Permeability Estimates of Self-Affine Fracture Faults Based on Generalization of the Bottle Neck Concept
Laurent Talon, Harold Auradou, Alex Hansen

To cite this version:

HAL Id: hal-00470563
https://hal.science/hal-00470563
Submitted on 6 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Permeability Estimates of Self-Affine Fracture Faults Based on Generalization of the Bottle Neck Concept

Laurent Talon† and Harold Auradou‡

Univ. Pierre et Marie Curie-Paris6, Univ. Paris-Sud, CNRS,
Lab. FAST, Bât. 502, Campus Univ., Orsay, F–91405, France.

Alex Hansen‡

Department of Physics, Norwegian University of Science and Technology, N–7491 Trondheim, Norway

(Dated: April 6, 2010)

We propose a method for calculating the effective permeability of two-dimensional self-affine permeability fields based on generalizing the one-dimensional concept of a bottleneck. We test the method on fracture faults where the local permeability field is given by the cube of the aperture field. The method remains accurate even when there is substantial mechanical overlap between the two fracture surfaces. The computational efficiency of the method is comparable to calculating a simple average and is more than two orders of magnitude faster than solving the Reynolds equations using a finite-difference scheme.

PACS numbers:

In many low permeability geological formations, flow occurs primarily through fracture networks [19]. In order to model such systems and to predict their behavior, there is a need for reliable modeling of the hydromechanical behavior of fracture. We consider in this note the situation where the shear displacement between the fracture walls strongly affects its permeability. Because of its relevance, this situation has been considered in many recent hydromechanical studies [2, 3, 10, 18, 20, 27, 28]. Laboratory tests report that the shearing process results in a significant channelization of the flow and an enhancement of the permeability in the direction normal to the shear. This behavior is found to be related to the long-range spatial organization of the void space, and efforts have been undertaken to modelize such system in order to provide upscaled value for the fracture permeability. Recently Mallikanas and Rajaram [14] determined analytically using perturbation analysis of the Reynolds equation to the lowest non-trivial order the fracture permeability. This model, however, does not take into account the role of contact areas and will fail if they appear. The effect of contacts may, however, be taken into account by introducing an empirical parameter [29] that is strongly influenced by the number and the spatial distribution of the contacts [13].

We present in this note a computational method for calculating the permeability of such fracture faults even in the presence of contacts. This new method scales linearly with the number of grid points and is more than two orders of magnitude faster than solving the finite-differenced Reynolds equations through LU decomposition.

There is now ample experimental and observational evidence that fracture surfaces are self affine, see e.g., [5, 7, 15, 16, 21, 23, 24]. A self-affine fracture may characterized by a rescaling r of distances in the average fracture plane and a rescaling r^ζ of distances in the orthogonal direction leaves the statistical properties of the surface unchanged. Here ζ is the Hurst exponent. We use in the following $\zeta = 0.8$, i.e. the value often reported for rocks fractures [18, 22, 2]. When the two matching fracture surfaces are displaced by a distance λ along the average fracture plane, the ensuing aperture field will be self-affine up to the length scales of the order of λ. On larger scales, the aperture field settles to a constant value proportional to the average fracture opening [21]. This gives rise to an aperture field $h = h(x, y)$. As the two fracture surfaces approach each other, they will eventually come into contact and hence overlap. Overlap also occurs if the gap between the two fracture surfaces remains fixed while the lateral displacement λ increases. At such places of contact, we set the aperture $h(x, y)$ to zero. The contact areas are shown as white in Fig. 1. The lateral displacement results in a strong structural anisotropy: The contact zones are more elongated in the direction normal to the displacement (x direction with reference to Fig. 1) than in the other direction (y direction with reference to Fig. 1).

The idea behind the method we introduce in this note is based on the generalization of the concept of the bottle neck to higher dimensions. Some forty years ago, [1] presented a different generalization of the same concept. As we shall see, only in a limiting case do the two generalizations approach each other.

