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Abstract – We introduce homotopical methods based on rewriting on higher-dimensional categories to
prove coherence results in categories with an algebraic structure. We express the coherence problem
for (symmetric) monoidal categories as an asphericity problem for a track category and use rewriting
methods on polygraphs to solve it. The setting is generalized to more general coherence problems, seen
as 3-dimensional word problems in a track category. We prove general results that, in the case of braided
monoidal categories, yield the coherence theorem for braided monoidal categories.
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INTRODUCTION

A monoidal category is a category equipped with a binary tensor product, associative up to a natural
isomorphism, and having a distinguished object, which is a unit for the product up to natural isomor-
phisms. Associativity and unity satisfy, in turn, a coherence condition: all the diagrams built from the
corresponding natural isomorphisms are commutative. A cornerstone result for monoidal categories was
to reduce the infinite requirement “every diagram commutes” to a finite requirement “if a specified finite
set of diagrams commute then every diagram commutes”, [7, 9]. We call such a finite set of diagrams a
coherence basis.

A symmetric monoidal category is a monoidal category whose tensor product is commutative up to
an isomorphism, called symmetry. In a symmetric monoidal category the coherence problem has the
same formulation as in monoidal categories, with additional coherence diagrams for the symmetry, [7].

In a symmetric monoidal category the symmetry is its own inverse. Braided monoidal categories
are monoidal categories commutative up to an isomorphism which is not it own inverse. The coherence
problem in braided categories has another formulation: a diagram is commutative if and only if its two
sides correspond to the same braid, [6].

In this paper we formulate the coherence problem for monoidal track 2-categories in the homotopical
terms for higher-dimensional categories as introduced in [4]. This formulation gives a way to reduce the
coherence problem to a 3-dimensional word problem in track categories. The construction of conver-
gent (i.e., terminating and confluent) presentations of monoidal track 2-categories allows us to reduce
the problem “every diagram commutes” to “if the diagrams induced by critical branchings commute
then every diagram commutes”: the critical branchings form a coherence basis. Let us illustrate the
methodology on a simple example.

Coherence for a category with a tensor. Let us consider a category C equipped with a binary ten-
sor product ⊗ : C × C → C which is associative up to a natural isomorphism, i.e., there is a natural



isomorphism
αx,y,z : (x⊗ y)⊗ z → x⊗ (y⊗ z) ,

such that the following diagram commutes in C:

(x⊗ (y⊗ z))⊗ t α
// x⊗ ((y⊗ z)⊗ t)

α

&&MMMMMMMMMM

((x⊗ y)⊗ z)⊗ t

α
88qqqqqqqqqq

α
++VVVVVVVVVVVVVVVVVVV

c© x⊗ (y⊗ (z⊗ t))

(x⊗ y)⊗ (z⊗ t)
α

33hhhhhhhhhhhhhhhhhhh

Let us consider the 3-polygraph As3 with one 0-cell, one 1-cell , one 2-cell and one 3-cell
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Let As>3 be the free track 3-category generated by As3. We consider the cellular extension As4 of As>3
with one 4-cell:
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Let As be the track 3-category obtained as the quotient of As>3 by the cellular extension As4. The
category of (small) categories equipped with a tensor product ⊗ associative up to natural isomorphim α

is isomorphic to the category Alg(As) of algebras over the 3-category As: such an algebra is a 3-functor
from As to the monoidal 2-category Cat of small categories, functors and natural transformations, seen
as a 3-category with only one 0-cell. The correspondence associates to a category (C,⊗, α) the algebra
A : As→ Cat defined by:

A( ) = C, A( ) = ⊗, A( ) = α.

Let ≈As4 be the homotopy relation on the free track 3-category As>3 generated by the cellular exten-
sion As4. The coherence problem for (C,⊗, α) is equivalent to the problem “does any pair (A,B) of
parallel 3-cells of As>3 satisfy A ≈As4 B”. In this way, the coherence problem is reduced to showing
that As4 forms a homotopy basis of the track 3-category As>3 , i.e., that the 3-category As is aspherical.

This new problem can be reduced to a 3-dimensional word problem in a track category. In [4], the
authors prove that for a convergent (i.e., terminating and confluent) n-polygraph Σ, a cellular extension
of generating confluences forms a homotopy basis of the free track n-category Σ>. In our example, the
3-polygraph As3 is convergent and has a unique critical branching: the two possible applications of the
3-cell on the following 2-cell:

It follows, that the cellular extension As4 is a homotopy basis of the track 3-category As>3 , hence the
coherence result in any algebra over As.
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1. Preliminaries

The basic case. A 2-pro (resp. 2-prop) P is a strict (resp. symmetric) monoidal category enriched in
track 1-categories, whose underlying monoid of objects is the set of natural numbers N. An algebra
over a 2-pro (resp. 2-prop) P is a strict (resp. symmetric) monoidal 2-functor from P to Cat . Here
Cat is considered as a 3-category with one 0-cell, categories as 1-cells, functors as 2-cells and natural
transformations as 3-cell, (see 1.3.2). The image of a 3-sphere γ = (f, g) in P is a diagram C(γ) in Cat .

The coherence problem for algebras over a 2-pro(p) P can be formulated as “given an algebra C

over P, does every diagram C(γ) in Cat , for γ a 3-sphere in P, commute?”, (see 1.3.3). A 2-pro(p) is
aspherical when every 3-sphere (f, g) of P satisfies f = g. Thus the coherence problem for algebras
over a 2-pro(p) P can be reformulated as “is P aspherical?”.

Thus, reducing the coherence problem “every diagram commutes” to “if some diagrams commute
then every diagram commutes” consists in constructing an algebraic presentation of the 2-pro(p) proving
that it is aspherical. We show that a convergent presentation gives a procedure to solve the coherence
problem.

In the case of 2-pros, a convergent presentation is a convergent 3-polygraph together with a cellular
extension of generating confluences. We have:

Theorem 2.1.4. If a 2-pro P admits a convergent presentation, then P is aspherical.

In the case of 2-props, we consider algebraic convergent presentations, (see 3.2.1). We have:

Theorem 3.2.4. If a 2-prop P admits an algebraic convergent presentation (Σ3, Σ4) such that Σ4 is
Tietze-equivalent to π(ΓΣ3), then P is aspherical.

