random Orders method only accepts as parameter
the number of vertices to be generated and the number of
total orders to be intersected. In Figure 5 we can see, as ex-
pected, that for a bigger number of intersected total orders

we have graphs with less number of edges and, as conse-
quence, smaller values for the longest path length.

5.2 Distribution of the Out-degree
In scheduling, the notion of out-degree of a given vertex

v in a DAG (i.e., the number of directed edges in this graph
that start in vertex v) can be used to estimate the number
of processors that can be used concurrently to execute some
task graph.
Using the same graphs generated for the analysis done

in the previous section, we analyse in this section the out-
degree of their vertices and show how this number is in-
fluenced by the choice of parameters for each generation
method implemented in GGen.
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Figure 6: Distribution of out-degrees of graphs gen-
erated using G(n, p) for different probabilities.

Figures 6 and 7 give the density curves of the mean out-
degree for the G(n, p) and G(n,M) methods, respectively.
As expected, an increasing probability implies in increasing
values of the mean out-degree. These figures also show that
for the same number of edges, the out-degree distribution is
the same for both methods.
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Figure 7: Distribution of out-degrees of graphs gen-
erated using G(n,M) for different number of edges.
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Figure 8: Distribution of out-degrees of graphs gen-
erated using Layer-by-Layer for different numbers of
layers and edge probabilities.

The distribution of the out-degree for the Layer-by-Layer
method is depicted in Figure 8. We show the mean out-
degree for different numbers of layers and probabilities. The
figure clearly shows that the number of layers has practically
no influence on the mean out-degree. The variation in the
mean out-degree is due to the variation in the probability
of creating new edges. For instance, the curves LbL(20,0.2)
and LbL(70,0.2) almost overlap each other. They were gen-
erated from graphs with different numbers of layers (20 and
70), but the same probability of creating a new edge (0.2).
This behaviour is also observed for higher probabilities of
creating new edges.
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Figure 9: Distribution of out-degrees of graphs gen-
erated using Fan-in/Fan-out for different values of
maximum allowed out-degrees and in-degrees.

Figure 9 shows the out-degree distribution for Fan-in/Fan-
out method. We have two kinds of curves depicted in this
figure: curves generated with a low maximal allowed out-
degree and curves generated with higher allowed values. For
the curves from the first type – FiFo(1,2) and FiFo(2,10) (the
first number denotes the out-degree and the second the in-
degree) – we can see that almost all nodes get saturated with

the maximum number of edges possible. For the curves gen-
erated for FiFo(10,10) and FiFo(10,100), we can see that the
out-degree distribution is quite uniform. In both cases, the
average out-degree is quite low. This happens because the
number of edges on the graphs generated by this method is
low if compared with the others, as we will see in Section 5.3.
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Figure 10: Distribution of out-degrees of graphs
generated using Random Orders for different number
of intersected total orders.

The out-degree distribution of Random Orders is depicted
in Figure 10. The same reasoning used for the length of the
longest path can be applied here: if we increase the number
of total orders to be intersected, we will generate graphs that
have less edges and lower mean out-degree.

5.3 Number of edges
The described properties of the graph generated by each

method presented a direct relationship with the number of
edges of the generated graphs. In scheduling, edges in a task
graph represent the precedence constraints of each task that
composes the application. In this section we analyse how
each generation method behaves regarding the number of
edges. The G(n,M) method is excluded from this analysis
since the number of edges of its graphs is specified as an
input parameter.
The G(n, p) method has only one parameter: the proba-

bility of creating new edges. The final number of edges is
directly proportional to the chosen probability, as Figure 11
shows.
Figure 12 shows how the number of edges of the graphs

generated by Layer-by-Layer method is impacted by different
numbers of layers. Each curve shows the variation of the
number of layers for a fixed probability. The number of
edges stabilizes very quickly, which means that bigger values
for the number of layers have little influence on the mean
number of edges.
Fan-in/Fan-out produces a smaller number of edges in av-

erage, as shown in Figure 13. For small values of maximum
allowed out-degree, varying the maximum allowed in-degree
does not change the number of edges. For an out-degree of
10, we can see that the produced graphs still present a low
number of edges in average.
Finally, Figure 14 clearly shows how the number of in-

tersected total orders can influence the number of edges in
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Figure 11: Average number of edges of graphs gen-
erated using G(n, p) for different probabilities.
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Figure 12: Average number of edges of graphs gen-
erated using Layer-by-Layer for different number of
layers and probabilities.

graphs generated with Random Orders.

