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Abstract 

Natural rocks may be chemically transformed thanks to the operation of 

pervading fluids in disequilibrium with them. For a given example, a series of 

zones with distinct mineralogy may develop in space, starting from the initial 

rock and going to completely new rocks. We will consider the entire set of 

transformation zones as a whole and call it  « system of metasomatic zones ». 

At the reaction fronts that separate the different zones, chemical 

components are exchanged between the solid and the fluid; the exchanges 

occur at the same time and the same place for all components, and the 

variations of all concentrations are thus correlated. Let take this as granted, and 

add the condition that a local equilibrium is achieved between the solid and the 

fluid: we then reach the conclusion that the system of zones as a whole is a 

connected system. 

We propose to generalize to this system the concept of variance : let it 

be the number of intensive parameters that one is able to fix arbitrarily to the 

inlet fluid and/or to the starting rock without modifying the number and nature 

of the zones. We show that the variance of a system of metasomatic zones is 

given by 

 

 v = c + z - ϕ - 1 

 

where c is the number of independent chemical components, z the number of 

zones and ϕ the total number of phases, counted as many times as number of 

zones where present. 

This rule sets constraints on the difference between the number of 

phases and the number of zones and on the number of inert and mobile 

components. On that respect, it brings an improvement with respect to the rule 

on open systems (Korzhinskii) that could make one think that the mobility 

property is a local property whereas it is dependent on the whole system. We 

can say that 

 

  ϕ - z  ≤  ci - 1 

 



Bernard GUY 4 

where ci is the number of inert components. In addition to its quantitative 

aspects, our rule merely expresses that the system of metasomatic zones is the 

result of a reaction between the inlet fluid and the starting material and 

combine influences of both. It brings an upper limit to the number of 

parameters that one can decide to fix from outside of the system when studying 

metasomatic systems. The total of arbitraries is always lower than c - 1, and not 

2(c - 1) if the system was not bound, and the arbitraries must be distributed 

between the inlet fluid and the starting rock. Each specific case needs a specific 

discussion. The rule also expresses the seeming upstream influence of the 

starting rock. In the paper, the expression of v is given depending on the 

inert/mobile status of the components. An example of its use to the case of 

Costabonne skarns (Pyrenees) is given. 

 

Key-words: generalized phase-rule, water-rock interaction, system of 

metasomatic zones,  inert component, mobile component 
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1. Introduction : the system of metasomatic zones 

 

The use of the phase rule in geology has been discussed by several authors, 

such as Korzhinskii (1950 a and b, 1957), Fonteilles (1981), Barton and 

Skinner (1979), Demange (1982), Pichavant et al. (1982). The phase rule 

provides a qualitative approach to petrologic systems and allows to count the 

degrees of freedom of polymineralic associations. The phase rule allows a first 

discussion for systems where quantitative data are lacking. It will be applied 

here to the study of open systems. The chemical transformation of a rock by 

the operation of an advecting aqueous fluid in disequilibrium with it may create 

a series of zones with different mineralogy. These zones express the 

progressive adaptation of the starting material to the inlet fluid. This system of 

zones will be considered as a whole and called "system of metasomatic zones". 

One may find in the literature numerous descriptions of such systems among 

which skarns (Guy, 1979, 1980, 1988) provide conspicuous examples. 

Fonteilles (1978) gives the basic hypotheses for the study of metasomatic 

systems. 

 

 

2. Application of the phase rule to metasomatism. The Korzhinskii’s rule. 

 

A piece of rock at a given place is a different entity from the overall system 

we have just defined. Korzhinskii applied the Gibbs phase rule to the local 

mineral assemblage considered as a little open system (1957, 1970 ; see also 

Thomson, 1959 , Fonteilles, 1978). Korzhinskii made a distinction between the 

so-called "perfectly mobile components", the chemical potential of which is 

imposed by the fluid from outside the little local system, and the "inert 

components" that do not possess this property. Their chemical potentials are 

fixed by the whole set of phases and their amount is fixed by the starting 

material. Korzhinskii's rule states that the number of phases that can be 

observed locally is lower or equal to the number of inert components. 