The braided case and the generalized coherence problem. For the case of braided monoidal cate-
gories, we consider a generalized version of the coherence problem: given a 2-prop P, decide, for any
3-sphere γ of P, whether or not the diagram C(γ) commutes for every P-algebra C. To solve it, we
proceed in two steps. First, we prove that coherence is preserved by equivalences of 2-props, so that we
can reduce a 2-prop to its non-aspherical part:

Theorem 4.2.4. Let P and Q be 2-props with Q aspherical and Q ⊆ P. Then the canonical projection
π : P→ P/Q is an equivalence of 2-props.

Then, given an algebraic 2-prop P, we define the initial P-algebra P, (see 4.3), and we prove:

Theorem 4.3.2. Let P be an algebraic 2-prop and let (A,B) be a sphere of P. Then A = B if and only if
P(A) = P(B).

In the case of the 2-prop of braided monoidal categories, this methodology recovers the coherence result
of Joyal and Street, [6].

1. PRELIMINARIES

In this section, we recall several notions on (track) higher-dimensional categories, polygraphs and ho-
motopy bases from [4].
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1. Preliminaries

1.1. Higher-dimensional categories and polygraphs

1.1.1. Notations. We consider small, strict n-categories and strict n-functors between them. Given
an n-category C, we denote by Ck the set of k-cells of C and, abusively, the corresponding underlying
k-category. If f is in Ck, then si(f) and ti(f) respectively denote the i-source and i-target of f; we simply
write s(f) and t(f) when i = k− 1. The source and target maps satisfy the globular relations:

sisi+1 = siti+1 and tisi+1 = titi+1.

If f and g are i-composable k-cells, i.e., when ti(f) = si(g), we denote by f ?i g the i-composite k-cell.
The compositions satisfy the exchange relations given, for every i 6= j and every possible cells f, g, h
and k, by:

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?j k).

If f is a k-cell, we denote by 1f its identity (k+ 1)-cell and, by abuse, all the higher-dimensional identity
cells it generates. When 1f is composed with cells of dimension k + 1 or higher, we simply denote it
by f.

1.1.2. Spheres and cellular extensions. Let C be an n-category. A k-sphere of C is a pair γ = (f, g)
of parallel k-cells of C, i.e., with s(f) = s(g) and t(f) = t(g). We call f the source of γ and g its target.
We denote by SkC the set of k-spheres of C. An n-category C is aspherical when every n-sphere γ of C
satisfies s(γ) = t(γ).

A cellular extension of C is a pair Γ = (Γn+1, ∂) made of a set Γn+1 and a map ∂ : Γn+1 → SC. By
considering all the formal compositions of elements of Γn+1, seen as (n+ 1)-cells with source and target
in C, and identities of n-cells of C, one builds the free (n + 1)-category generated by Γ on C, denoted
by C[Γ ]. The quotient of C by Γ , denoted by C/Γ , is the n-category one gets from C by identification of
source and target of every cell in Γ . Given an n-sphere (f, g) in C, we write f ≡Γ g if π(f) = π(g), where
π : C → C/Γ is the canonical projection. Two cellular extensions Γ1 and Γ2 of C are Tietze-equivalent if
the n-categories C/Γ1 and C/Γ2 are isomorphic.

1.1.3. Polygraphs. We define n-polygraphs and free n-categories by induction on n. A 1-polygraph
is a graph Σ = (Σ0, Σ1). We denote by Σ∗ the free 1-category it generates. An (n + 1)-polygraph
is a pair Σ = (Σn, Σn+1) made of an n-polygraph Σn and a cellular extension Σn+1 of the free n-
category Σ∗n generated by the n-polygraph Σn. The free (n + 1)-category generated by Σ is defined by
Σ∗ = Σ∗n[Σn+1]; the n-category presented by Σ is defined by Σ = Σ∗n/Σn+1.

Let Σ be an n-polygraph. One says that an (n− 1)-cell u reduces to some (n− 1)-cell v when there
exists a non-identity n-cell from u to v in Σ∗. A reduction sequence is a family (uk)k of (n − 1)-cells
such that, for each k, uk reduces to uk+1. One says that Σ is terminating when there exists no infinite
reduction sequence.

A branching (resp. confluence) of Σ is a pair (f, g) of n-cells of Σ∗ with the same source (resp.
target). A branching is (f, g) is confluent when there exists a confluence (f ′, g ′) such that t(f) = s(f ′)
and t(g) = s(g ′) holds. The polygraph Σ is confluent when every branching is confluent. A polygraph
is convergent when it is terminating and confluent.
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1.2. Higher-dimensional track categories

1.2. Higher-dimensional track categories

1.2.1. Definition. A track n-category is an n-category whose n-cells are invertible, i.e., an (n − 1)-
category enriched in groupoids. The inverse of an n-cell f is denoted by f−.

Let C be an n-category C and Γ be a cellular extension of C. We define the free track (n+1)-category
generated by Γ on C as the (n+ 1)-category

C(Γ) = C[Γ, Γ−]/Inv(Γ),

where Γ− is the following cellular extension of C

Γ− =
{
γ− : t(γ)→ s(γ) | γ ∈ Γ

}
and Inv(Γ) is the following cellular extension of C[Γ, Γ−]

Inv(Γ) =
{
γ ?n γ

− → 1sγ , γ
− ?n γ→ 1tγ) | γ ∈ Γ

}
.

If Σ is an n-polygraph, we denote by Σ> the free track n-category Σ∗n−1(Σn) generated by Σn on Σ∗n−1.

1.2.2. Homotopy bases. A homotopy basis of a track n-category T is a cellular extension Γ of T such
that the track (n + 1)-category T/Γ is aspherical, i.e., such that, for every n-sphere γ of T, there exists
an (n+ 1)-cell from sγ to tγ in T(Γ).

When Σ is a convergent n-polygraph, the choice of a confluence diagram for each critical branching
of Σ forms a cellular extension of Σ>. This construction is called a cellular extension of generating
confluences and forms a homotopy basis of Σ>, see [4].