Before delving into the two-dimensional generalization — and hence the method we present — we discuss the one-dimensional case. Hence we have a channel with self-affine walls that have been translated relative to each other along the direction of the channel by a distance λ. The channel aperture is given by $h = h(y)$, where the
and the rest of the channel will have a permeability that is essentially \(\langle h^3(y) \rangle / (L - \Delta) \). The total permeability of the channel \(K_y \) may then be approximated by \(D_y \) given by

\[
\frac{L}{D_y} = \frac{\Delta}{\min_y h(y)^3} + \frac{L - \Delta}{\langle h(y)^3 \rangle}.
\]

(1)

Clearly, \(\Delta \) will evolve as the average channel width \(\langle h(y) \rangle \) decreases and keeping it constant will constitute an approximation. How good is such an approximation? A natural choice for a fixed \(\Delta \) may e.g. be the discretization length scale (i.e., the lattice constant). As \(\langle h(y) \rangle \) decreases, the more dominant the bottle neck region will be and the more sensitive \(D_y \) will be to the discretization at this point. Approximations are unavoidable as the average channel width decreases. A “natural” choice as the discretization length itself breaks down when the discretization itself breaks down.

We now turn to generalizing this discussion to two-dimensional aperture fields \(h = h(x, y) \). The main difference between the one-dimensional channel and the two-dimensional fracture is that flow can in the latter case easily bypass regions of small aperture. They do not play the crucial role here as they did in the one-dimensional channel.

We therefore generalize the concept of the bottle neck for two-dimensional fractures. As a first step to this generalization, we consider paths going from one side of the fracture to the opposite side cutting across the average flow direction. As a result of mass conservation, the flow has to pass through all such paths. For each transverse path \(C \) with respect to the flow direction (here, the \(y \) direction), we may calculate the average aperture cubed along it,

\[
L_C \langle h^3 \rangle_C = \int_C d\tilde{\ell} \cdot \vec{e}_z h(\tilde{\ell})^3,
\]

(2)

where \(L_C \) is the length of the path and \(\vec{e}_z \) is the unit vector in the \(x \) direction. This average now replaces for the two-dimensional system, the local permeability \(h^3(y) \) for the channel in one dimension.

In the one-dimensional channel we then went on to identifying the smallest local permeability \(\min_y h(y)^3 \). This was the bottle neck. In two dimensions, we now search for the path with the smallest average aperture cubed, henceforth referred to as the worst path,

\[
\min_y h(y)^3 \rightarrow \min_C \int_C d\tilde{\ell} \cdot \vec{e}_z h(\tilde{\ell})^3.
\]

(3)

Fig. 1 shows for one of the realizations the two worst paths obtained for flow directions along and normal to the lateral displacement.

Using the same reasoning as in one dimension, we may now generalize Eq. (3) by replacing \(\min_y h(y)^3 \) by \(\min_C \int_C d\tilde{\ell} \cdot \vec{e}_z h(\tilde{\ell})^3 \), hence

\[
\frac{L}{W D_y} = \frac{\Delta}{\min_C \int_C d\tilde{\ell} \cdot \vec{e}_z h(\tilde{\ell})^3} + \frac{L - \Delta}{W \langle h(x, y)^3 \rangle},
\]

(4)

\[\text{Figure 1: Aperture field obtained by shifting laterally by } \vec{L} = 10 \vec{e}_y. \text{ Two matching self-affine surfaces with Hurst exponent } \zeta = 0.8. \text{ The size is } 512 \times 512 \text{ and the mean aperture is } \langle h \rangle = 7. \text{ Darker shades mean smaller aperture whereas lighter shades mean larger apertures. White zones are contact areas. Top (resp. bottom) figure: the flow is normal to (resp. along) the lateral displacement } \delta. \text{ The flow lines are shown as grey paths. The worst paths normal to the average flow directions in the two cases are shown as thick grey lines. In the top figure, we have } \langle h^3 \rangle / \int_C d\tilde{\ell} \cdot \vec{e}_z h(\tilde{\ell})^3 = 3.32 \text{ and in the bottom figure } \langle h^3 \rangle / \int_C d\tilde{\ell} \cdot \vec{e}_z h(\tilde{\ell})^3 = 8.54. \]
where \(W \) is the width of the fracture in the \(x \) direction.

When the average flow is in the \(x \) direction rather than the \(y \) direction, there is of course an equivalent expression for \(D_y \). These two expressions, for \(D_y \) and \(D_x \), form the core of our method for approximating the permeability of fracture faults.

