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Closely inspired by Albin's method which relies ultimately on the duplication formula for the Gamma function, we exploit Gauss' multiplication formula to construct a sequence of continuous martingales with Brownian marginals and scaling.

Motivation and main results

(1.1) Knowing the law of a "real world" random phenomena, i.e. random process, (X t , t ≥ 0) is often extremely difficult and in most instances, one avails only of the knowledge of the 1-dimensional marginals of (X t , t ≥ 0). However, there may be many different processes with the same given 1-dimensional marginals.

In the present paper, we make explicit a sequence of continuous martingales (M m (t), t ≥ 0) indexed by m ∈ N such that for each m, i) (M m (t), t ≥ 0) enjoys the Brownian scaling property: for any c > 0, (M m (c 2 t), t ≥ 0)

(law) = (cM m (t), t ≥ 0) ii) M m (1) is standard Gaussian.
Note that, combining i) and ii), we get, for any t > 0

M m (t) (law) = B t ,
where (B t , t ≥ 0) is a Brownian motion, i.e. M m admits the same 1dimensional marginals as Brownian motion.

(1.2) Our main result is the following extension of Albin's construction [START_REF] Albin | A continuous non-Brownian motion martingale with Brownian motion marginal distributions[END_REF] from m = 1 to any integer m. Theorem 1. Let m ∈ N. Then, there exists a continuous martingale (M m (t), t ≥ 0) which enjoys i) and ii) and is defined as follows:

M m (t) = X (1) t . . . X (m+1) t Z m (1)
where (X

(i)
t , t ≥ 0), for i = 1, . . . , m+1, are independent copies of the solution of the SDE

dX t = 1 m + 1 dB t X m t ; X 0 = 0 (2)
and, furthermore, Z m is independent from (X (1) , . . . , X (m+1) ) and

Z m (law) = (m + 1) 1/2   m-1 j=0 β( 1 + 2j 2(m + 1) , m -j m + 1 )   1 2(m+1) (3)
where β(a, b) denotes a beta variable with parameter (a, b) with density

Γ (a + b) Γ (a)Γ (b) x a-1 (1 -x) b-1 1 [0,1] (x)
and the beta variables on the right-hand side of (3) are independent.

Remark: For m = 1, Z 1 = √ 2 β( 1 4 , 1 2 )
1/4 and we recover the distribution of Y := Z 1 given by (2) in [START_REF] Albin | A continuous non-Brownian motion martingale with Brownian motion marginal distributions[END_REF].

(1.3) For the convenience of the reader, we also recall that, if one drops the continuity assumption when searching for martingales (M (t); t ≥ 0) satisfying i) and ii), then, the Madan-Yor construction [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF] based on the "Azéma-Yor under scaling" method provides such a martingale. Precisely, starting from a Brownian motion (B u , u ≥ 0) and denoting S u = sup s≤u B s , introduce the family of stopping times

τ t = inf{u, S u ≥ ψ t (B u )}
where ψ t denotes the Hardy-Littlewood function associated with the centered Gaussian distribution µ t with variance t, i.e.

ψ t (x) = 1 µ t ([x, ∞[) ∞ x y exp(- y 2 2t ) dy √ 2πt = √ t exp(- x 2 2t )/N (x/ √ t)
where

N (a) = ∞ a exp(-y 2 
2 )dy. Then, M t = B τt is a martingale with Brownian marginals. Another solution has been given by Hamza and Klebaner [START_REF] Hamza | A family of non-Gaussian martingales with Gaussian marginals[END_REF].

Proof of the theorem

Step 1: For m ∈ R and c ∈ R, we consider the stochastic equation:

dX t = c dB t X m t , X 0 = 0.
This equation has a unique weak solution which can be defined as a timechanged Brownian motion

(X t ) (law) = W (α (-1) (t))
where W is a Brownian motion starting from 0 and α (-1) is the (continuous) inverse of the increasing process

α(t) = 1 c 2 t 0 W 2m u du.
We look for k ∈ N and c such that (X 2k t , t ≥ 0) is a squared Bessel process of some dimension d. It turns out, by application of Itô's formula, that we need to take k = m + 1 and c = 1 m+1 . Thus, we find that (X