1.2.3. Example. The polygraph As3 with one 0-cell, one 1-cell, one 2-cell and one 3-cell

_ %9

is convergent and the generating confluence (1) forms a homotopy basis of the track 3-category As>3 .

1.3. Higher-dimensional pro(p)s

1.3.1. Definition. For n ≥ 1, an n-pro is a strict monoidal category enriched in track (n−1)-categories,
whose underlying monoid of objects is the monoid N of natural numbers with the addition. An n-prop
is a symmetric n-pro, i.e., a strict symmetric monoidal category enriched in track (n − 1)-categories,
whose underlying monoid of objects is N. In particular, 1-pro(p)s coincide with Mac Lane’s pro(p)s, [8].

1.3.2. Algebras over 2-pro(p)s. We consider the large 2-category Cat of small categories, functors and
natural transformations as a large 3-category with one 0-cell. This 3-category, still denoted Cat by abuse,
has the following cells and compositions:

• one 0-cell, small categories as 1-cells, functors as 2-cells, natural transformations as 3-cells;

5



2. Coherence in monoidal categories

• cartesian product as 0-composition, composition of functors as 1-composition, vertical composi-
tion of natural transformations as 2-composition.

If P is a 2-pro (resp. 2-prop), a P-algebra is a strict (resp. symmetric) monoidal 2-functor from P to Cat .
We denote in the same way a P-algebra C and the (small) category C(1).

Let P be a 2-pro(p). If C and D are P-algebras, a morphism of P-algebras from C to D is a natural
transformation from C to D, i.e., the data of:

• a functor F : C→ D,

• for every 2-cell f : m⇒ n in P, a natural isomorphism

Cm
Fm

//

C(f)
��

Dm

D(f)
��Ψf

∼

r� zzzzzzzz

zzzzzzzz

Cn
Fn

// Dn

such that the following relations hold:

• Ψf?0g = Ψf ?0 Ψg,

• Ψf?1g = (Ψf ?1 D(g)) ?2 (C(f) ?1 Ψg),

• for every 3-cell A : fV g : m⇒ n in P,

Ψf ?2 (C(A) ?1 F
n) = (Fm ?1 D(A)) ?2 Ψg.

The P-algebras and their morphisms form a category, denoted by Alg(P).

1.3.3. Coherence problem for algebras over a 2-pro(p). Let P be a 2-pro(p) and let C be a P-algebra.
A P-diagram in C is the image C(γ) of a 3-sphere in P. A P-diagram C(γ) commutes if C(sγ) = C(tγ)
holds in Cat . The coherence problem for algebras over a 2-pro(p) is:

COHERENCE PROBLEM: Given a 2-pro(p) P, does every P-diagram commute in every P-algebra?

We have:

1.3.4. Proposition. Let P be a 2-pro(p). If P is aspherical then, in every P-algebra C, all the P-diagrams
commute.

Thus, the coherence problem for algebras over a 2-pro(p) can be reformulated as follows:

COHERENCE PROBLEM: Given a 2-prop(p) P, is P aspherical ?

2. COHERENCE IN MONOIDAL CATEGORIES

2.1. Coherence in algebras over 2-pros

2.1.1. Definition. Let P be a 2-pro. A presentation of P is a pair (Σ, Γ), where Σ is a 3-polygraph and Γ
is a cellular extension of Σ>, such that P ' Σ>/Γ . Note that, if (Σ, Γ) is a presentation of a 2-pro P, then
the 3-polygraph Σ has exactly one 0-cell and one 1-cell.
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2.2. Identities among relations for presentations of 2-pros

2.1.2. Aspherical presentation. A presentation (Σ, Γ) is said to be aspherical if Γ is a homotopy base
of the free track 3-category Σ>.

If a 2-pro P admits an aspherical presentation, then it is aspherical. In this way, an aspherical presen-
tation of a 2-pro P is a solution of the coherence problem for P-algebras.

2.1.3. Coherence as a 3-dimensional word problem. A presentation (Σ, Γ) of a 2-pro P is convergent
if Σ is a convergent 3-polygraph and Γ is (Tietze-equivalent to) a cellular extension of generating conflu-
ences of Σ. Any convergent presentation is aspherical, [4]. By this result, the coherence problem for a
P-algebra can be formulated as a 3-dimensional word problem on P.

2.1.4. Theorem. If a 2-pro P admits a convergent presentation, then P is aspherical.

2.2. Identities among relations for presentations of 2-pros

This section is based on notions and results from [5]. Let P be a 2-pro and Σ be a presentation of P.
We consider the free abelian track 3-category (Σ3)

>
ab. We denote by α the image of a 3-cell α by the

canonical projection (Σ3)
>
ab → P. The natural system of identities among relations of the presentation Σ

is the abelian natural system on P, denoted byΠ(Σ), defined as follows. For any 3-cell α in P, the abelian
group Π(Σ)α is defined by generators and relations:

• It has one generator bAc for every 4-cell A : β �? β with β = α.

• Its defining relations are:

i) bA ?3 Bc = bAc+ bBc, for A,B : β �? β with β = α;

ii) bA ?3 Bc = bB ?3 Ac, for A : β �? γ and B : γ �? β with β = γ = α.

There is an isomorphism of abelian natural systems on (Σ3)
>
ab:

Φ : Π̂(Σ)
∼−→ Aut(Σ3)

>
ab .

where Π̂(Σ) denotes the natural system on (Σ3)
>
ab defined by Π̂(Σ)α = Π(Σ)α. The isomorphism Φ is

given, for a 3-cell α of (Σ3)
>
ab, by

Φα(bAc) = B− ?3 A ?3 B,

where A is a closed 4-cell of (Σ3)
>
ab with base β such that β = α and B is any 4-cell of (Σ3)

>
ab with

source β and target α.
We denote by Σ̃4 the set of closed 3-cells of Σ>3 defined by:

Σ̃4 =
{
f ?2 g

− | (f, g) ∈ Σ4
}
.

