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Abstract

This paper presents a sparse representation of 2D pla-

nar shape through the composition of warping functions,

termed formlets, localized in scale and space. Each formlet

subjects the 2D space in which the shape is embedded to

a localized isotropic radial deformation. By constraining

these localized warping transformations to be diffeomor-

phisms, the topology of shape is preserved, and the set of

simple closed curves is closed under any sequence of these

warpings. A generative model based on a composition of

formlets applied to an embryonic shape, e.g., an ellipse,

has the advantage of synthesizing only those shapes that

could correspond to the boundaries of physical objects. To

compute the set of formlets that represent a given bound-

ary, we demonstrate a greedy coarse-to-fine formlet pursuit

algorithm that serves as a non-commutative generalization

of matching pursuit for sparse approximations. We evalu-

ate our method by pursuing partially occluded shapes, com-

paring performance against a contour-based sparse shape

coding framework.

1. Introduction

Shape information is important for a broad range of com-

puter vision problems. For some detection and recognition

tasks, discriminative models that use non-invertible shape

codes [2] can be effective. However, many other tasks call

for a more complete generative model of shape. Examples

include: (1) shape segmentation, recognition, and tracking

in cluttered scenes, where shapes must be distinguished not

just from each other, but from ‘phantom’ shapes formed by

conjunctions of features from multiple objects [6]; (2) mod-

eling of shape articulation, growth, and deformation; and

(3) modeling of shape similarity.

Our paper concerns the generative modeling of natural

2D shapes in the plane, represented by their 1D boundary.

We restrict our attention to simply-connected shapes whose

boundaries are smooth, simple, and closed curves. We seek

a generative shape model that satisfies a set of properties

that seem to us essential:

1. Completeness. The model can produce all shapes.

2. Closure. The set of valid shapes is closed under the

generative model. In other words, the model generates

only valid shapes.

3. Composition. Complex shapes are generated by com-

bining simpler components.

4. Sparsity. Good approximations of shape can be gener-

ated with relatively few components.

5. Progression. Approximations can be improved by in-

corporating more components.

6. Locality. Components are localized in space.

7. Scaling. Components are tuned to specific scales and

are self-similar over scale.

8. Region & Contour. Components can capture both re-

gion and contour properties in a natural way.

The need for completeness is self-evident if the system

is to be general. Closure is critical if we hope to capture the

statistics of natural shape in a set of hidden generative vari-

ables. Without closure, heuristics must be used to avoid the

generation of invalid shapes, e.g., bounding contours with

self-intersections. Aside from the resulting inefficiency, this

creates a discrepancy between the statistical structure en-

coded by the model, and samples the model produces. In

other words, the model cannot fully capture the statistics of

natural boundaries.

Composition (here we use the word in a general sense)

is important if we are to handle the richness and complexity

of natural shapes while maintaining conceptual simplicity.

Given the high dimensionality of natural shapes, sparsity

is necessary in order to store shape models [16]. Sparsity

also implies that essential shape features have been made

explicit [1]. Progression allows the complexity of the model

to be matched to the difficulty of the task, facilitating real-

time operation and coarse-to-fine optimization.

Locality is a natural goal, since a first-order property of

natural images is local coherence. Nearby points on the sur-

face of an object tend to have similar reflectance, attitude,

and illumination. Locality also allows for greater robustness

to occlusion, since components are more likely to be either

entirely visible or removed altogether rather than distorted.



Scaling allows invariance over object size, and allows shape

features of different sizes to be captured separately.

Finally, it has long been recognized that planar shape de-

scription requires attention to both region and contour prop-

erties [16]. Some shape properties, e.g., curvature, are natu-

rally described by the bounding contour. Others, e.g., necks,

are best described as region properties, since they involve

points that are close together in space but distant along the

contour.

A good generative model will allow both to be encoded

in a natural way. We begin by reviewing prior models, with

an eye to each of these essential properties.

2. Prior Work

Early models that used chain coding or splines to encode

shapes were not generative and failed to succinctly capture

global properties of shape. Fourier descriptor, moment, and

PCA bases have the potential to be generative, but since all

components are global, they are not robust to occlusion or

local deformation [7, 16, 18]. For these reasons, most mod-

ern approaches attempt to capture structure at intermediate

scales, or over a range of scales. Most of these models can

be crudely partitioned into two classes: contour-based and

symmetry-based.