5.4 Summary
The experiments shown in the previous sections made

clear that each method generates graphs that are very dif-
ferent from each other. It is important to understand the
particularities of each method in order to create a truly rep-
resentative workload for the validation of a scheduling algo-
rithm.

Erdős’ G(n, p) and G(n,M) methods present very similar
graph properties, even if they take such different parameters
(probability of edges creation and total number of edges, re-
spectively). These are the most general methods and they
can be used to generate any possible DAG. They are im-
portant for the validation of algorithms against unpredicted
workloads.

The other methods have additional constraints that give
some structural properties to the generated graphs. These
constraints make each method generate a very particular set
of graphs, and this can be useful for the study of algorithms
developed for a specific workload.
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Figure 13: Average number of edges of graphs gen-
erated using Fan-in/Fan-out for different values of
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Figure 14: Average number of edges of graphs gen-
erated using Random Orders for different number of
intersected total orders.

The analysis of Layer-by-Layer showed that there exists a
threshold for the number of layers. After this threshold, the
only parameter that really changes the properties of the gen-
erated graphs is the probability of connecting vertices. We
suspect that this threshold depends on the total number of
vertices. The analysis also showed that the average length of
the longest path not necessarily corresponds to the number
of layers chosen as parameter even for high probabilities.
Fan-in/Fan-out method gives the impression that the user

have a tight control over the out-degree and the in-degree
of the generated graphs. On one side, when the chosen out-
degree is very small, the resulting graphs are close to chains.
On the other side, the analysis shows that the interaction of
both parameters is hard to analyse and the resulting graphs
are counter-intuitive.
The task graphs generated by Random Orders model ap-

plications composed by jobs that are independent from each
other. We can note a sharp decrease on the length of longest
path from values of intersected orders bigger than 2.



6. SIMULATING SCHEDULING

ALGORITHMS: A CASE STUDY
In this section, we present an analysis of different schedul-

ing algorithms made with the tools provided by GGen. We
analyse how random workloads generated using GGen’s graph
generators impact the performance obtained by each schedul-
ing algorithm.

The scheduling algorithms used in this case study are
examples of a well-known class of algorithms called List

Scheduling algorithms.

6.1 List Scheduling
List Scheduling algorithms are probably the most studied

class of scheduling algorithms. They were first studied by
Graham in his seminal paper called “Bounds on multipro-
cessor timing anomalies” [?] in 1969, who proved that any
List Scheduling algorithm is a (2− 1/m)-approximation for
the optimal possible scheduling.

A List Scheduling algorithm works as follows:

1. Build a priority list of all tasks in the graph according
to some metric (each algorithm has its own).

2. At each step of the scheduling:

(a) Greedily choose from the list a task with the high-
est priority that respects the precedence constraints;

(b) Assign the task to an available resource (a pro-
cessor, for instance).

List Scheduling algorithms differ from each other on the
strategy used to build their priority list. The four algo-
rithms used in this case study – BottomLevel, OutDegree,
MinDegree, and Random – use the following strategies:

• BottomLevel: the priority of a task is determined by
the length of its longest path to a sink (task without
children);

• OutDegree: tasks are sorted ascending by their num-
ber of children;

• MinDegree: tasks are sorted descending by their num-
ber of children;

• Random: the tasks are randomly chosen with equal
probability.

6.2 Simulation
We simulated the four previous algorithms using different

task graphs generated with GGen. Using the notation in-
troduced by Graham [?], we used these algorithms to solve
the NP-hard problem known as P | pi = 1; prec | Cmax. In
other words, we want to schedule a set of tasks with unit size
and arbitrary precedence constraints through a set of paral-
lel identical machines in order to minimize the completion
time of the last task to finish (makespan).

Each algorithm was executed against graphs produced by
each generation method available in GGen. For each method
analysed, 1,000 graphs were generated. For the simulation
with the Random algorithm, each graph was scheduled 20
times. More than 1,500,000 scheduling simulations were
done in this experiment.