2.2.1. Proposition. Let P be a 2-pro. For any aspherical presentation Σ of P, the set bΣ̃4c forms a
generating set of the abelian natural system Π(Σ).
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2. Coherence in monoidal categories

Proof. This is an immediate consequence of results of [5]. Since Σ4 is a homotopy basis of the track 3-
category Σ>3 , it is a homotopy basis of the abelianized track 3-category (Σ3)

>
ab, thus, any closed 3-cell A

in Σ>ab can be written

A =
(
g1 ?n−1 C1[B

ε1
1 ] ?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gk ?n−1 Ck[B

εk
k ] ?n−1 g

−
k

)
,

where, for every i in {1, . . . , k}, Bi ∈ Σ̃4, εi ∈ {−,+}, Ci is a whisker of Σ∗3 and gi ∈ Σ∗3. Hence, any
identity among relations bAc in Π(Σ), can be written:

bAc =

k∑
i=1

εibgi ?n−1 Ci[Bi] ?n−1 g−i c =

k∑
i=1

εiCibBic.

Thus, the elements of bΣ̃4c form a generating set for Π(Σ).

Let Σ and Σ ′ be two finite presentations of a 2-pro P and let Π(Σ) and Π(Σ ′) the associated abelian
natural systems on P of identities among relations. From [5], we deduce that the P-natural system Π(Σ)
is finitely generated if and only if the natural system Π(Σ ′) is finitely generated.

From this fact, we get a necessary condition to reduce the coherence problem of 1.3.3 in a 2-pro P,
“every P-diagram commutes”, to “if a specified finite set of P-diagrams commute then every diagram
commutes”.

2.2.2. Proposition. Let P be a 2-pro. If there is a finite presentation Σ of P such that the abelian natural
system Π(Σ) on P is not finitely generated, then there is no solution to the coherence problem with a
finite set of P-diagrams.

2.3. Application: coherence for monoidal categories

2.3.1. Definition. A monoidal category is a data (C,⊗, e, α, λ, ρ) made of a category C, two functors

⊗ : C× C→ C, e : ∗→ C

and three natural isomorphisms

αx,y,z : (x⊗ y)⊗ z ∼−→ x⊗ (y⊗ z) , λx : e⊗ x ∼−→ x, ρx : x⊗ e ∼−→ x,

such that the following two diagrams commute in C:

(x⊗ (y⊗ z))⊗ t α
// x⊗ ((y⊗ z)⊗ t)

α

""
FFFFFFFF

((x⊗ y)⊗ z)⊗ t

α
<<xxxxxxxx

α
))RRRRRRRRRRRRRR

c© x⊗ (y⊗ (z⊗ t))

(x⊗ y)⊗ (z⊗ t)
α

55llllllllllllll

x⊗ (e⊗ y)
λ

""
EEEEEEEEE

(x⊗ e)⊗ y

α
99sssssssss

ρ
// x⊗ y

c©

(2)

A monoidal functor from C to D is a triple (F,φ, ι) made of a functor F : C→ D, a natural isomorphism

φx,y : Fx⊗ Fy
∼−→ F(x⊗ y),
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2.3. Application: coherence for monoidal categories

and an isomorphism ι : e
∼−→ F(e) such that the following diagrams commute in D:

Fx⊗ (Fy⊗ Fz)
1⊗ φ

// Fx⊗ F(y⊗ z)
φ

''OOOOOOOOOOO

(Fx⊗ Fy)⊗ Fz

α
77nnnnnnnnnnnn

φ⊗ 1 ''PPPPPPPPPPPP
c© F(x⊗ (y⊗ z))

F(x⊗ y)⊗ Fz
φ

// F((x⊗ y)⊗ z)
Fα

77ooooooooooo

(3)

Fx⊗ e
ρ

//

1⊗ ι
��

c©
Fx

Fx⊗ Fe
φ

// F(x⊗ e)

Fρ

OO
e⊗ Fx λ

//

ι⊗ 1
��

c©
Fx

Fe⊗ Fx
φ

// F(e⊗ x)

Fλ

OO
(4)

2.3.2. The 2-pro of monoidal categories. Let Mon be the 2-pro presented by the 4-polygraph Mon =
(Mon3,Mon4) where Mon3 is the 3-polygraph with two 2-cells , and three 3-cells

_ %9 _%9 _%9 (5)

and Mon4 is the cellular extension of Mon>3 made of the following two 4-cells:

_%9

E�,
EEEE

EEEE
EEEEy2Fyyyy yyyy

yyyy
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SSSSSSSSSSSSSS
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99999999
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_%9��

(6)

2.3.3. Lemma. The category of small monoidal categories and monoidal functors is isomorphic to the
category Alg(Mon).

Proof. For a monoidal category (C,⊗, e, α, λ, ρ), the correspondance with a Mon-algebraA is given by:

A( ) = C, A( ) = ⊗, A( ) = e, A( ) = α, A( ) = λ, A( ) = ρ. (7)

The two commutative diagrams (2) correspond to commutative diagrams A( ) and A( ) in Cat .
If F is a monoidal functor from C to D, the correspondance with a morphism Ψ of associated Mon-
algebras is given by:

Ψ = F, Ψ = φ, Ψ = ι.

The relations (3) and (4) satisfied by φ and ι correspond exactly to the ones satisfied by Ψ.
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2. Coherence in monoidal categories

2.3.4. Proposition ([4]). The cellular extension Mon4 is a homotopy basis of the free track 3-category
Mon>3 .

Proof. First, we prove that the 3-polygraph polygraph Mon3 is convergent. For termination, we use the
methodology from [3], reformulated with the vocabulary of [4]. For that, we first consider the 2-functor
X : Mon2 → Ord given on generators as follows, where Ord is the monoidal category of ordered sets
and monotone maps, seen as a 2-category with one 0-cell:

X( ) = N \ {0} , X( )(i, j) = i+ j, X( ) = 1.

Then, we consider the following assignment of 2-cells of Mon2:

∂( )(i, j) = i, ∂( ) = 0.

This assignment extends, in a unique way, to a derivation of Mon∗2 with values into the X, i.e., a map ∂
that sends each 2-cell f : m⇒ n of Mon∗2 to a monotone map ∂(f) : Nm → N that satisfies the following
relations [4]:

∂(f ?0 g)(i1, . . . , im+n) = ∂(f)(i1, . . . , im) + ∂(g)(im+1, . . . , im+n)

and
∂(f ?1 g)(i1, . . . , im) = ∂(f)(i1, . . . , im) + ∂(g) ◦ X(f)(i1, . . . , im).