This rule, that we do not discuss in detail here, sets two major difficulties : 

on the first hand, it does not express the connection of the overall system as we 

recalled it previously, inasmuch as the distinction between inert and mobile 
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components cannot be done locally and does result from the study of the 

overall system (see Rumble, 1982). On the second hand, it gives a special role 

to the fluid the role of which is always decided to be arbitrary with respect to a 

starting rock the composition of which is always supposed to be fixed. As we 

will see, one can envisage things more symmetrically. In other words, one can 

leave degrees of freedom to the rock as well as to the fluid. 

 

 

3. Extension of the variance concept to the overall system of zones 

 

Because the different parts of the overall system are connected, it appeared 

to us that one had to look for its variance; we must then generalize this concept 

for a system that is out of equilibrium but does possess a self-similarity 

(revealing a constancy in the processes). We can define the variance as the 

number of intensive parameters that one can impose arbitrarily to the 

boundaries of the system, i.e. to the inlet fluid and to the starting rock, without 

changing the number and the nature of the present zones, each zone being 

defined by a specific association of phases. 

We will take here the chemical point of view and will not discuss the 

physical parameters pressure and temperature. Parameters of interest will be 

the concentrations, chemical potentials, or partial pressures, of components in 

the inlet fluid and/or the starting rock, that one may expect to vary to some 

extent at the scale we observe the metasomatic systems, but without modifying 

the system of zones. 

In the frame we will adopt below to derive the rule, each phase with a 

specific composition will impose one relation between the concentrations of 

the components in the solution, whatever its amount in the system. Two phases 

with the same structure but with differing compositions, as for solid solutions, 

impose two different relations. A given zone must thus be described by a set of 

phases with specified composition, but with no constraint on their proportions. 

Our rule will apply to metasomatic zonings that are not dependent on 

variations of P and T. If gradients of P and T are imposed to the system and 

have a bearing upon the phase changes defining the zones, discussion must 

involve all intensive parameters at the same time, and one can add the physical 
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parameters to the overall variance. Inside a zone defined by a given set of 

phases, P and T are both degrees of freedom. If one assumes that on both sides 

of each front, pressure and temperature are connected, via the energy involved 

in the reaction and the heat flux for T, and via hydrodynamic parameters and 

mechanical constraints for P, we have in principle a method to compute the 

link between all the parameters. 

 

 

4. Derivation of the variance v = c + z - ϕϕϕϕ - 1 

 

The generalized variance is given by v = c + z - ϕ - 1, where c is the 

number of chemical components, z the number of zones and ϕ the total number 

of  phases in the system of zones; each phase is counted each time it is present 

in a given zone (Fig. 1). A system of zones a priori has cz unknowns which are 

the concentrations in the fluid of the c independent components in each of the z 

zones. These cz unknowns are connected by a number of relations: 

- on the first hand, the relations imposed by the phases. Each phase imposes 

one relation, for instance the solubility product connecting the concentrations 

in the aqueous solution for each zone. This relation is in general different for 

each composition of a solid solution. Because each of these relations connects 

the unknowns in the zone where the corresponding phase is present, relations 

must be added for all zones where the phase is present; the number of these 

relations is  

 

  ϕ = Σz (Σi ϕi) 

 

where the summation Σ is taken first inside each zone i, then on all z zones. 

- on the second hand, the relations at the z - 1 fronts that separate the zones. 

These are the mass balance equations that can be written (Guy, 1993) 

 

 ∆cjf - v ∆p[cjf + (1-p)cjs] = 0      (1) 
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where ∆ is the variation of the concentrations between both sides of a front 

with velocity v; p is the porosity, that may be variable; cjf and cjs are the 

concentrations of component j in the fluid (f) and in the solid (s) respectively; 

in the simplified case where p is small: 

 

∆cf1/∆cs1 = ∆cf2/∆cs2 = … = ∆cfc/∆csc 

 

for all components, from1 to c;. 

