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Summary. Closely inspired by Albin’s method which relies ultimately on the du-
plication formula for the Gamma function, we exploit Gauss’ multiplication formula
to construct a sequence of continuous martingales with Brownian marginals and
scaling.
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1 Motivation and main results

(1.1) Knowing the law of a ”real world” random phenomena, i.e. random pro-
cess, (Xt, t ≥ 0) is often extremely difficult and in most instances, one avails
only of the knowledge of the 1-dimensional marginals of (Xt, t ≥ 0). However,
there may be many different processes with the same given 1-dimensional
marginals.

In the present paper, we make explicit a sequence of continuous martin-
gales (Mm(t), t ≥ 0) indexed by m ∈ N such that for each m,

i) (Mm(t), t ≥ 0) enjoys the Brownian scaling property: for any c > 0,

(Mm(c2t), t ≥ 0)
(law)
= (cMm(t), t ≥ 0)

ii) Mm(1) is standard Gaussian.

Note that, combining i) and ii), we get, for any t > 0

Mm(t)
(law)
= Bt,
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where (Bt, t ≥ 0) is a Brownian motion, i.e. Mm admits the same 1-
dimensional marginals as Brownian motion.

(1.2) Our main result is the following extension of Albin’s construction [1]
from m = 1 to any integer m.

Theorem 1. Letm ∈ N. Then, there exists a continuous martingale (Mm(t), t ≥
0) which enjoys i) and ii) and is defined as follows:

Mm(t) = X
(1)
t . . . X

(m+1)
t Zm (1)

where (X
(i)
t , t ≥ 0), for i = 1, . . . ,m+1, are independent copies of the solution

of the SDE

dXt =
1

m+ 1

dBt

Xm
t

; X0 = 0 (2)

and, furthermore, Zm is independent from (X(1), . . . , X(m+1)) and

Zm
(law)
= (m+ 1)1/2





m−1
∏

j=0

β(
1 + 2j

2(m+ 1)
,
m− j

m+ 1
)





1
2(m+1)

(3)

where β(a, b) denotes a beta variable with parameter (a, b) with density

Γ (a+ b)

Γ (a)Γ (b)
xa−1(1 − x)b−11[0,1](x)

and the beta variables on the right-hand side of (3) are independent.

Remark: For m = 1, Z1 =
√

2
(

β(1
4 ,

1
2 )
)1/4

and we recover the distribution
of Y := Z1 given by (2) in [1].

(1.3) For the convenience of the reader, we also recall that, if one drops the
continuity assumption when searching for martingales (M(t); t ≥ 0) satisfying
i) and ii), then, the Madan-Yor construction [5] based on the ”Azéma-Yor
under scaling” method provides such a martingale.
Precisely, starting from a Brownian motion (Bu, u ≥ 0) and denoting Su =
sups≤uBs, introduce the family of stopping times

τt = inf{u, Su ≥ ψt(Bu)}
where ψt denotes the Hardy-Littlewood function associated with the centered
Gaussian distribution µt with variance t, i.e.

ψt(x) =
1

µt([x,∞[)

∫ ∞

x

y exp(−y
2

2t
)
dy√
2πt

=
√
t exp(−x

2

2t
)/N (x/

√
t)

where N (a) =
∫∞

a
exp(− y2

2 )dy. Then, Mt = Bτt
is a martingale with Brown-

ian marginals.
Another solution has been given by Hamza and Klebaner [4].
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2 Proof of the theorem

Step 1: For m ∈ R and c ∈ R, we consider the stochastic equation:

dXt = c
dBt

Xm
t

, X0 = 0.

This equation has a unique weak solution which can be defined as a time-
changed Brownian motion

(Xt)
(law)
= W (α(−1)(t))

where W is a Brownian motion starting from 0 and α(−1) is the (continuous)
inverse of the increasing process

α(t) =
1

c2

∫ t

0

W 2m
u du.

We look for k ∈ N and c such that (X2k
t , t ≥ 0) is a squared Bessel process of

some dimension d. It turns out, by application of Itô’s formula, that we need

to take k = m + 1 and c = 1
m+1 . Thus, we find that (X

2(m+1)
t , t ≥ 0) is a

squared Bessel process with dimension d = k(2k − 1)c2 = 2m+1
m+1 .

Note that the law of a BESQ(d) process at time 1 is well known to be that of
2γd/2, where γa denotes a gamma variable with parameter a. Thus, we have:

|X1|
(law)
=

(

2γ 2m+1
2(m+1)

)
1

2(m+1)

(4)

Step 2: We now discuss the scaling property of the solution of (2). From the
scaling property of Brownian motion, it is easily shown that , for any λ > 0,
we get:

(Xλt, t ≥ 0)
(law)
= (λαXt, t ≥ 0)

with α = 1
2(m+1) , that is, the process (Xt, t ≥ 0) enjoys the scaling property

of order 1
2(m+1) .

Step 3: Consequently, if we multiply m+1 independent copies of the process
(Xt, t ≥ 0) solution of (2), we get a process

Yt = X
(1)
t . . .X

(m+1)
t

which is a martingale and has the scaling property of order 1
2 .