We check that, for every 3-cell α of Mon3, we have:

X(sα) ≥ X(tα) and ∂(sα) > ∂(tα)

where monotone maps are compared pointwise. Following [3, 4], this gives termination of Mon3.
For confluence, we study the critical branchings of Mon3: it has five regular critical branchings. Each

of them is confluent, yielding a cellular extension Γ of Mon>3 with five 4-cells, the ones of Mon4 plus the
following three 4-cells:

<�'
<<<<<<<<<

<<<<<<<<<

<<<<<<<<<~5I~~~~~~~

~~~~~~~

~~~~~~~

_%9

ω1

��
<�'
<<<<<<<<

<<<<<<<<

<<<<<<<<~5I~~~~~~~

~~~~~~~

~~~~~~~
_ %9

ω2

��

8�%
�9M

ω3
��

Hence Γ is a homotopy basis of Mon>3 . To prove that Mon4 is a homotopy basis, we show that, for each
4-cellωi, we have s(ωi) ≈Mon4 t(ωi). Forω1, we define the 4-cell γ of Mon>3 (Mon4) by the following
relation, where we abusively denote 3-cells by the generating 3-cell of Mon3 they contain:

_ %9

���
=

5�$���

g)=

_%9

\#7

_%9

=

_ey =

~~~~
~~~~

~~~~

~5I~~~ ~~~
~~~

v1E

γ
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2.3. Application: coherence for monoidal categories

As a consequence of this construction, we have sγ ≈Mon4 tγ. Then we build the following diagram,
proving that s(ω1) ≈Mon4 t(ω1) also holds:

�}�

���

3�#

||||||
|||

|s� ||||||

FFFFFF

F�,
_ey

qqqqqq
qqqqqq

qqqqqq

q.Bqqqqq
qqqqq

qqqqq
OOOOOO

OOOOOO
OOOOOO

O]qOOOOO
OOOOO

OOOOO

_ey

= =

=

For the 4-cellω2, one proceeds in a similar way, starting with the 4-cell . Finally, let us consider

the case of the 4-cellω3. First, we define the 4-cell δ of Mon>3 (Mon4) by the following relation:

A�*
_%9

}4H

N�0

p.B
_ %9

?1 ω2

δ

As a consequence, we have sδ ≈Mon4 tδ, hence

s
(
δ ?2

)
= t

(
δ ?2

)
.

The diagram

.� 

b&:

_%9

\$8

H�.
v0D

�>R

=

=

yields s(ω3) ≈Γ t(ω3), thus concluding the proof.

We can deduce, from this result and Proposition 2.2.1, a generating set for the abelian natural system of
identities among relations Π(Mon) on Mon:

M̃on4 =
{
b ?2 ?2 ?2

( )−
?2

( )−
c, b ?2 ?2

( )−
c
}

From Proposition 2.3.4, we have:

2.3.5. Corollary (Coherence theorem for monoidal categories, [7]). The 2-pro Mon is aspherical.

11



3. Coherence in symmetric monoidal categories

3. COHERENCE IN SYMMETRIC MONOIDAL CATEGORIES

3.1. Presentations of 2-props

We recall from [2] the following characterization of 1-props, derived from a similar result for algebraic
theories [1].

3.1.1. Proposition. A 1-pro P is a 1-prop if and only if it contains a 2-cell τ : 2⇒ 2 such that, with the
inductively defined notations

τ0,1 = τ1,0 = 11, τn+1,1 = (n ?0 τ) ?1 (τn,1 ?0 1), τ1,n+1 = (τ ?0 n) ?1 (1 ?0 τ1,n),

the following relations hold:

• Symmetry relation:
τ ?1 τ = 12. (8)

• Yang-Baxter relation:

(τ ?0 1) ?1 (1 ?0 τ) ?1 (τ ?0 1) = (1 ?0 τ) ?1 (τ ?0 1) ?1 (1 ?0 τ). (9)

• For every 2-cell f : m⇒ n, naturality relations for f:

(f ?0 1) ?1 τn,1 = τm,1 ?1 (1 ?0 f) and (1 ?0 f) ?1 τ1,n = τ1,m ?1 (f ?0 1). (10)

3.1.2. Presentations of 1-props. Let Σ be a 2-polygraph with one 0-cell and one 1-cell. We denote
by SΣ the 3-polygraph obtained from Σ by adjoining a 2-cell τ : 2 ⇒ 2 and 3-cells given by the
symmetry (8), Yang-Baxter (9) and naturality (10) relations for every 2-cell of Σ, directed from left to
right. The free 1-prop generated by Σ is the 2-category, denoted by ΣS, presented by the 3-polygraph SΣ.

Let P be a 1-prop. A presentation of P is a pair (Σ2, Σ3), made of a 2-polygraph Σ2 with one 0-cell
and one 1-cell and a cellular extension Σ3 of the free 2-category on the 2-polygraph Σ2q { }, such that

P ' ΣS2/Σ3.

3.1.3. The 1-prop of permutations. The free 1-prop on no 2-cell is the strict monoidal category Perm
of permutations: it is presented by the 3-polygraph with one 2-cell and two 3-cells

V and V

There exists an isomorphism between the category of small categories and functors and the category
Alg(Perm). The correspondence is given, for a Perm-algebra C : Perm→ Cat , by

C( ) = TC,C,

where TC,C is the endofunctor of C× C sending (x, y) to (y, x).

12



3.2. Convergent presentations of algebraic 2-props and asphericity

3.1.4. Proposition. A 2-pro P is a 2-prop if and only if it contains a 2-cell τ : 2 ⇒ 2 such that the
following relations hold:

• Symmetry and Yang-Baxter relations.

• Naturality relations for every 2-cell of P.

• For every 3-cell A : fV g : m⇒ n, naturality relations for A:

(A ?0 1) ?1 τn,1 = τm,1 ?1 (1 ?0 A) and (1 ?0 A) ?1 τ1,n = τ1,m ?1 (A ?0 1). (11)

Proof. This is an immediate extension of Proposition 3.1.1 for symmetric monoidal categories.