Because of the local equilibrium hypothesis, we can also assume 

generalized biunivocal relations between the concentrations cfj  of components j 

in the fluid and the concentrations csk of the components k in the solid; these 

relations are of the type cfj = fj(cs1…csk…csc) = fj(csk) where each relation 

involves all the components k in the solid, k varies from 1 to c; we will 

designate by (r) these relations, the number of which is c; because of relations 

(r), relations (1) may then be considered as concerning just one type of 

variables cf. 

 

Eliminating v between relations (1) at a given front, and taking into 

account the relations (r) between the cjf and the cks, we are led to c - 1 relations 

between the concentrations on both sides of each front. The z - 1 fronts 

therefore impose (z - 1)(c - 1) relations. In fine, the variance, or the difference 

between the number of unknowns and the number of relations reads 

 

  v = cz - ϕ - (c - 1)(z - 1) = c + z - ϕ - 1   (2) 

 

as announced, the physical factors not being counted. If the concentrations of 

the components vary inside the zones in connection with minerals with solid 

solution, it is necessary in our approach to consider a continuous series of 

zones parametrized by space variable x. On another hand, if the last (or first) 

zone that is being considered is filled by the fluid as in a vein, with p = 1 for 

this zone, relation (1) still connects concentrations in the fluid of first solid 

zone to that in the vein and the rule still applies. In that case we must count 

water among the components and fluid phase among the phases. Generally 
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speaking, if porosity p varies, it can be added to the unknowns of the system, 

provided one adds at each front a relation connecting  the ∆p to the ∆ci, and 

this does not change the total number of arbitraries. 

 

 

5. Consequences 

 

5.1. Associated roles of the inlet fluid and of the starting rock; non-arbitrary 

characteristics of the inlet fluid 

Korzhinskii (1970) already derived equation (2): it is for him but an 

intermediate equation for which he gives no numbering; he immediately brings 

into it the maximum value for variance, as if it were imposed solely by the 

external fluid supposed to be completely arbitrary, independently of the 

observed zone system. This author derives a relation between z and ϕ that we 

do not comment here. For us, on the contrary, equation (2) does not give a 

specific role to the inlet fluid or to the starting rock. We can see there a 

generalized phase rule that gives us a way to reach, directly from observation 

of z, ϕ and c, the number of arbitraries bearing on the whole system of zones. 

More precisely, within this rule, the arbitraries on the inlet fluid and on the 

starting rock are not independent. Since there is at least the same number of 

phases as that of zones, i.e. 

 

ϕ  ≥  z          (3) 

 

we get, with (2) 

 

v  ≤  c - 1        (4) 

 

The variance of the overall system is thus limited to the value it has 

locally as imposed by the existence of a solid phase at a given place; it is not 

equal to the addition of the maximum values of arbitraries, bearing both on the 

inlet fluid and starting rock; this would be equal to 2(c - 1). It is interesting to 

note that, in the case of the resolution of deterministic partial differential 
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equations for a problem of transformation with c components, the number of 

arbitraries bearing on the boundary conditions is limited to the rank of the 

system, i.e. c - 1 as we have here (Whitham, 1974). 

If we adopt a symmetric view for the roles of the inlet fluid and of the 

starting rock, we can accept that the rock may also be defined with a number of 

arbitraries. This implies that there may be in the starting rock a number of 

phases lower than the c phases adopted by Korzhinskii; this author considers as 

general the case of c inert components in it. In these conditions, equation (4) 

shows that the number of arbitraries on the side of the inlet fluid will have to be 

diminished with respect to the maximum c - 1. This means that the fluid cannot 

be arbitrary and that some of its component concentrations will be fixed by the 

overall system. This is a completely new result, but not a surprising one, with 

respect to the conception expressed by Korzhinskii. Rather than to say: such 

parameter is fixed in the inlet fluid by the system, we can say: because of the 

observed system and of the constraints, such fluid parameter cannot be 

arbitrary. But we cannot be more precise: we have obtained but a global 

variance, that remains then to be fractionated between the inlet fluid and the 

starting rock thanks to a discussion that must bear on each particular case. We 

will have to examine which parameters are free to vary on the rock's side and 

which are fixed on the fluid's side because of the overall system. 