2.1. Contour­Based Models

Attneave [1] pointed to the concentration of information

in the curvature of the bounding contour, and suggested the

potential for sparse descriptions based on points of extremal

curvature magnitude. Hoffman & Richards [10] linked cur-

vature to the part structure of shapes, proposing that parts

are perceptually segmented at negative minima of curva-

ture. Mokhtarian & colleagues emphasized the encoding

of curvature inflections across scale space for the purpose

of shape recognition [15].

While none of these early models are generative, Du-

binskiy & Zhu [8] have more recently proposed a contour-

based shape representation that is both generative and

sparse. The theory is based upon the representation of a

shape by a summation of component shapelets. A shapelet

is a primitive curve defined by Gabor-like coordinate func-

tions that map arclength to the plane. Shifting and scaling

shapelets over the arclength parameter produces a basis set

that, when combined additively, can model arbitrarily com-

plex shapes. The shapelet approach has many advantages.

For example, components are localized, albeit in arclength,

and scale is made explicit in a natural way. However, like

all contour-based methods, the shapelet theory does not ex-

plicitly capture regional properties of shape. Perhaps most

crucially, the model does not respect the topology of object

boundaries: sampling from the model will in general yield

non-simple, i.e., self-intersecting, curves.

2.2. Symmetry­Based Models

Blum and colleagues [3, 4] introduced the symmetry axis

representation of shape in which a planar shape is repre-

sented by a 1D skeleton function and associated 1D ra-

dius function. The symmetry axis representation led to re-

lated representations [5] which found application in medical

imaging and other domains.

Subsequent work incorporated notions of scale and time

with symmetry axis descriptions. Leyton [13] related sym-

metry axis descriptions to causal deformation processes act-

ing upon prototype shapes. In this view, symmetry axes,

terminating at curvature extrema on the boundary, are un-

derstood as records of these deformation processes. Sub-

sequent work on curve evolution methods and shock-graph

representations [12, 17] has provided a more complete the-

ory of region-based shape representations that have been

broadly applied.

Despite the many appealing features of symmetry axis

and shock-graph representations, these methods, in general,

are not sparse. In fact, the description of each shape typ-

ically requires more storage, and little emphasis has been

placed on making symmetry axis representations generative

[16]. Very recent work of Trinh and Kimia exploring gen-

erative and sparse models based upon shock graphs comes

some way in overcoming these limitations [21]. However,

the constraints required to enforce the closure property, i.e.,

topological constraints, are fairly complex, and the full po-

tential of the theory has yet to be explored.

2.3. Hybrid Approaches

Recognizing the merits and limitations of both contour-

based and symmetry-based approaches, Zhu [22] developed

an MRF model for natural 2D shape, employing a neigh-

bourhood structure that can directly encode both contour-

based and region-based Gestalt principles. The theory is

promising in many respects. It is generative, providing an

explicit probabilistic model, and it captures both region and

contour properties. It is not sparse, however, and because

the underlying graph is lifted from the image plane, there is

nothing in the model that encodes the topological constraint

that the boundary be simple, i.e., non-intersecting. Instead,

when sampling from the model, a ‘firewall’ is employed to

prevent intersections. Again, this is inefficient, and it also

creates a disconnect between the generative variables en-

coding the model and the sampling distribution.

2.4. Coordinate Transformations

A different class of model that could also be called

region-based involves the application of coordinate trans-

formations of the planar space in which a shape is embed-

ded. This idea can be traced back at least to D’Arcy Thomp-

son, who considered specific classes of global coordinate



transformations of the plane to model the relationship be-

tween the shapes of different animal species [20]. In the

field of computer vision, Jain et al. [11] were among the

first to extend this idea to more general deformations with a

complete Fourier deformation basis that they used to match

observed shapes to stored prototypes. However, this Fourier

basis fails to satisfy the locality property, and as a potential

generative model it does not satisfy the closure property:

random combinations of Fourier deformation components

will not in general preserve the topology of the prototype

curve.

More recently, Sharon & Mumford [19] have explored

conformal mappings as global coordinate transformations

between planar shapes. However, although the Riemann

mapping theorem guarantees that any simple closed curve

can be conformally mapped to the unit circle, conformal

mappings do not in general preserve the topology of em-

bedded contours. Hence, despite the computational con-

straints imposed by the Cauchy-Riemann equations, we

again have the problem that the set of valid bounding con-

tours is not closed under these transformations, making gen-

erative modeling difficult.

2.5. Localized Diffeomorphisms: Formlets

In considering prior generative shape models, the goal

that seems most elusive is that of closure: ensuring that the

model generates only valid shapes. Our approach originates

with the observation that, while general smooth coordinate

transformations of the plane will not preserve the topol-

ogy of an embedded curve, it is straightforward to design a

specific family of diffeomorphic transformations that will.