2(m+1) t , t ≥ 0) is a squared Bessel process with dimension d = k(2k -1)c 2 = 2m+1
m+1 . Note that the law of a BESQ(d) process at time 1 is well known to be that of 2γ d/2 , where γ a denotes a gamma variable with parameter a. Thus, we have:

|X 1 | (law) = 2γ 2m+1 2(m+1) 1 2(m+1) (4) 
Step 2: We now discuss the scaling property of the solution of (2). From the scaling property of Brownian motion, it is easily shown that , for any λ > 0, we get:

(X λt , t ≥ 0) (law) = (λ α X t , t ≥ 0) with α = 1 2(m+1)
, that is, the process (X t , t ≥ 0) enjoys the scaling property of order 1 2(m+1) .

Step 3: Consequently, if we multiply m + 1 independent copies of the process (X t , t ≥ 0) solution of (2), we get a process

Y t = X (1) t . . . X (m+1) t
which is a martingale and has the scaling property of order 1 2 .

Step 4: Finally, it suffices to find a random variable Z m independent of the processes X

(1) t , . . . , X (m+1) t and which satisfies:

N (law) = X (1) 1 . . . X (m+1) 1 Z m (5)
where N denotes a standard Gaussian variable. Note that the distribution of any of the

X (i)
1 's is symmetric. We shall take Z m ≥ 0; thus, the distribution of Z m shall be determined by its Mellin transform M(s). From (5), M(s) satisfies:

E[(2γ 1/2 ) s/2 ] = E[(2γ d/2 ) s/2(m+1) ] m+1 M(s) with d = 2m+1
m+1 , that is:

2 s/2 Γ ( 1+s 2 ) Γ ( 1 2 ) = 2 s/2 Γ ( d 2 + s 2(m+1) ) Γ ( d 2 ) m+1 M(s)
that is precisely:

Γ ( 1+s 2 ) Γ ( 1 2 ) = Γ ( 2m+1+s 2(m+1) ) Γ ( 2m+1 2(m+1) ) m+1 M(s). (6) 
Now, we recall Gauss multiplication formula ( [START_REF] Andrews | Special functions. Encyclopedia of Mathematics and its Applications[END_REF], see also [START_REF] Chaumont | Exercises in probability. A guided tour from measure theory to random processes, via conditioning[END_REF])

Γ (kz) = k kz-1/2 (2π) k-1 2 k-1 j=0 Γ (z + j k ) (7) 
which we apply with k = m + 1 and z = 1+s 2(m+1) . We then obtain, from ( 7)

Γ ( 1+s 2 ) √ π = (m + 1) s/2 (2π) m/2 1 √ π m j=0 Γ ( 1 + s + 2j 2(m + 1) ) (8) = (m + 1) s/2 m j=0 Γ ( 1+s+2j 2(m+1) ) Γ ( 1+2j 2(m+1) ) (9) 
since the two sides of (8) are equal to 1 for s = 0. We now plug (9) into (6) and obtain

(m + 1) s/2 m j=0 Γ ( 1+s+2j 2(m+1) ) Γ ( 1+2j 2(m+1) ) = Γ ( 2m+1+s 2(m+1) ) Γ ( 2m+1 2(m+1) ) m+1 M(s) (10) 
We note that for j = m, the same term appears on both sides of (10), thus (10) may be written as:

(m + 1) s/2 m-1 j=0 Γ ( 1+s+2j 2(m+1) ) Γ ( 1+2j 2(m+1) ) = Γ ( 2m+1+s 2(m+1) ) Γ ( 2m+1 2(m+1) ) m M(s) (11) 
In terms of independent gamma variables, the left-hand side of (11) equals:

(m + 1) s/2 E      m-1 j=0 γ (j) 1+2j 2(m+1)   s 2(m+1)    (12)
whereas the right-hand side of (11) equals:

E      m-1 j=0 γ (j) 1+2m 2(m+1)   s 2(m+1)    M(s) (13) 
where the γ (j) aj denote independent gamma variables with respective parameters a j . Now, from the beta-gamma algebra, we deduce, for any j ≤ m -1:

γ (j) 1+2j 2(m+1) (law) = γ (j) 1+2m 2(m+1) β( 1 + 2j 2(m + 1) , m -j m + 1
).