 

 

5.2. A first understanding of the generalized variance 

As we said, rule (2) expresses that inlet fluid cannot be completely 

arbitrary. This may be easily understood: the overall zone system is indeed 

already the result of both influences of the starting rock and of the fluid. None 

is dominant over the other; if the rock had been in an infinite quantity with 

respect to the fluid, this last one would not have modified it; conversely, if the 

ratio of rock to fluid had been very small and the fluid out of equilibrium with 

the rock, the rock would have dissolved without creating any zone system. In 

the case of a fluid completely independent from the starting rock, the last zone 

is a hole that one cannot see (or it may be expressed in the form of a rock made 

of quartz filling the voids of the former hole). The last visible zone, the 

garnetite in the case of skarns for example, thus still contains some information 
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of the starting rock. The fluid there is already no longer arbitrary. In the 

vicinity of the enclosing rock it will modify, the fluid in the vein may still 

"know" the nature of the rocks: very often precipitation of minerals may be 

observed whose nature and composition are a function of the enclosing rocks; 

this must be because of diffusion of elements from the rock into the vein fluid. 

 

 

5.3. Number of zones 

Equation (4) may also be written, with v ≥ 0 

 

0 ≤ ϕ - z  ≤  c - 1         (5) 

 

This condition thus bears, not on the number of zones, but on the excess of the 

number of phases to the number of zones. All types of fronts, i.e. reaction 

fronts, fronts marking the limit of the component mobility (see appendix) may 

be considered. The number of zones itself does not depend only on the 

variance, but on chemical considerations related to water-rock interaction 

modeling that are beyond the scope of the present paper (see for example 

chromatographic theory, e.g. Guy, 1993). Note that the variance is not 

modified by the existence of an arbitrary number of monomineralic zones; this 

may particularly apply to some cases of oscillatory banding (Guy, 1981). 

 

 

5. 4. Case of the progressive reduction of the phase number 

In the case of the progressive reduction, from the starting rock, of the 

number of phases, we can a priori expect from the preceding: 

 

 z = ϕ0 

 

and  

 

 ϕ = ϕ0 + (ϕ0 - 1) + (ϕ0 - 2) + … + 1 = ϕ0.(ϕ0 + 1)/2 
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where ϕ0 is the number of phases in the starting rock. Depending on the 

examples, the last zone filled by the fluid (with no solid phase) may also be 

counted; water may also be counted in the list of phases. If the number of 

phases in the starting rock is maximal and equal to c, we have 

 

  v = c + z - ϕ - 1 = c + c - c.(c+1)/2 - 1 

 

This relation in general does not correspond to what can be observed. We can 

then suppose in that case that we do not have to count the phases the same 

number as the zones where present: each phase needs be counted only once for 

the whole system. We are indeed in a situation where each component is 

determined selectively by one phase and we can assume its concentration is 

approximately the same in all the zones where the phase is present. At a front 

where the phase disappears, there are no changes for the other components ; 

this supposes a limited amount of disequilibrium. It is an approximation where 

one considers that the remaining phases are not modified by the dissolution of 

the phase that defines the front (limit of mobility front). The number of 

unknowns is then equal to c + (z-1), i.e. c unknown concentrations in the 

starting rock, z - 1 of these concentrations change one by one at each front; we 

have ϕ relations imposed by each of the ϕ phases (the relations at the fronts 

need not be computed since they have been taken into account in the 

numbering of the unknowns) and so we have here: 

 

 v = c + (z - 1) - ϕ = c + z - ϕ - 1 

 

and this amounts to count in relation (2) each phase only once. If then we count 

each phase only once for the overall system, we have z = ϕ and the variance is 

maximal and equal to c - 1. In that case, the number of phases is maximal in 

the starting rock, there are no arbitrary on that side and all are reported on the 

fluid's side. Within such boundary conditions on the inlet fluid and the starting 

rock, we conversely see that because of the constraints on the variance, one 

cannot have in the same time the maximum number of phases in the starting 

rock and the maximum number of arbitraries in the fluid without imposing the 
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existence of zones with a minimum number of c. These two results are in 

agreement with that of Korzhinskii who assumed such boundary conditions on 

the starting rock and the inlet fluid. But this author did not consider other types 

of boundary conditions, neither applied the equation he had found in its full 

generality for his very problem, i.e. did not count each phase each time it is 

present in a given zone. 

