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We propose a method for calculating the effective permeability of two-dimensional self-affine
permeability fields based on generalizing the one-dimensional concept of a bottleneck. We test the
method on fracture faults where the local permeability field is given by the cube of the aperture
field. The method remains accurate even when there is substantial mechanical overlap between the
two fracture surfaces. The computational efficiency of the method is comparable to calculating a
simple average and is more than two orders of magnitude faster than solving the Reynolds equations
using a finite-difference scheme.

PACS numbers:

In many low permeability geological formations, flow
occurs primarily through fracture networks [19]. In or-
der to model such systems and to predict their behavior,
there is a need for reliable modeling of the hydromechan-
ical behavior of fracture. We consider in this note the
situation where the shear displacement between the frac-
ture walls strongly affects its permeability. Because of
its relevance, this situation has been considered in many
recent hydromechanical studies [2, 3, 10, 18, 20, 27, 28].
Laboratory tests report that the shearing process results
in a significant channelization of the flow and an enhance-
ment of the permeability in the direction normal to the
shear. This behavior is found to be related to the long-
range spatial organization of the void space, and efforts
have been undertaken to modelize such system in order to
provide upscaled value for the fracture permeability. Re-
cently Mallikanas and Rajaram [14] determined analyt-
ically using perturbation analysis of the Reynolds equa-
tion to the lowest non-trivial order the fracture perme-
ability. This model, however, does not take into account
the role of contact areas and will fail if they appear. The
effect of contacts may, however, be taken into account by
introducing an empirical parameter [29] that is strongly
influenced by the number and the spatial distribution of
the contacts [13].

We present in this note a computational method for
calculating the permeability of such fracture faults even
in the presence of contacts. This new method scales lin-
early with the number of grid points and is more than
two orders of magnitude faster than solving the finite-
differenced Reynolds equations through LU decomposi-
tion.
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There is now ample experimental and observational
evidence that fracture surfaces are self affine, see e.g.,
[5, 7, 15, 16, 21, 23, 24]. A self-affine fracture may char-
acterized by a rescaling r of distances in the average frac-
ture plane and a rescaling rζ of distances in the orthog-
onal direction leaves the statistical properties of the sur-
face unchanged. Here ζ is the Hurst exponent. We use
in the following ζ = 0.8, i.e. the value often reported
for rocks fractures [18, 22, 24]. When the two matching
fracture surfaces are displaced by a distance λ along the
average fracture plane, the ensuing aperture field will be
self-affine up to the length scales of the order of λ. On
larger scales, the aperture field settles to a constant value
proportional to the average fracture opening [21]. This
gives rise to a aperture field h = h(x, y).

As the two fracture surfaces approach each other, they
will eventually come into contact and hence overlap.
Overlap also occurs if the gap between the two fracture
surfaces remains fixed while the lateral displacement λ
increases. At such places of contact, we set the aperture
h(x, y) to zero. The contact areas are shown as white in
Fig. 1. The lateral displacement results in a strong struc-
tural anisotropy: The contact zones are more elongated
in the direction normal to the displacement (x direction
with reference to Fig. 1) than in the other direction (y
direction with reference to Fig. 1).

The idea behind the method we introduce in this note
is based on the generalization of the concept of the bot-
tle neck to higher dimensions. Some forty years ago, [1]
presented a different generalization of the same concept.
As we shall see, only in a limiting case do the two gener-
alizations approach each other.

Before delving into the two-dimensional generalization
— and hence the method we present — we discuss the
one-dimensional case. Hence we have a channel with self-
affine walls that have been translated relative to each
other along the direction of the channel by a distance λ.
The channel aperture is given by h = h(y), where the

mailto:
mailto:
mailto:


2

x

y

δ

Flow 

δ

Flow 

Figure 1: Aperture field obtained by shifting laterally by ~λ =
10 ~ey two matching self-affine surfaces with Hurst exponent
ζ = 0.8. The size is 512 × 512 and the mean aperture is
〈h〉 = 7. Darker shades mean smaller aperture whereas lighter
shades means larger apertures. White zones are contact areas.
Top (resp. bottom) figure: the flow is normal to (resp. along)

the lateral displacement ~δ. The flow lines are shown as grey
paths. The worst paths normal to the average flow directions
in the two cases are shown as thick grey lines. In the top

figure, we have 〈h3〉/
∫
C
d~ℓ · ~eyh(~ℓ)

3 = 3.32 and in the bottom

figure 〈h3〉/
∫
C
d~ℓ · ~exh(~ℓ)

3 = 8.54.

y axis is oriented along the channel. Assuming that the
Reynolds equations govern the flow in the channel, the
local permeability is proportional to h(y)3. The perme-
ability of the entire channel is then given by the harmonic
mean of the local permeability, i.e., ∝ 〈h(y)−3〉−1 [29]. If
we now assume that the two channel walls are brought
close together (so that 〈h(y)〉 decreases), the permeabil-
ity is increasingly controlled by the region of minimum
aperture miny h(y)

3 [9, 25], which may be then viewed
as a bottle neck.