3.1.5. Presentations of 2-props. Let Σ = (Σ2, Σ3) be a presentation of a 1-prop. We denote by SΣ the
4-polygraph obtained from the 3-polygraph SΣ2 by adjoining the 3-cells of Σ3 and 4-cells given by the
naturality relations (11) for every 3-cell A of Σ3, directed from left to right. The free 2-prop generated
by Σ is the track 3-category, denoted by ΣS, given by:

ΣS = ΣS2(Σ3)/Σ4.

Let P be a 2-prop. A presentation of P is a pair (Σ3, Σ4), made of a presentation of a 1-prop Σ3 and a
cellular extension Σ4 of the free track 3-category Σ>3 , such that

P ' ΣS3/Σ4.

To summarize, a presentation of P yields a diagram which is similar to the one corresponding to the
inductive construction of a 4-polygraph, see [1]:

{∗} N ΣS2 ΣS3

{∗} {1}

ffMMMMMMMMMMMMM

ffMMMMMMMMMMMMM OO

OO

Σ2

ffLLLLLLLLLLLLLL

ffLLLLLLLLLLLLLL OO

OO

Σ3

ffLLLLLLLLLLLLL

ffLLLLLLLLLLLLL OO

OO

Σ4

ffLLLLLLLLLLLLL

ffLLLLLLLLLLLLL

3.2. Convergent presentations of algebraic 2-props and asphericity

3.2.1. Convergent presentations of algebraic 2-props. A presentation Σ of a 2-prop is convergent
when the 3-polygraph SΣ is convergent. A presentation Σ of a 1-prop (resp. 2-prop) is algebraic when
every 2-cell (resp. every 2-cell and every 3-cell) of Σ has 1-target equal to the generating 1-cell 1. A
2-prop is algebraic when it admits an algebraic presentation.

3.2.2. Classification of critical branchings. Let Σ be an algebraic presentation of a 1-prop P. We
recall from [2, 3] that the critical branchings of the 3-polygraph SΣ are organized as follows:

1. Five critical branchings generated by the symmetry and Yang-Baxter 3-cells.

2. For every 2-cell ϕ of Σ, four critical branchings, generated, on the one hand, by the naturality
3-cells for ϕ and, on the other hand, by the symmetry and Yang-Baxter 3-cells.

13



3. Coherence in symmetric monoidal categories

3. For every pair (ϕ,ψ) of 2-cells of Σ, one critical branching generated by the first naturality 3-cell
of ϕ and the second naturality 3-cell of ψ.

4. For every 3-cell α : f V g of Σ, two critical branchings generated by α and the naturality 3-cells
for f.

5. The other critical branchings, generated by at least a 3-cell of Σ.

The critical branchings of the first four families are always confluent. The cellular extension correspond-
ing to their confluence diagrams satisfies the following property: the source and target of each one of
its 4-cells are identified through the canonical projection π : SΣ> → P. For example, the confluence
diagrams of the fourth family correspond to the naturality 4-cells.

When Σ is convergent, we denote by ΓΣ a (chosen) cellular extension corresponding to the confluence
diagrams of the critical branchings of the last family.

3.2.3. Lemma. Let Σ be an algebraic convergent presentation of a 1-prop P. Then π(ΓΣ) is a homotopy
basis of P.

3.2.4. Theorem. If a 2-prop P admits an algebraic convergent presentation (Σ3, Σ4) such that Σ4 is
Tietze-equivalent to π(ΓΣ3), then P is aspherical.

3.3. Application to symmetric monoidal categories

3.3.1. Definition. A (small) symmetric monoidal category is given by data (C,⊗, e, α, λ, ρ, τ) made up
of a monoidal category (C,⊗, e, α, λ, ρ) together with a natural isomorphism

τx,y : x⊗ y→ y⊗ x,

called the symmetry and such that the following two diagrams commute in C:

y⊗ x
τ

!!
BBBBBBBB

x⊗ y

τ
==||||||||

x⊗ y
c©

x⊗ (y⊗ z) τ
// (y⊗ z)⊗ x

α

&&LLLLLLLLLL

(x⊗ y)⊗ z

α
88rrrrrrrrrr

τ
&&LLLLLLLLLL

c© y⊗ (z⊗ x)

(y⊗ x)⊗ z
α

// y⊗ (x⊗ z)
τ

88rrrrrrrrrr

(12)

3.3.2. The 2-prop of symmetric monoidal categories. Let Sym be the 2-prop presented by Sym given
as follows:

• Sym2 is Mon2, with two 2-cells and .

• Sym3 is Mon3 extended with a 3-cell:

_%9 _%9 _%9 _ %9
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3.3. Application to symmetric monoidal categories

• Sym4 is Mon4 extended with two 4-cells:

_ %9

E�,
EEEE

EEEE
EEEEy2Fyyyy yyyy

yyyy

S�3SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

SSSSSSSSSSSSSS k+?kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

kkkkkkkkkkkkkk
��

.!

x1E

_%9��

-� 

x1E

��

_ %9

F�-
FFFFFFFF

FFFFFFFF

FFFFFFFFx1Exxxxxxxx

xxxxxxxx

xxxxxxxx

D�,
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

_ %9

z2Fzzzzzzzzz

zzzzzzzzz

zzzzzzzzz��

3.3.3. Lemma. The category of small symmetric monoidal categories and symmetric monoidal functors
is isomorphic to the category Alg(Sym).

Proof. Given a symmetric monoidal category (C,⊗, e, α, λ, ρ, τ), the correspondence with a Sym-alge-
bra A is given by (7) for the monoidal underlying structure and by

A( ) = τ,

for the symmetry. The two commutative diagrams (2) of Lemma 2.3.3 correspond to commutative di-
agrams A( ) and A( ) in Cat and the commutative diagrams (12) correspond to commutative
diagrams A( ) and A( ).

A symmetric monoidal functor from C to D is a monoidal functor (F,φ, ι) such that the following
diagram commutes:

Fx⊗ Fy τ
//

φ
��

c©
Fy⊗ Fx

φ
��

F(x⊗ y)
Fτ

// F(y⊗ x)

(13)

The correspondance with a morphism Ψ of associated Sym-algebras is given by:

Ψ = F, Ψ = φ, Ψ = ι.