The first result applies to the rule of the reduction of the number of 

phases, the second result gives a kind of demonstration of the existence of 

zones and their minimal numbering. From the variance point of view, the 

general case corresponds to an arbitrary number of constraints that are shared 

between the inlet fluid and the rock and to an arbitrary number of phases, 

provided equation (2) is fulfilled. The rule of the regular decrease of the 

number of phases from the starting rock may not be verified; it is not a law, or 

one must tell under what hypotheses it may be applied. 

 

 

5.5. Inert and mobile components 

The number of mobile components cm remains lower than or equal to 

the variance, but in its new expression (overall variance): 

 

 c + z - ϕ - 1 ≥  cm 

 

we have c = cm + ci where i refers to the inert components; this gives 

 

  ϕ - z  ≤  ci - 1       (6) 

 

For z = 1, we find back the rule of Korzhinskii ϕ ≤ ci where the number of 

phases in a zone is lower than the number of inert components. If we take z = 1 

on the general expression, we have v = c - ϕ; the Gibbs phase rule is retrieved, 

without the physical parameters. 

 

 

6. Examples 
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6.1. Skarns developed on dolostone (Costabonne, Pyrenees, Guy, 1979) 

In that case, the successive zones are: fluid - garnet - pyroxene - calcite 

+ forsterite - dolomite. One has z = 5, ϕ = 6, c = 8 (Al2O3, MgO, CaO, FeO, 

Fe2O3, SiO2, CO2, H2O). We thus have 

 

v = c + z - ϕ - 1 = 8 + 5 - 6 - 1 = 6 

 

so there are 6 degrees of freedom that one must share between the starting rock 

and the inlet fluid. If for instance, we fix fCO2 in the dolostone, there remains 5 

degrees of freedom on the inlet fluid side: one for instance thinks first of 

µSiO2, µFeO, µFe2O3 and µAl2O3, where µ is the chemical potential; the 

corresponding elements are not contained in the starting rock, one can think 

that they are imposed by the inlet fluid. Then, in the inlet fluid, there remains 

one relation concerning  µCaO, µMgO and µCO2. All the rest is then fixed by 

the preceding values and the system of zones. Particularly, fCO2, µCaO and 

µMgO in the inlet fluid, and µSiO2, µAl2O3, µFeO and µFe2O3 in the 

dolostone, in addition to µCaO and µMgO now completely determined. It is 

then inferred that fO2 is fixed by the values of µFe2O3 and µFeO and that this 

parameter is imposed everywhere in the whole system. 

There would be other ways to choose the degrees of freedom to be 

shared between the fluid and the dolostone. If for instance one would fix fCO2 

in the same time in the inlet fluid and in the starting rock, there would be one 

degree of freedom less. There would be then no possible relation between 

µCO2, µCaO and µMgO in the inlet fluid. Or there would be but one relation 

between µFeO and µFe2O3 in the inlet fluid, but no fixing of the absolute value 

of each. 

In brief, this approach shows again that the inlet fluid is not arbitrary 

and that, in a symmetrical way, some concentrations in SiO2, Al2O3 and so on 

cannot be arbitrary in the dolostone; these conclusions are valid in the frame 

we have exposed, i.e. taking local equilibrium hypothesis as granted. 
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6.2. Skarns on marbles (Salau, Pyrenees, Soler, 1977) 

In that case the zoning is: fluid - garnet - pyroxene - calcite - calcite + 

graphite 

We have z = 5, ϕ = 5, c = 8 - 1 (Al, FeII, FeIII , Ca, C, O, Si, H; one has to 

distinguish between C and O because of the presence of graphite; there is a 

relation between FeII, FeIII  and O, and there are 7 independent components). 