Thus, we obtain, again by comparing ( 12) and (13):

M(s) = (m + 1) s/2 E      m-1 j=0 β( 1 + 2j 2(m + 1) , m -j m + 1 )   s 2(m+1)    which entails: E[Z s m ] = (m + 1) s/2 E      m-1 j=0 β( 1 + 2j 2(m + 1) , m -j m + 1 )   s 2(m+1)    that is, equivalently, Z m (law) = (m + 1) 1/2   m-1 j=0 β( 1 + 2j 2(m + 1) , m -j m + 1 )   1 2(m+1)
3 Some remarks about Theorem 1

A further extension

We tried to extend Theorem 1 by taking a product of independent martingales X (i) , solution of (2) with different m i 's. Here are the details of our attempt. We are looking for the existence of a variable Z such that the martingale

M (t) =   p-1 j=0 X (mj) t   Z
satisfies the properties i) and ii). Here p, (m j ) 0≤j≤p-1 are integers and X (mj) is the solution of the EDS (2) associated to m j , the martingales being independent for j varying. In order that M enjoys the Brownian scaling property, we need the following relation

p-1 j=0 1 m j + 1 = 1. (14) 
Following the previous computations, see (6), the Mellin transform M(s) of Z should satisfy

Γ ( 1+s 2 ) Γ ( 1 2 ) =   p-1 j=0 Γ ( 2mj+1+s 2(mj +1) ) Γ ( 2mj +1 2(mj +1) )   M(s). (15) 
We recall (see ( 9)) the Gauss multiplication formula

Γ ( 1+s 2 ) √ π = p s/2 p-1 j=0 Γ ( 1+s+2j 2p ) Γ ( 1+2j 2p ) (16) 
To find M(s) from ( 15), ( 16), we give some probabilistic interpretation:

Γ ( 1+s+2j 2p ) Γ ( 1+2j 2p ) = E[γ s/2p (1+2j)/2p ] whereas Γ ( 2mj +1+s 2(mj +1) ) Γ ( 2mj +1 2(mj +1) ) = E[γ s/2(mj +1) (1+2mj )/2(mj +1) ].
Thus, we would like to factorize

γ 1/2p (1+2j)/2p (law) = γ 1/2(mj+1) (1+2mj )/2(mj +1) z (j) mj,p (17) 
for some variable z (j) mj,p to conclude that = γ c a γ a,c for some variable γ a,c independent of γ a for any c ∈ (0, 1]. This follows from the self-decomposable character of ln(γ a ). Thus, we seem to need p mj +1 ≤ 1. But, this condition is not compatible with (14) unless m j = m = p -1.

Z = p 1/2 p-1 j=0 z (j)

Asymptotic study

We study the behavior of the product X , resp. Z m , appearing in the right-hand side of the equality in law ( 5), when m -→ ∞. Recall from (4) that

|X 1 | (law) = 2γ 2m+1 2(m+1) 1 2(m+1) .
We are thus led to consider the product

Θ (p) a,b,c = p i=1 γ (i) a-b/p c/p
where in our set up of Theorem 1,

p = m + 1, a = 1, b = c = 1/2. E[(Θ (p) a,b,c ) s ] = p i=1 E[ γ (i) a-b/p cs/p ] = Γ (a -b p + cs p ) Γ (a -b p ) p = exp[p(ln(Γ (a + cs -b p )) -ln(Γ (a - b p )))] -→ exp( Γ ′ (a) Γ (a) cs).
Thus, it follows that

Θ (p) a,b,c P -→ p→∞ exp( Γ ′ (a) Γ (a) c), implying that |X (1) 1 . . . X (m+1) 1 | P -→ p→∞ exp(-γ/2) (19) and exp(-γ/2)Z m (law) -→ m→∞ |N |. (20) 
where γ = -Γ ′ (1) is the Euler constant. We now look for a central limit theorem for Θ 
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 2 where N (0, σ 2 ) denotes a centered Gaussian variable with variance:σ 2 = c 2 (ln(Γ )) ′′ (a) = c 2 Γ ′′ (a) Γ (a) -Γ ′ (a) Γ (a) c 2 (ln(Γ )) ′′ (a))).(22)
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