We now discuss briefly the relation between the worst path method and the Ambegaokar-Halperin-Langer estimate \([1]\). The AHL estimate is based on the idea that when the local permeability is very widely distributed, the upscaled permeability is controlled by the smallest local permeability along the path connecting the inlet to the outlet that has the highest average permeability along it. If in Eq. \(3 \), we assume that \(h^3(x, y) \) is so widely distributed that the integral is dominated by the largest value of \(h^3(x, y) \) along the path, the integral becomes

\[
\langle h^3 \rangle_c = \max_{\bar{r} \in C} h(\bar{r})^3 .
\]

If we now combine this expression with Eq. \(3 \) to estimate the permeability of the bottle neck region, we find

\[
\min_{\bar{C}} \left[\max_{\bar{r} \in C} h(\bar{r})^3 \right] .
\]

This expression is essentially the Ambegaokar-Halperin-Langer expression for the permeability, except that we in this limit end up with the maximum permeability along the path with the minimum permeability along it, whereas in the analysis of \([1]\), “min” and “max” have been substituted. In two-dimensional systems, this is equivalent. Hence, only in the limit of extremely broad aperture distributions, is our formulation equivalent to that of \([1]\).

As in one dimension, the width of the bottle neck region, \(\Delta \), is a parameter depending on the local topography near the worst path. It needs to the determined independently. One way to estimate it is to equate \(D_x \) (resp. \(D_y \)), gotten from Eq. \(3 \), with the permeability gotten from another method when the fracture opening is large: the detail of the procedure is described farther in the text. As in one dimension, we expect \(\Delta \) to change as the average fracture aperture, \(\langle h(x, y) \rangle \) is lowered. Assuming that it is a constant — as we will do — constitutes an approximation.

Given the aperture fields, we compared their permeabilities found using Eq. \(3 \) with the results of two other techniques. The first one, proposed by \([8]\), is based on a stochastic continuum theory applied to a first order perturbation expansion of the Darcy’s law. We compute numerically the Fourier transform of the permeability field perturbation \(K(k_x, k_y) = FT(h^4(x, y) - \langle h(x, y) \rangle^3) \). The two component of the effective permeability are then calculated from the integrals

\[
\frac{F_y}{h^3} = 1 - \int \int \frac{k_3^2}{k^2} \frac{|\hat{K}_3|^2}{(h^3)^2} dk_x \, dk_y ,
\]

and

\[
\frac{F_y}{h^3} = 1 - \int \int \frac{k_3^2}{k^2} \frac{|\hat{K}_1|^2}{(h^3)^2} dk_x \, dk_y .
\]

Since this is only a second order expansion, these results are expected to be valid only for small permeability fluctuations, i.e., when the fracture opening \(h \) is large compared to the height fluctuations in the fracture \([4]\). The second method consists in solving the flow field inside the permeability field by using a lattice Boltzmann method. In this scheme, we introduce a body force to produce a Darcy-Brinkman equation as described in \([17, 24]\). We decrease the Brinkman term so that it has no appreciable effect on the permeability. When the two surfaces are in contact, the lattice site is set to be solid by using the “bounce-back” reflection method for the density distribution. A pressure-imposed boundary condition is used at the inlet and outlet as described by \([21]\).

Practically, we identify the worst path and the corresponding integral, Eq. \(3 \), by using a transfer matrix algorithm \([1]\). If the average flow direction is in the \(y \) direction, the path we construct runs between the sides of the sample parallel to the \(x \) axis. We discretize the aperture field \(h(x, y) \rightarrow h(i, j) \), onto a square lattice where \(i \) runs from 1 to \(M = W/a \) and \(j \) from 1 to \(N = L/a \), and \(a \) is the lattice constant. We introduce a second field \(p(i, j) \) which initially is set to zero everywhere. We then update layer by layer in the \(i \) direction

\[
p(i + 1, j) = \min[p(i, j - 1), p(i, j), p(i, j + 1)] + h(i + 1, j)^3 ,
\]

until \(i = M - 1 \). The integral Eq. \(3 \) is then given by

\[
p(M, j_M) = \min_j p(M, j) .
\]

where we designate by \(j_M \) the \(j \) value where the minimum \(p \) was identified. In order to reconstruct the worst path, we start at the position \((M, j_M)\). We then move on the next layer, and identify \(\min[p(M - 1, j_M - 1), p(M - 1, j_M), p(M - 1, j_M + 1)] \). The \(j \) value that corresponds to the minimum at level \(i = M - 1 \) is designated \(j_{M-1} \). We then repeat this algorithm until we have identified \(j_1 \). The sequence \(j_i \), where \(i = 1, \cdots M \) gives the coordinates of the worst path.