6.3 Analysis
Table 2 presents the average makespan obtained by our

simulations. We can achieve a speed-up of about 3.5 for all
the four algorithms being tested only changing the genera-
tion method being used to create the synthetic workload.
The difference on the results can be explained with a the-

oretical analysis of the problem. The performance of algo-
rithms for the problem P | pj ; prec | Cmax heavily depends
on the critical path of the input task graphs. When the num-
ber of available processors are sufficiently high, the optimal
makespan is equal to the sum of the sizes of the jobs that
are in the critical path of the task graph. Since, in this case
study, all jobs have size equal to 1, the optimal makespan is
equal to the length of the longest path.
Our simulation results corroborates this theoretical anal-

ysis. In fact, for a small number of processors, the perfor-
mance obtained is greater than the average longest path of
the graphs generated by each generation method (the av-
erage longest path of each generation method is presented
at Section 5.1). When we double the number of processors,
all algorithms produces results close to the optimal solu-
tion possible. Using the chosen parameters, GGen produced
graphs with larger longest path for G(n, p) than for the other
generation methods. As consequence, the performance ob-
tained by the scheduling algorithms using the workload gen-
erated with G(n, p) is worse than the performance obtained
with the other methods.
It is important to note, however, that the four List Schedul-

ing algorithms used produce some pretty similar results.
Graham proved [?] that the ratio of the results obtained
by any two List Scheduling algorithms can not be bigger
than 2. In practice, this ratio is even smaller.

7. CONCLUSIONS
In this paper we presented GGen, a unified and standard

implementation of random task graph generation methods
used in the scheduling domain and an analysis tool built to
help algorithm developers to design a random – but repre-
sentative – synthetic workload for validation of scheduling
algorithms.
We described some of the classical random generation

methods used by researchers – G(n, p), G(n,M), Layer-by-
Layer, Fan-in/Fan-out, and Random Orders – and conducted
an experimental study to show how the graphs generated by
these methods differ from each other. Since there is no single
method that is able to generate all possible non-isomorphic
graphs, the differences between the results of each gener-
ation method must be taken in account by the developer
who wants to validate his/her algorithm using some random
input.

Choosing which workload is the best for validating an al-
gorithm is a very difficult task. Either the developer knows
how to characterize the workload expected to be used with
the algorithm, or he/she knows how to generate a good set
of random graphs that explores the strength and weakness of
his/her algorithm. A case study conducted with some List
Scheduling algorithms showed that a same algorithm may
obtain a speedup of 3.5 times only by changing the graph
generation method used for the performance evaluation.

GGen provides some analysis tools to help developers to
understand the used workload and to avoid that a badly
chosen set of random graphs mislead the validation of the



OutDegree BottomLevel MinDegree Random
average std. dev. average std. dev. average std. dev. average std. dev.

GNP(100,0.25) 36 3 35 3 37 3 36 3
GNM(100,300) 25 < 0.5 25 < 0.5 27 1 26 1
FiFo(100,10,10) 28 1 28 1 29 2 29 2
Layer(100,10,0.5) 26 < 0.5 26 < 0.5 27 1 26 1

RandomOrders(100,2) 25 1 25 < 0.5 29 1 27 1

GNP(100,0.25) 35 3 35 3 35 3 35 3
GNM(100,300) 12 2 12 2 13 2 12 2
FiFo(100,10,10) 12 2 12 2 13 2 13 2
Layer(100,10,0.5) 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5

RandomOrders(100,2) 17 2 17 2 17 2 17 2

Table 2: Makespan obtained by the simulation of List Scheduling algorithms using 4 (top) and 16 (bottom)
processors against a randomly generated workload of 1,000 graphs.

algorithm.
In our future work, we would like to expand our library of

generation methods in order to cover more research contexts
with possibly different requirements. We are particularly in-
terested in new methods to generate workloads representing
real parallel applications like matrix multiplication, LU de-
composition, Fast Fourier Transforms, etc. In addition, we
would like to conduct analysis on the methods in order to
classify them according to their theoretical properties. This
classification could help developers to better choose which
method generates the needed workload.
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