One thus has: 

 

v = c + z - ϕ - 1 = 7 + 5 - 5 - 1 = 6 

 

counting calcite one time (cf. Section 5.4). If one assumes one degree of 

freedom in the starting marble (relation between fO2 and fCO2 in the graphitic 

marble) there remains 5 arbitraries on the fluid side: µSi, µFeII, µFeIII , µAl for 

instance and a relation connecting µCa, µO and µC. Then all the remaining 

unknowns are determined, particularly fO2 in the whole system: its values in 

the different zones are fixed by its values in the inlet fluid and in the starting 

rock. This expresses in a simple fashion the influence of the starting rock on 

the nature of skarn minerals upstream in the system, without imagining a 

particular mechanism such as upstream diffusion. This is contrary to what has 

sometimes been said (Fonteilles et al. 1978). This is the case for instance for 

the level in oxygen concentration that is low in the whole system if it is 

imposed at a lower level in the starting rock: it imposes the formation of 

pyroxene instead of garnet from the marble. 

 

 

6.3. Polymineralic starting rocks 

In the case of polymineralic starting rocks where an assemblage of ϕ 

phases is progressively reduced to one phase, then to the fluid, we have, in the 

frame of the approximations of section 5.4 above, z = ϕ + 1 (counting the fluid 

zone) and 

 

v = c 
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Variance is maximal because there is no new phase. The degrees of freedom on 

the side of the starting rock (if any, this depends on the number of phases 

therein) must be subtracted from the degrees of freedom on the inlet fluid. An 

example of this type of column is found in Pascal (1979). We have the 

following zones, from starting rock to inlet fluid (modified from Pascal, op. 

cit.): Biotite + Muscovite + Quartz + Ca-plagioclase + Albite / Biotite + 

Muscovite + Quartz + Albite / Biotite + Muscovite + Albite / Muscovite + 

Albite / Albite / fluid. The number of phases decrease from 5 to 1 as the phases 

disappear one by one. The chemical components of the system are Al2O3, 

MgO, CaO, SiO2, Na2O, K2O. So v = c = 6. There are 5 phases in the starting 

rock with 6 components, so there may be one degree of freedom in the starting 

rock. On the inlet fluid side, there are thus five to six degrees of freedom; in the 

case we take 6, the composition of the fluid may be variable for all the 

chemical components and Korzhinskii's rule for open systems is fully verified. 

 

  

7. Discussion 

 

7.1. Parameters that can be fixed by the inlet fluid from outside a given system 

The generalized rule expresses the influence of the starting rock upon 

the nature of minerals in the metasomatic zones, with no need to postulate any 

upstream influence. This may have a great importance for the understanding of  

metasomatic rocks such as skarns. In that case, authors often fix several 

parameters such as fO2 or fCO2 at a constant level for the whole set of zones as 

imposed from outside the system. If a parameter is involved in the exchanges 

occurring at the metasomatic fronts, it cannot be fixed at the same level 

everywhere. On the whole, it is necessary to discuss all the parameters 

together. 

 

 

7.2. Errors in the application of the variance to an out of equilibrium 

association  

If we apply standard phase rule to an assemblage overlapping a front, 

because the front is not visible because it is smooth for instance, one finds v = 
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c - ϕ. However, the real variance must be computed according to our rule v = c 

+ z - ϕ - 1; here for z = 2, this rule gives v = c + 1 - ϕ. The fact of being out of 

equilibrium thus gives an additional degree of freedom. Reciprocally, with the 

same number of components, the same conditions, and the same overall 

variance, one can allow one more phase than in the case equilibrium was 

achieved. The number of degrees of freedom is a sign of the flexibility of a 

system: if it is too small, a change in the parameters may change the system. 

 

 

7.3. Extension to the case of diffusion between two neighbouring rocks 

In the case of metasomatism induced by diffusion between two 

chemically incompatible rocks, there are still c - 1 relations at each of the 

fronts created by the transformation; they connect the concentrations on both 

sides of the front; they are different from relations (1), (e.g. Fonteilles, 1978) 

but our rule still applies to a system of zones that overlap the two starting rocks 

and the zones formed between them. On the whole, the metasomatic column 

that associates advection and diffusion zones may also be treated in a single 

fashion from the variance point of view. This may help examining the 

compatibility of two neighbouring metasomatic columns that develop each on a 

different starting rock on both sides of their contact (case of bimetasomatism). 