Step 4: Finally, it suffices to find a random variable Zm independent of the

processes X
(1)
t , . . . , X

(m+1)
t and which satisfies:

N
(law)
= X

(1)
1 . . . X

(m+1)
1 Zm (5)
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where N denotes a standard Gaussian variable. Note that the distribution of
any of the X

(i)
1 ’s is symmetric. We shall take Zm ≥ 0; thus, the distribution

of Zm shall be determined by its Mellin transform M(s). From (5), M(s)
satisfies:

E[(2γ1/2)
s/2] =

(

E[(2γd/2)
s/2(m+1)]

)m+1

M(s)

with d = 2m+1
m+1 , that is:

2s/2Γ (1+s
2 )

Γ (1
2 )

= 2s/2

(

Γ (d
2 + s

2(m+1) )

Γ (d
2 )

)m+1

M(s)

that is precisely:

Γ (1+s
2 )

Γ (1
2 )

=

(

Γ (2m+1+s
2(m+1) )

Γ ( 2m+1
2(m+1) )

)m+1

M(s). (6)

Now, we recall Gauss multiplication formula ([2], see also [3])

Γ (kz) =
kkz−1/2

(2π)
k−1
2

k−1
∏

j=0

Γ (z +
j

k
) (7)

which we apply with k = m+ 1 and z = 1+s
2(m+1) . We then obtain, from (7)

Γ (1+s
2 )√
π

=
(m+ 1)s/2

(2π)m/2

1√
π

m
∏

j=0

Γ (
1 + s+ 2j

2(m+ 1)
) (8)

= (m+ 1)s/2
m
∏

j=0

(

Γ (1+s+2j
2(m+1) )

Γ ( 1+2j
2(m+1) )

)

(9)

since the two sides of (8) are equal to 1 for s = 0. We now plug (9) into (6)
and obtain

(m+ 1)s/2
m
∏

j=0

(

Γ (1+s+2j
2(m+1) )

Γ ( 1+2j
2(m+1) )

)

=

(

Γ (2m+1+s
2(m+1) )

Γ ( 2m+1
2(m+1) )

)m+1

M(s) (10)

We note that for j = m, the same term appears on both sides of (10), thus
(10) may be written as:

(m+ 1)s/2
m−1
∏

j=0

(

Γ (1+s+2j
2(m+1) )

Γ ( 1+2j
2(m+1) )

)

=

(

Γ (2m+1+s
2(m+1) )

Γ ( 2m+1
2(m+1) )

)m

M(s) (11)

In terms of independent gamma variables, the left-hand side of (11) equals:
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(m+ 1)s/2
E











m−1
∏

j=0

γ
(j)

1+2j

2(m+1)





s
2(m+1)






(12)

whereas the right-hand side of (11) equals:

E











m−1
∏

j=0

γ
(j)
1+2m

2(m+1)





s
2(m+1)






M(s) (13)

where the γ
(j)
aj denote independent gamma variables with respective parame-

ters aj .
Now, from the beta-gamma algebra, we deduce, for any j ≤ m− 1:

γ
(j)

1+2j

2(m+1)

(law)
= γ

(j)
1+2m

2(m+1)

β(
1 + 2j

2(m+ 1)
,
m− j

m+ 1
).

Thus, we obtain, again by comparing (12) and (13):

M(s) = (m+ 1)s/2
E











m−1
∏

j=0

β(
1 + 2j

2(m+ 1)
,
m− j

m+ 1
)





s
2(m+1)







which entails:

E[Zs
m] = (m+ 1)s/2

E











m−1
∏

j=0

β(
1 + 2j

2(m+ 1)
,
m− j

m+ 1
)





s
2(m+1)







that is, equivalently,

Zm
(law)
= (m+ 1)1/2





m−1
∏

j=0

β(
1 + 2j

2(m+ 1)
,
m− j

m+ 1
)





1
2(m+1)

3 Some remarks about Theorem 1

3.1 A further extension

We tried to extend Theorem 1 by taking a product of independent martingales
X(i), solution of (2) with different mi’s. Here are the details of our attempt.
We are looking for the existence of a variable Z such that the martingale

M(t) =





p−1
∏

j=0

X
(mj)
t



Z
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satisfies the properties i) and ii). Here p, (mj)0≤j≤p−1 are integers and X(mj)

is the solution of the EDS (2) associated to mj , the martingales being inde-
pendent for j varying. In order that M enjoys the Brownian scaling property,
we need the following relation

p−1
∑

j=0

1

mj + 1
= 1. (14)

Following the previous computations, see (6), the Mellin transform M(s) of
Z should satisfy

Γ (1+s
2 )

Γ (1
2 )

=





p−1
∏

j=0

Γ (
2mj+1+s
2(mj+1) )

Γ (
2mj+1

2(mj+1) )



M(s). (15)

We recall (see (9)) the Gauss multiplication formula

Γ (1+s
2 )√
π

= ps/2

p−1
∏

j=0

(

Γ (1+s+2j
2p )

Γ (1+2j
2p )

)

(16)

To find M(s) from (15), (16), we give some probabilistic interpretation:

Γ (1+s+2j
2p )

Γ (1+2j
2p )

= E[γ
s/2p
(1+2j)/2p]

whereas
Γ (

2mj+1+s
2(mj+1) )

Γ (
2mj+1

2(mj+1) )
= E[γ

s/2(mj+1)

(1+2mj)/2(mj+1)].