How wide, ∆, is the bottle neck region? This of course
depends on the geometry of the two channel walls in this
region. For the time being, we leave ∆ as a parameter.
We now divide the entire channel along the y axis into
two regions: The bottle neck region which has a width
∆ and the rest which has a width L − ∆, where L is
the length of the entire channel. The bottle neck region
have a permeability essentially given by miny h(y)

3/∆

and the rest of the channel will have a permeability that
is essentially 〈h3(y)〉/(L−∆). The total permeability of
the channel Ky may then be approximated by Dy given
by

L

Dy

=
∆

miny h(y)3
+

L−∆

〈h(y)3〉
, (1)

Clearly, ∆ will evolve as the average channel width 〈h(y)〉
decreases and keeping it constant will constitute an ap-
proximation. How good is such an approximation? A
natural choice for a fixed ∆ may e.g. be the discretiza-
tion length scale (i.e., the lattice constant). As 〈h(y)〉
decreases, the more dominant the bottle neck region will
be and the more sensitive Dy will be to the discretiza-
tion at this point. Approximations are unavoidable as
the average channel width decreases. A “natural” choice
as the discretization length itself breaks down when the
discretization itself breaks down.
We now turn to generalizing this discussion to two-

dimensional aperture fields h = h(x, y). The main differ-
ence between the one-dimensional channel and the two-
dimensional fracture is that flow can in the latter case
easily bypass regions of small aperture. They do not play
the crucial role here as they did in the one-dimensional
channel.
We therefore generalize the concept of the bottle neck

for two-dimensional fractures. As a first step to this gen-
eralization, we consider paths going from one side of the
fracture to the opposite side cutting across the average
flow direction. As a result of mass conservation, the flow
has to pass through all such paths. For each transverse
path C with respect to the flow direction (here, the y
direction), we may calculate the average aperture cubed
along it,

LC〈h
3〉C =

∫

C

d~ℓ · ~exh(~ℓ)
3 , (2)

where LC is the length of the path and ~ex is the unit
vector in the x direction. This average now replaces for
the two dimensional system, the local permeability h3(y)
for the channel in one dimension.
In the one-dimensional channel we then went on to

identifying the smallest local permeability miny h
3(y).

This was the bottle neck. In two dimensions, we now
search for the path with the smallest average aperture

cubed, henceforth refered to as the worst path,

min
y

h(y)3 → min
C

∫

C

d~ℓ · ~exh(~ℓ)
3 . (3)

Fig. 1 shows for one of the realizations the two worst
paths obtained for flow directions along and normal to
the lateral displacement.
Using the same reasoning as in one dimension, we

may now generalize Eq. (1) by replacing miny h(y)
3 by

minC
∫

C
d~ℓ · ~exh(~ℓ)

3, hence

L

WDy

=
∆

minC
∫

C
d~ℓ · ~exh(~ℓ)3

+
L−∆

W 〈h(x, y)3〉
, (4)
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where W is the width of the fracture in the x direction.
When the average flow is in the x direction rather than

the y direction, there is of course an equivalent expression
for Dx. These two expressions, for Dy and Dx, form the
core of our method for approximating the permeability
of fracture faults.
We now discuss briefly the relation between the worst

path method and the Ambegaokar-Halperin-Langer esti-
mate [1]. The AHL estimate is based on the idea that
when the local permeability is very widely distributed,
the upscaled permeability is controlled by the smallest
local permeability along the path connecting the inlet
to the outlet that has the highest average permeability
along it. If in Eq. (2), we assume that h3(x, y) is so widely
distributed that the integral is dominated by the largest

value of h3(x, y) along the path, the integral becomes

〈h3〉C = max
~ℓ∈C

h(~ℓ)3 . (5)

If we now combine this expression with Eq. (3) to esti-
mate the permeability of the bottle neck region, we find

min
C

[

max
~ℓ∈C

h(~ℓ)3
]

. (6)