The relations (3), (4) and (13) correspond to the properties of the morphism Ψ.
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3. Coherence in symmetric monoidal categories

3.3.4. A convergent presentation. We define Sym ′ as the presentation Sym extended with one 3-cell
and one 4-cell:

_ %9
E�,

EEEEEE

EEEEEE
EEEEEE

ω

��

y2Fyyyyyy
yyyyyy

yyyyyy

C�+
CCCCCC

CCCCCC
CCCCCC {3G{{{{{{

{{{{{{

{{{{{{

3.3.5. Lemma. The 2-prop Sym is presented by Sym ′.

Proof. The 4-cellω corresponds exactly to the following relation:

≈ω
( )−1

?2 ?2

This induces an isomorphism between the 2-props (Sym ′3)
S
/Sym ′4 and SymS

3/Sym4 ' P.

3.3.6. Proposition. The 3-polygraph S(Sym ′3) is convergent and the cellular extension Sym ′4 is Tietze-
equivalent to π(ΓS(Sym ′

3)
).

Proof. The convergence of S(Sym ′3) is proved in [3]. The image through π of ΓS(Sym ′
3)

has seven 4-cells:

-� 

x1E

��

E�,
EEEEEE

EEEEEE
EEEEEE

ω

��

y2Fyyyyyy
yyyyyy

yyyyyy

C�+
CCCCCC
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{{{{{{
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ppppppppppp
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::::
:::: �8L����

����
����
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��

<�'
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<<<<<<<

<<<<<<<

ω2

��

}4H}}}}}}
}}}}}}

}}}}}}
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�������

�������
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<<<<<<<

<<<<<<<
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��
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}}}}}}

}}}}}}
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�������
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_%9
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4. Coherence for braided monoidal categories

In a similar way to the case of monoidal categories, we prove that, for every 4-cell ωi, we have
s(ωi) ≈Sym ′

4
t(ωi). The projection sends ω1 to one of the naturality relations for . Then, for

each 4-cell ωi, with 2 ≤ i ≤ 5, we consider a 4-cell Wi of Sym>3 (Sym4), built as an instance of the
4-cell composed with 2-cells:

W2 = , W3 = , W4 = , W5 = .

On the one hand, the boundary of Wi satisfies s(Wi) ≈Sym4
t(Wi). On the other hand, we partially

fill the boundary of Wi with 4-cells of Sym4, plus exchange and naturality relations, until reaching the
boundary ofωi (or ofω−

i ), thus yielding the result.

3.3.7. Corollary (Coherence theorem for symmetric monoidal categories, [7]). The 2-prop Sym is
aspherical.

4. COHERENCE FOR BRAIDED MONOIDAL CATEGORIES

4.1. Generalized coherence problem

4.1.1. Definition. A (small) braided monoidal category is a monoidal category (C,⊗, e, α, λ, ρ) equip-
ped with a natural isomorphim

βx,y : x⊗ y→ y⊗ x,

called the braiding and such that the following diagrams commute in C:

x⊗ (y⊗ z)
β

// (y⊗ z)⊗ x
α

&&LLLLLLLLLL

(x⊗ y)⊗ z

α
88rrrrrrrrrr

β &&LLLLLLLLLL
c© y⊗ (z⊗ x)

(y⊗ x)⊗ z
α

// y⊗ (x⊗ z)
β

88rrrrrrrrrr

x⊗ (y⊗ z)
β−

// (y⊗ z)⊗ x
α

&&LLLLLLLLLL

(x⊗ y)⊗ z

α
88rrrrrrrrrr

β−
&&LLLLLLLLLL

c© y⊗ (z⊗ x)

(y⊗ x)⊗ z
α

// y⊗ (x⊗ z)
β−

88rrrrrrrrrr
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4. Coherence for braided monoidal categories

4.1.2. Generalized coherence theorem. Contrary to the case of monoidal and symmetric monoidal
categories, we do not have that every diagram commutes in a braided monoidal category. For example,
the morphisms βx,y and β−

y,x, from x⊗ y to y⊗ x, have no reason to be equal. In fact, they are equal if
and only if β is a symmetry, hence if and only if all diagrams commute.

As a consequence, the coherence problem for braided monoidal categories requires a generalized
version of the coherence problem we have considered so far.

THE GENERALIZED COHERENCE PROBLEM: Given a 2-prop P, decide, for any 3-sphere γ of P, whether
or not the diagram C(γ) commutes for every P-algebra C.

Hence, a solution for the generalized coherence problem is a decision procedure for the equality of
3-cells of P. For the coherence problems considered so far, this decision procedure answers yes for every
3-sphere. We consider methods to study the generalized coherence theorem of 2-props and illustrate
those methods on the 2-prop of braided monoidal categories.

4.1.3. The 2-prop of braided monoidal categories. Let Br be the 2-prop presented by Br, which is
defined as follows:

• Br2 is Mon2, made of two 2-cells and .

• Br3 is Sym3, made of four 3-cells:

_%9 _%9 _%9 _ %9

• Br4 is Mon4 extended with two 4-cells:

_ %9

E�,
EEEE

EEEE
EEEEy2Fyyyy yyyy

yyyy

S�3SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

SSSSSSSSSSSSSS k+?kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

kkkkkkkkkkkkkk
��

.!

x1E

_%9��

_%9

F�-
FFFFFFFF

FFFFFFFF

FFFFFFFFx1Exxxxxxxx

xxxxxxxx

xxxxxxxx

D�,
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

_%9

z2Fzzzzzzzzz

zzzzzzzzz

zzzzzzzzz

1

��

18



4.2. Preservation of coherence by equivalences

_%9
( )−

F�-
FFFFFFFF

FFFFFFFF

FFFFFFFF
( )−

x1Exxxxxxxx

xxxxxxxx

xxxxxxxx

D�,
DDDDDDDDD

DDDDDDDDD

DDDDDDDDD

( )−_%9

z2Fzzzzzzzzz

zzzzzzzzz

zzzzzzzzz

2

��

The category of (small) braided monoidal categories is isomorphic to the category Alg(Br).