Thus, we would like to factorize

γ
1/2p
(1+2j)/2p

(law)
= γ

1/2(mj+1)

(1+2mj)/2(mj+1)z
(j)
mj,p (17)

for some variable z
(j)
mj,p to conclude that

Z = p1/2

p−1
∏

j=0

z(j)
mj ,p.

It remains to find under which condition the identity (17) may be fulfilled.
We write

γ(1+2j)/2p
(law)
= γ

p/(mj+1)

(1+2mj)/2(mj+1)(z
(j)
mj ,p)

2p. (18)

Now, if 1+2j
2p <

1+2mj

2(mj+1) , we may apply the beta-gamma algebra to obtain
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γ(1+2j)/2p
(law)
= γ(1+2mj)/2(mj+1)β(

1 + 2j

2p
,

1 + 2mj

2(mj + 1)
− 1 + 2j

2p
)

but in (18), we need to have on the right-hand side γ
p/(mj+1)

(1+2mj)/2(mj+1) instead

of γ(1+2mj)/2(mj+1).
However, it is known that

γa
(law)
= γc

aγa,c

for some variable γa,c independent of γa for any c ∈ (0, 1]. This follows from
the self-decomposable character of ln(γa). Thus, we seem to need p

mj+1 ≤ 1.

But, this condition is not compatible with (14) unless mj = m = p− 1.

3.2 Asymptotic study

We study the behavior of the product X
(1)
1 . . . X

(m+1)
1 , resp. Zm, appearing

in the right-hand side of the equality in law (5), when m−→∞. Recall from
(4) that

|X1|
(law)
=

(

2γ 2m+1
2(m+1)

)
1

2(m+1)

.

We are thus led to consider the product

Θ
(p)
a,b,c =

(

p
∏

i=1

γ
(i)
a−b/p

)c/p

where in our set up of Theorem 1, p = m+ 1, a = 1, b = c = 1/2.

E[(Θ
(p)
a,b,c)

s] =

p
∏

i=1

E[
(

γ
(i)
a−b/p

)cs/p

]

=

(

Γ (a− b
p + cs

p )

Γ (a− b
p )

)p

= exp[p(ln(Γ (a+
cs− b

p
)) − ln(Γ (a− b

p
)))]

−→ exp(
Γ ′(a)

Γ (a)
cs).

Thus, it follows that

Θ
(p)
a,b,c

P−→
p→∞

exp(
Γ ′(a)

Γ (a)
c),

implying that

|X(1)
1 . . . X

(m+1)
1 | P−→

p→∞
exp(−γ/2) (19)

and
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exp(−γ/2)Zm
(law)−→
m→∞

|N |. (20)

where γ = −Γ ′(1) is the Euler constant.

We now look for a central limit theorem for Θ
(p)
a,b,c. We consider the limiting

distribution of
√
p

{

c

p

p
∑

i=1

ln(γ
(i)
a−b/p) − c

Γ ′(a)

Γ (a)

}

.

E

(

exp

[

cs
√
p

{

1

p

p
∑

i=1

ln(γ
(i)
a−b/p) −

Γ ′(a)

Γ (a)

}])

= E

[

p
∏

i=1

(

γ
(i)
a−b/p

)cs/
√

p
]

exp(−cs√pΓ
′(a)

Γ (a)
)

= E

[

(

γ
(i)
a−b/p

)cs/
√

p
]p

exp(−cs√pΓ
′(a)

Γ (a)
)

=

(

Γ (a− b
p + cs√

p )

Γ (a− b
p )

)p

exp(−cs√pΓ
′(a)

Γ (a)
)

= exp[p(ln(Γ (a− b

p
+

cs√
p
)) − ln(Γ (a− b

p
))) − cs

√
p
Γ ′(a)

Γ (a)
]

= exp(
c2s2

2
(ln(Γ ))′′(a) +O(m−1/2))

We thus obtain that

√
p

{

c

m

m
∑

i=1

ln(γ
(i)
a−b/m) − c

Γ ′(a)

Γ (a)

}

(law)−→ N(0, σ2) (21)

where N(0, σ2) denotes a centered Gaussian variable with variance:

σ2 = c2(ln(Γ ))′′(a) = c2

[

Γ ′′(a)

Γ (a)
−
(

Γ ′(a)

Γ (a)

)2
]

.

or, equivalently

(

Θ
(p)
a,b,c exp(

Γ ′(a)

Γ (a)
c)

)

√
p

(law)−→
p→∞

exp(N(0, c2(ln(Γ ))′′(a))). (22)
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