The same approach may be applied to the study of metamorphic zones. 

 

Acknowledgements: the author thanks Michel Fonteilles for helpful comments. 
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Appendix. Expression of the variance as a function of the different 

categories of minerals 

 

Let us apply the results of the paper and examine the categories of the 

different phases in the overall system, depending on whether they appear, 

disappear, are replaced by others etc. in the system. 

 

1. Categories of phases and of fronts (Fig. 2) 

Let ϕ1 be the number of phases in the most external upstream zone (last 

zone) and ϕ2 be the number of phases in the starting rock (downstream 

medium, first zone). Let ϕ0 be the number of phases common to ϕ1 and ϕ2; let 

us write ϕ1 = ϕ0 + ϕ'1 and ϕ2 = ϕ0 + ϕ'2. And let ϕ'3 be the number of phases 

that appear neither in ϕ1 nor in ϕ2; these phases appear in one zone then 

disappear in another. We then have 

 

  ϕ  ≥  ϕ0 + ϕ'1 + ϕ'2 + ϕ'3     (7) 

 

The value of total ϕ as given by (7) is a minimum because some phases 

must be counted several times if they are present in several zones. It does not 

seem useful to make a distinction between the phases that appear or disappear 

in the course of a precipitation or dissolution process rather than a chemical 

reaction with other phases: a reaction may be considered as the simultaneous 
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dissolution of a mineral and the precipitation of another. Let us compute z. A 

zone may appear because of: a) the appearing of a phase that was not in the 

starting rock; b) the disappearing of a phase with no appearing of any new 

phase; c) the replacement of a former phase by a new one, which we do not 

count as equivalent to a) + b). 

Let us call ϕ'0 the number of phases that are merely replaced by c) 

mechanism. ϕ'0 is already counted among the preceding phases but it is 

interesting to consider it apart for the numbering of zones. We have in effect: 

 

 z  ≤    1    +   (ϕ'1 + ϕ'3)   +   (ϕ'2 + ϕ'3)   - ϕ'0  (8) 

 

where 1 stands for the starting rock, (ϕ'1 + ϕ'3) stands for a) mechanism, (ϕ'2 + 

ϕ'3) stands for b) mechanism and ϕ'0 stands for c) mechanism. ϕ'0 is subtracted 

because at each time such a replacement event occurs, it is necessary to count 

only one zone change and not two (as induced by ϕ'1 + ϕ'2). Relations (7) and 

(8) lead to: 

 

  z - ϕ  ≤  1 + ϕ'3 - ϕ0 - ϕ'0     (9) 

 

and according to equation (2) 

 

 v ≤ (c - ϕ0) - ϕ'0 + ϕ'3 = (c - ϕ0) - (ϕ'0 - ϕ'3)   (10) 

 

which is equivalent to: 

 

 v ≤ c - (ϕ0 + ϕ'0)  + ϕ'3      (10') 

 

 

2. Interpretation of (10) 

(c - ϕ0) is simply what is usually called c after some simplification: 

phases of ϕ0 type are those unchanged in the system, such as water or the 

minerals not involved in the chemical reactions, zircon, apatite and so on. ϕ'0 is 
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the number of minerals that undergo a replacement transformation of type c), 

for instance ϕ'2 → ϕ'1 and this does not modify the variance as has been said in 

section 5.2. These  minerals are added to ϕ0 in (10'): in a way, they remain but 

modified for instance sphene → rutile in the albitites (Pascal, 1979). However, 

among these minerals, some are going to disappear, these are the minerals of 

ϕ'3 type; ϕ'3 thus is a correcting of ϕ'0. 

In brief, (ϕ'0 - ϕ'3) is a correcting of ϕ0 for the phases that persist while 

changing, where the change does not bring any modification in the number of 

associated phases. Phases ϕ'3 that appear then disappear in the system are 

subtracted, so that the phases that change from the start are counted but once. 