In Eq. \(4 \) we are assuming that the paths only connect nearest-neighbor and next-nearest-neighbor nodes on the lattice, i.e., \((i, j) \pm k \) with \((i + 1, j) \), where \(k = 0, 1 \). This may be generalized to \(k = 0, \cdots, m \). In our numerical calculations presented in Figs. \(3 \) and \(4 \), we have used \(m = 2 \). However, we see no appreciable difference between this value and \(m = 1 \).

The algorithm described in Eq. \(4 \) assumes that the paths do not turn back, i.e., \(j_{i+1} = j_i(i) \). In very strongly disordered fractures, such turns may play a role. This is not the case for the fractures studied here. However, when turns do appear, different and more involved algorithms must be used \([14, 13]\). Whereas the algorithm
The system size is 512 × 2

For flow normal to the lateral displacement, i.e. orthogonal to the channelization and it is markedly different from the one observed when flow is parallel to \vec{X}.

Figure 1. Fig. 2 shows the variation of the permeability of the fracture estimated by the lattice-Boltzmann method.

For flow normal to the lateral displacement and, as illustrated in the bottom figure of Fig. 1, we find strong channelization and it is markedly different from the one observed when flow is parallel to \vec{X}. Fig. 2 shows the permeabilities found by the three methods: a drop off of the permeability with the fracture closure is observed but is less marked than for flow along the shift (See Fig. 3 for comparison). As previously mentioned, as soon as contacts between the two surfaces occur the perturbative estimation of the permeability decreases observed with the lattice Boltzmann method. Yet the worst path method still accurately captures the permeability reduction estimate in the direction parallel to the channelization even for large lateral displacement of the fracture walls.

We show in Fig. 4 the relative errors $|F_x - K_x|/\langle h^3 \rangle$, $|F_y - K_y|/\langle h^3 \rangle$, $|D_x - K_x|/\langle h^3 \rangle$, and $|D_y - K_y|/\langle h^3 \rangle$ as a function of the average fracture aperture $\langle h \rangle$. The data has been averaged over 10 samples, each of size 512 × 512, Hurst exponent $H = 0.8$ and lateral displacement $a = 10$.

We first study the situation where flow is parallel to the lateral displacement, i.e. orthogonal to the channelization. Such flow situation is illustrated in top figure in Fig. 2. Fig. 2 shows the variation of the permeability of the fracture estimated by the lattice-Boltzmann method (squares) and by the second order expansion (triangles) as functions of the mean fracture opening and for two lateral displacements. For each of the aperture fields, $p(M)$ as well as $\langle h^3 \rangle$ were measured. The estimation of D_y still requires an estimation of Δ, see Eq. (4). For the two lateral displacements and for large fracture openings, the second order estimate of the permeability, F_y, Eq. (3) fits the lattice-Boltzmann K_y well. In this region, we equate F_y and K_y, hence determining Δ. We then go on to using the same Δ for all subsequent fracture openings. Herein lies the major approximation in our method. As soon as contact areas appear (here a noticeable difference occurs when contacts cover about 10% of the total fracture area), the perturbative estimate F_y fails to describe the continuous drop of the permeability whereas D_y remains very close to K_y.

For flow normal to the lateral displacement and, as illustrated in the bottom figure of Fig. 1, we find strong channelization and it is markedly different from the one observed when flow is parallel to \vec{X}. Fig. 2 shows the permeabilities found by the three methods: a drop off of the permeability with the fracture closure is observed but is less marked than for flow along the shift (See Fig. 3 for comparison). As previously mentioned, as soon as contacts between the two surfaces occur the perturbative estimation of the permeability decreases observed with the lattice Boltzmann method. Yet the worst path method still accurately captures the permeability reduction estimate in the direction parallel to the channelization even for large lateral displacement of the fracture walls.