This expression is essentially the Ambegaokar-Halperin-
Langer expression for the permeability, except that we
in this limit end up with the maximum permeability
along the path with the minimum permeability along it,
whereas in the analysis of [1], “min” and “max” have
been substituted. In two-dimensional systems, this is
equivalent. Hence, only in the limit of extremely broad
aperture distributions, is our formulation equivalent to
that of [1].
As in one dimension, the width of the bottle neck re-

gion, ∆, is a parameter depending on the local topog-
raphy near the worst path. It needs to the determined
independently. One way to estimate it is to equate Dy

(resp. Dx), gotten from Eq. (4), with the permeability
gotten from another method when the fracture opening
is large: the detail of the procedure is described farther
in the text. As in one dimension, we expect ∆ to change
as the average fracture aperture, 〈h(x, y)〉 is lowered. As-
suming that it is a constant— as we will do — constitutes
an approximation.
Given the aperture fields, we compared their perme-

abilities found using Eq. (4) with the results of two other
techniques. The first one, proposed by [8], is based on a
stochastic continuum theory applied to a first order per-
turbation expansion of the Darcy’s law. We compute nu-
merically the Fourier transform of the permeability field

perturbation ˆK(kx, ky) = FT (h3(x, y)−〈h(x, y)3〉). The
two component of the effective permeability are then cal-
culated from the integrals

Fx

〈h3〉
= 1−

∫∫

k2x
k2

|K̂|2

〈h3〉2
dkx dky , (7)

and

Fy

〈h3〉
= 1−

∫∫

k2y
k2

|K̂|2

〈h3〉2
dkx dky . (8)

Since this is only a second order expansion, these results
are expected to be valid only for small permeability fluc-
tuations, i.e., when the fracture opening 〈h〉 is large com-
pared to the height fluctuations in the fracture [14]. The
second method consists in solving the flow field inside the
permeability field by using a lattice Boltzmann method.
In the this scheme, we introduce a body force to produce
a Darcy-Brinkman equation as described in [17, 26]. We
decrease the Brinkman term so that it has no apprecia-
ble effect on the permeability. When the two surfaces are
in contact, the lattice site is set to be solid by using the
“bounce-back” reflection method for the density distri-
bution. A pressure-imposed boundary condition is used
at the inlet and outlet as described by [30].
Practically, we identify the worst path and the cor-

responding integral, Eq. (3) by using a transfer matrix
algorithm [4]. If the average flow direction is in the y di-
rection, the path we construct runs between the sides of
the sample parallel to the x axis. We discretize the aper-
ture field h(x, y) → h(i, j), onto a square lattice where
i runs from 1 to M = W/a and j from 1 to N = L/a,
and a is the lattice constant. We introduce a second field
p(i, j) which initially is set to zero everywhere. We then
update layer by layer in the i direction

p(i+ 1, j) =

min[p(i, j − 1), p(i, j), p(i, j + 1)] + h(i+ 1, j)3 , (9)

until i = M − 1. The integral Eq. (3) is then given by

p(M, jM ) = min
j

p(M, j) . (10)

where we designate by jM the j value where the mininum
p was identified. In order to reconstruct the worst path,
we start at the position (M, jM ). We then move on the
next layer, and identify min[p(M − 1, jM − 1), p(M −
1, jM ), p(M − 1, jM + 1)]. The j value that corresponds
to the minimum at level i = M − 1 is designated jM−1.
We then repeat this algorithm until we have identified j1.
The sequence ji where i = 1, · · · ,M gives the coordinates
of the worst path.
In Eq. (9) we are assuming that the paths only connect

nearest-neighbor and next-nearest-neighbor nodes on the
lattice, i.e., (i, j ± k) with (i+ 1, j) where k = 0, 1. This
may be generalized to k = 0, · · · ,m. In our numerical
calculations presented in Figs. 2 and we have usedm = 2.
However, we see no appreciable difference between this
value and m = 1.
The algorithm described in Eq. (9) assumes that the

paths do not turn back, i.e., jc = jc(i). In very strongly
disordered fractures, such turns may play a role. This
is not the case for the fractures studied here. However,
when turns do appear, different and more involved al-
gorithms must be used [11, 12]. Whereas the algorithm
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Figure 2: Normalized permeabilities of a rough fracture for
flow along the lateral displacement as function of the fracture
opening 〈h〉 for two lateral displacements (Thick solid curves
~λ = 10 ~ey , solid curves ~λ = 20 ~ey). Circles: permeability,
Dy , calculated using Eq. (4). Squares and triangles are for
the permeabilities obtained by the Lattice Boltzmann (Ky)
algorithm and by the second-order perturbation theory (Fy).
The system size is 512 × 512 and ∆ has been set equal to 33
for λ = 10 and 38 for λ = 20 by matching Dy and Fy for the
maximum fracture opening.
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Figure 3: Normalized permeabilities of a rough fracture for

flow normal to ~λ as function of the fracture opening 〈h〉 for

two lateral displacements (Thick solid lines ~λ = 10 ~ey - Solid

lines ~λ = 20 ~ey). Despite the flow direction, the conditions are
similar to the ones of Fig. 2 and circles, squares and triangles
referred to Dx, Kx and Fx.

described in Eq. (9) scales as the number of nodes M×N
in the discretized height field, the algorithms capable of
handling overhangs scales as M2 ×N2.