 

 

3. Comparison with the intuitive variance 

One could have thought the variance to be: 

 

 v ≤ v* = 2c - ϕ1 - ϕ2      (11) 

 

v* corresponds to the sum of the maximum numbers of degree of freedom on 

the starting rock and on the inlet fluid sides. This may also be written: 

 

 v*  =  2c - ϕ1 - ϕ2 

   =  2c - 2ϕ0 - ϕ'1 - ϕ'2 

   =  (c - ϕ0) + (c - ϕ) + ϕ'3 

  =  (c - ϕ0) - (ϕ - c) + ϕ'3    (12) 

 

that we compare to (10). The quantity (ϕ - c) would be equal to ϕ'0 if all the 

transformations where of c) type. Generally, this is not the case, and the 

intuitive expression of the variance that leads to (12) must not be retained. 

 

 

4. Another interpretation of v in (10) 

The quantity ϕ'0 - ϕ'3 is the number of minerals in the rock equilibrated 

with inlet fluid that result from the transformation of minerals of starting rock. 
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In the Korzhinskii language, this is the number of determinant components that 

remain inert at the source. So v = c - ϕ0 - (ϕ'0 - ϕ'3) is the number of 

components that remain inert at the source of the fluid, after subtracting the 

precipitated minerals, but including the accessories and the excess minerals. 
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Captions for figures  

 

Fig. 1: The "connected" system of metasomatic zones. In zone number k, there 

are ϕk phases and the apparent chemical variance is c - ϕk, where c is the 

number of chemical components. But the total variance is not Σz(c - ϕk) for all 

the z zones, because the z zones are not independent from a chemical point of 

view. This is due to the relations connecting the variations of the 

concentrations in the fluid and in the solid at each reaction front. The overall 

variance of this connected system is given by v = c + z - ϕ - 1 where ϕ is the 

total number of phases, each counted the number of times as zones where 

present (see text). 

 

Fig. 2: Categories of phases and of fronts; the total number of phases, ϕ, is 

divided into several groups; ϕ2 is the number of phases belonging to the 

starting rock; ϕ1 is the number of phases in the last solid zone. Among the ϕ2 

phases, ϕ0 phases are common with that found in the last solid zone. ϕ'2 and ϕ'1 

are such that ϕ1 = ϕ0 + ϕ'1 and ϕ2 = ϕ0 + ϕ'2. Inside the system of zones, ϕ'3 is 

the number of phases that are different from ϕ1 and ϕ2. These different phases 

allow the definition of several types of fronts. The generalized rule sets 

constraints on the different types of fronts depending on the values of ϕ0, ϕ1, 

ϕ2, ϕ'1, ϕ'2 and ϕ'3 (see text). 
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Fig. 1: The "connected" system of metasomatic zones. In zone number k, there are ϕk phases 
and the apparent chemical variance is c - ϕk, where c is the number of chemical components. 
But the total variance is not Σz(c - ϕk) for all the z zones, because the z zones are not 
independent from a chemical point of view. This is due to the relations connecting the 
variations of the concentrations in the fluid and in the solid at each reaction front. The overall 
variance of this connected system is given by v = c + z - ϕ - 1 where ϕ is the total number of 
phases, each counted the number of times as zones where present (see text). 
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Fig. 2: Categories of phases and of fronts; the total number of phases, ϕ, is divided into several 
groups; ϕ2 is the number of phases belonging to the starting rock; ϕ1 is the number of phases in 
the last solid zone. Among the ϕ2 phases, ϕ0 phases are common with that found in the last 
solid zone. ϕ'2 and ϕ'1 are such that ϕ1 = ϕ0 + ϕ'1 and ϕ2 = ϕ0 + ϕ'2. Inside the system of zones, 
ϕ'3 is the number of phases that are different from ϕ1 and ϕ2. These different phases allow the 
definition of several types of fronts. The generalized rule sets constraints on the different types 
of fronts depending on the values of ϕ0, ϕ1, ϕ2, ϕ'1, ϕ'2 and ϕ'3 (see text). 
 