4.2. Preservation of coherence by equivalences

4.2.1. Equivalence of 2-props. Let P and Q be 2-props. A morphism of 2-props from P to Q is a
3-functor F : P → Q which is the identity on 1-cells, i.e., F(n) = n, for every 1-cell n ∈ N. If
F,G : P → Q are two morphisms of 2-props, a natural transformation from F to G is a family α of
3-cells of Q

αf : F(f) V G(f)

indexed by the 2-cells of P and such that, for every 3-cell A : f V g of P, the following diagram
commutes in Q:

F(f)
αf _%9

F(A) ���
c©

G(f)

G(A)���
F(g)

αg
_%9 G(g).

If F : P→ Q is a morphism of 2-props, a quasi-inverse for F is a morphism of 2-props G : Q→ P such
that there exist natural isomorphisms

GF ' 1P and FG ' 1Q.

An equivalence between P and Q is a morphism of 2-props F : P→ Q that admits a quasi-inverse.

4.2.2. Proposition. Let F : P → Q be an equivalence between 2-props P and Q and let (A,B) be a
3-sphere of P. Then A = B if and only if F(A) = F(B).

Proof. Let A,B : f V g be a 3-sphere of P such that F(A) = F(B). We denote by G : Q → P a quasi-
inverse of F and by α the natural isomorphism from GF to 1P. We have, by definition of α, commutative
diagrams in P:

GF(f)
αf _%9

GF(A) ���
c©

f

A���
GF(g)

αg
_%9 g

GF(f)
αf _%9

GF(B) ���
c©

f

B���
GF(g)

αg
_ %9 g
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4. Coherence for braided monoidal categories

By hypothesis, we have GF(A) = GF(B). Thus:

A = α−
f ?2 GF(A) ?2 αg = α−

f ?2 GF(B) ?2 αg = B.

4.2.3. Notation. If P and Q are 2-props with Q ⊆ P, we denote by P/Q the quotient of P by the 3-cells
of Q.

4.2.4. Theorem. Let P and Q be 2-props with Q aspherical and Q ⊆ P. Then the canonical projection
π : P→ P/Q is an equivalence of 2-props.

Proof. Let f and g be parallel 2-cells of P. Since Q is aspherical, the 3-cells of P from f to g are in
bijective correspondence with the 3-cells of P/Q from π(f) to π(g). Since π is surjective, this yields a
quasi-inverse of π.

By Corollary 2.3.5, the 2-pro Mon is aspherical, we have

4.2.5. Corollary. Let (A,B) be a 3-sphere of Br. Then A = B if and only if π(A) = π(B) in Br/Mon.

4.3. The initial algebra of an algebraic 2-prop

4.3.1. Definition. Let P be an algebraic 2-prop, with an algebraic presentation Σ. A 2-cell f of P is
algebraic when it has target 1 and it is a 2-cell of the free 2-category Σ∗2.

The initial P-algebra is the P-algebra P defined as follows. The category P(1), or simply P, is given
by:

• Its objects are the algebraic 2-cells of P.

• A morphism from f : n ⇒ 1 to g : n ⇒ 1 is a pair (σ,A) where σ is a permutation, seen as a
2-cell of P generated by { }, and A : σ ?1 fV g is a 3-cell of P.

• The composite of (σ,A) and (τ, B) is (τ ?1 σ, (τ ?1 A) ?2 B).

• The identity of f : n⇒ 1 is (1n, f).

If ϕ : n⇒ 1 is a 2-cell of Σ, then the functor P(ϕ) : Pn → P is given by

P(ϕ) (f1, . . . , fn) = (f1 ?0 · · · ?0 fn) ?1 ϕ.

If α : f V g : n ⇒ 1 is a 3-cell of Σ, then the component at (f1, . . . , fn) of the natural transforma-
tion P(α) is the pair

P(α)(f1,...,fn) = (1n, (f1 ?0 · · · ?0 fn) ?1 α).

4.3.2. Theorem. Let P be an algebraic 2-prop and let (A,B) be a 3-sphere of P. Then A = B if and
only if P(A) = P(B).

Proof. Let us assume that A,B : f V g : m ⇒ n are such that P(A) = P(B). Then we have, by
definition of P, for every algebraic 2-cells f1, . . . , fm of P:

(1m, (f1 ?0 · · · ?0 fm) ?1 A) = (1m, (f1 ?0 · · · ?0 fm) ?1 B).

In particular, we take fi = 1, for every i ∈ {1, . . . ,m}, to get A = B.
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4.4. The main result

4.4. The main result

4.4.1. Theorem. The (underlying category of the) initial algebra B of Br/Mon is the monoidal category
of braids.

Proof. We note that, in Br/Mon, there is exactly one algebraic 2-cell for each natural number n. As
a consequence, a Br/Mon-algebra is a strict monoidal category C, with natural numbers as objects and
monoidal product given by m ?0 n = m + n, for every m,n ∈ N and u ?0 v = C( )(u, v), for every
morphisms u, v with target 1. In particular, in the initial algebra B, the product of (σ,A) and (τ, B),
where t1(A) = t1(B) = 1, is given by:

(σ,A) ?0 (τ, B) = (σ ?0 τ, (A ?0 B) ?1 ).

Thus, B is generated, as a monoidal category, by the the following endomorphisms of 2:

= ( , ) and =

(
,
( )−)

.

We have:

= ( , )

(
,
( )−)

=

(
12, ?2

( )−)
= (12, µ).

We note that (12, µ) is the identity of 2 in B to get:

=

We prove, in a similar way:
=

We check:

=
(

,
)(

,
)(

,
)

=

(
, ?2 ?2

)
.

Computing in Br/Mon, we get:

?2 ?2 = ?2 = .

Then, we consider:

=

(
, ?2 ?2

)
.
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In Br/Mon, we have:

?2 ?2 = ?2 = .

Thus, it follows:

=

Finally, one checks that the image through B of the 4-cells , 1 and 2 induce no other
relation on endomorphims and .

4.4.2. Corollary (Coherence theorem for braided monoidal categories, [6]). Let (A,B) be a 3-
sphere of Br. Then A = B if and only if the braids B(A) and B(B) are equal.
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