We first study the situation where flow is parallel to
the lateral displacement, i.e. orthogonal to the channel-
ization. Such flow situation is illustrated in top figure in
Fig. 1. Fig. 2 shows the variation of the permeability of
the fracture estimated by the lattice-Boltzmann method
(squares) and by the second order expansion (triangles)
as functions of the mean fracture opening and for two
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Figure 4: The relative errors |Fx −Kx|/〈h
3〉, |Fy −Ky|/〈h

3〉,
|Dx −Kx|/〈h

3〉, and |Dy −Ky|/〈h
3〉 as a function of the av-

erage fracture aperture 〈h〉. The data has been averaged over
10 samples, each of size 512 × 512, Hurst exponent H = 0.8
and lateral displacement u = 10.

lateral displacements. For each of the aperture fields,
p(M, jM ) as well as 〈h3〉 were measured. The estima-
tion of Dy still requires an estimation of ∆, see Eq. (4).
For the two lateral displacements and for large fracture
openings, the second order estimate of the permeability,
Fy, Eq. (8) fits the lattice-Boltzmann Ky well. In this
region, we equate Fy and Dy, hence determining ∆. We
then go on to using the same ∆ for all subsequent frac-
ture openings. Herein lies the major approximation in
our method. As soon as contact areas appear (here a no-
ticeable difference occurs when contacts cover about 10%
of the total fracture area), the perturbative estimate Fy

fails to describe the continuous drop of the permeability
whereas Dy remains very close to Ky.

For flow normal to the lateral displacement and, as il-
lustrated in the bottom figure of Fig. 1, we find strong
channelization and it is markly different from the one

observed when flow is parallel to ~λ. Fig. shows the
permeabilities found by the three methods: a drop off
of the permeability with the fracture closure is observed
but is less marked than for flow along the shift (See Fig.
2 for comparison). As previously mentioned, as soon
as contacts between the two surfaces occur the pertu-
bative method fails to describe the marked permeability
decrease observed with the lattice boltzmann method.
Yet the worst path method still accurately captures the
permeability reduction estimate in the direction parallel
to the channelization even for large lateral displacement
of the fracture walls.

We show in Fig. , the relative errors between the worst
path method and the lattice Boltzmann method, and the
perturbative approximation and the lattice Boltzmann
method for different average fracture openings. The data
have been averaged over ten samples. As we see, the
worst path method performs very well for all values of the
average fracture opening and for the two flow directions.

To conclude, we have introduced a new technique to
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estimate the permeability of self-affine fracture faults.
Compared to other approximative methods, it performs
very well by being able to reproduce the permeability
closely even when the fracture opening tends to zero.
“Exact” methods such as the lattice Boltzmann method
gives more precise results. However, the computation
time is reduced by several orders of magnitude compared
to alternative methods. To our knowledge, solving the
finite-differenced Reynolds equations through LU decom-
position is the fastest “exact method”. For the samples
studied in this note, the worst path method used 0.01
seconds per sample and per average fracture opening,
whereas the LU decomposition used from 3 to 8 seconds.
Both methods scale linearly with the number of nodes.
A length scale ∆ is introduced in order to fit the perme-

ability measured. This length characterizes the extension
in the flow direction of the region dominated by the worst
path. We assume that ∆ remains constant as the aver-
age fracture opening is changed. This is one of the major
approximation build into the method — but it allows us
to determine ∆ by comparison with other approximate
methods such as the perturative scheme for large enough
average fracture openings for them to be accurate.

Future work will be devoted to the study the relation-
ship of between ∆ and the statistics of the aperture fields.

The worst path method is accurate even if the aper-
ture field shows structural anisotropy. Such situation is
achieved by laterally displacing the fracture walls lead-
ing, as observed on natural fractures, to an anisotropic
permeability field. The proposed method can be further
extended to other transport properties such as diffusion
or electrical conductivity. Different statistical fields such
as log normal permeability fields which also give rise to
heterogenous flow structures will also be of interest as
well as three-dimensional permeability fields.
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