We show in Fig. 4 the relative errors $|F_x - K_x|/\langle h^3 \rangle$, $|F_y - K_y|/\langle h^3 \rangle$, $|D_x - K_x|/\langle h^3 \rangle$, and $|D_y - K_y|/\langle h^3 \rangle$ as a function of the average fracture aperture $\langle h \rangle$. The data has been averaged over 10 samples, each of size 512 × 512, Hurst exponent $H = 0.8$ and lateral displacement $a = 10$.

We first study the situation where flow is parallel to the lateral displacement, i.e. orthogonal to the channelization. Such flow situation is illustrated in top figure in Fig. 2. Fig. 2 shows the variation of the permeability of the fracture estimated by the lattice-Boltzmann method (squares) and by the second order expansion (triangles) as functions of the mean fracture opening and for two lateral displacements. For each of the aperture fields, $p(M)$ as well as $\langle h^3 \rangle$ were measured. The estimation of D_y still requires an estimation of Δ, see Eq. (4). For the two lateral displacements and for large fracture openings, the second order estimate of the permeability, F_y, Eq. (3) fits the lattice-Boltzmann K_y well. In this region, we equate F_y and K_y, hence determining Δ. We then go on to using the same Δ for all subsequent fracture openings. Herein lies the major approximation in our method. As soon as contact areas appear (here a noticeable difference occurs when contacts cover about 10% of the total fracture area), the perturbative estimate F_y fails to describe the continuous drop of the permeability whereas D_y remains very close to K_y.

For flow normal to the lateral displacement and, as illustrated in the bottom figure of Fig. 1, we find strong channelization and it is markedly different from the one observed when flow is parallel to \vec{X}. Fig. 2 shows the permeabilities found by the three methods: a drop off of the permeability with the fracture closure is observed but is less marked than for flow along the shift (See Fig. 3 for comparison). As previously mentioned, as soon as contacts between the two surfaces occur the perturbative estimation of the permeability decreases observed with the lattice Boltzmann method. Yet the worst path method still accurately captures the permeability reduction estimate in the direction parallel to the channelization even for large lateral displacement of the fracture walls.

We show in Fig. 4 the relative errors $|F_x - K_x|/\langle h^3 \rangle$, $|F_y - K_y|/\langle h^3 \rangle$, $|D_x - K_x|/\langle h^3 \rangle$, and $|D_y - K_y|/\langle h^3 \rangle$ as a function of the average fracture aperture $\langle h \rangle$. The data has been averaged over 10 samples, each of size 512 × 512, Hurst exponent $H = 0.8$ and lateral displacement $a = 10$.
estimate the permeability of self-affine fracture faults. Compared to other approximative methods, it performs very well by being able to reproduce the permeability closely even when the fracture opening tends to zero. “Exact” methods such as the lattice Boltzmann method gives more precise results. However, the computation time is reduced by several orders of magnitude compared to alternative methods. To our knowledge, solving the finite-differenced Reynolds equations through LU decomposition is the fastest “exact method”. For the samples studied in this note, the worst path method used 0.01 seconds per sample and per average fracture opening, whereas the LU decomposition used from 3 to 8 seconds. Both methods scale linearly with the number of nodes.

A length scale Δ is introduced in order to fit the permeability measured. This length characterizes the extension in the flow direction of the region dominated by the worst path. We assume that Δ remains constant as the average fracture opening is changed. This is one of the major approximation build into the method — but it allows us to determine Δ by comparison with other approximate methods such as the perturbative scheme for large enough average fracture openings for them to be accurate.

Future work will be devoted to the study the relationship of between Δ and the statistics of the aperture fields.

The worst path method is accurate even if the aperture field shows structural anisotropy. Such situation is achieved by laterally displacing the fracture walls leading, as observed on natural fractures, to an anisotropic permeability field. The proposed method can be further extended to other transport properties such as diffusion or electrical conductivity. Different statistical fields such as log normal permeability fields which also give rise to heterogenous flow structures will also be of interest as well as three-dimensional permeability fields.

I. ACKNOWLEDGMENTS

We thank J. P. Hulin for important comments and discussion. A.H. thanks Laboratoire FAST for hospitality during his stay at Orsay and the Université de Paris 11 for funding. This work has been greatly facilitated by the GdR 2990 HTSH and the Triangle de la Physique.