It then follows immediately by induction that a generative

model based upon arbitrary sequences of diffeomorphisms

will satisfy the closure property.

In this paper we specifically consider a family of dif-

feomorphisms we call formlets. A formlet is a simple,

isotropic, radial deformation of planar space that is local-

ized within a specified circular region of a selected point in

the plane. The family comprises formlets over all locations

and spatial scales. While the gain of the deformation is also

a free parameter, it is constrained to satisfy a simple crite-

rion that guarantees that the formlet is a diffeomorphism.

Since topological changes in an embedded figure can only

occur if the deformation mapping is either discontinuous or

non-injective, these diffeomorphic deformations are guar-

anteed to preserve the topology of embedded figures. Thus

the model satisfies the closure property.

By construction, formlets satisfy the desired locality and

scaling properties. It is easy to show that the model also sat-

isfies the composition, completeness, and progression prop-

erties in that an arbitrary shape can be approximated to in-

creasing precision by composing an appropriate sequence

of localized formlets. Since each formlet may be centered

(a) Expansion (α > 0) (b) Compression (α < 0)

Figure 1. Formlet transformations of a planar grid.

either near the contour, near a symmetry axis, or at any other

location in the plane, the model has the potential to capture

both region and contour properties directly.

Our formlet model is in part inspired by recent work by

Grenander et al. [9], modeling changes to anatomical parts

over time. Their representation, called Growth by Random

Iterated Diffeomorphisms (GRID), models growth as a se-

quence of local and radial deformations. They demonstrate

their model by tracking growth in the rat brain, as revealed

in sequential planar sections of MRI data.

In the present paper we explore the possibility that

these ideas could be extended to model not just differen-

tial growth between sequential shapes, but to serve as the

basis for a generative model over the entire space of smooth

shapes, based upon a universal embryonic shape in the

plane, i.e., an ellipse. Our specific contributions are:

1. We illustrate the completeness and closure properties

of the formlet model through random generation of

sample shapes.

2. To solve the inverse problem of modeling given

shapes, we develop and apply a generalization of

matching pursuit, which selects the sequence of form-

lets that minimizes approximation error. We demon-

strate that this formlet pursuit algorithm allows for

an efficient and progressive approximation of shape,

while preserving topological properties.

3. We assess the robustness of the formlet model to oc-

clusion by evaluating it on the problem of contour

completion. We find that the model compares favor-

ably with the contour-based shapelet model [8] on this

problem.

(a) Bear (b) Cow (c) Turtle

Figure 2. Sparse formlet reconstruction of canonical animal shape.
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Figure 3. Gabor mapping transformations as scale and gain vary (a,b) with proportional formlets applied to an ellipse (c,d) at a fixed

location in space. Red denotes formlet parameters outside the monotonicity bounds of Equation 2.

3. Formlet Coding

3.1. Formlet Bases

We define a formlet f : C → C to be a diffeomorphism

of the complex plane localized in scale and space. Such a

deformation can be realized by centering f about the point

ζ ∈ C and dilating the magnitude of displacement within

a (σ ∈ R
+)-region of ζ. A Gabor-inspired deformation is

defined as

f(z; ζ, σ, α) = ζ +
z − ζ

|z − ζ|
ρ(|z − ζ|;σ, α), where

ρ(r;σ, α) = r + α sin

(

2πr

σ

)

exp

(

−r2

σ2

)

.

(1)

Such formlets are isotropic and radial deformations of

the plane with scale σ located at ζ. The severity of defor-

mation is controlled by the gain parameter α ∈ R. Figure

1 demonstrates formlet deformations of the plane with pos-

itive and negative gain.

Without any constraints on the parameters, these defor-

mations, though continuous, can fold the plane on itself,

changing the topology of an embedded contour. However,

we show in Appendix B that if the scale σ and gain α satisfy

−(2π)−1 <
α

σ
/ 0.1956, (2)

the radial deformation function ρ(r;σ, α) will be strictly in-

creasing in r, and the formlet f(z; ζ, σ, α) will be diffeo-

morphic. Hence, such a formlet acting on a curve embed-

ded in the plane will be a homeomorphism between curve

topologies. In particular, let Γ be the continuous mapping

Γ : [0, 1] ∈ R → C. (3)

Recall that Γ is simple if the mapping is injective, and

closed by permitting the equality Γ(0) = Γ(1). Since a

formlet f satisfying Equation 2 is bicontinuous, it is easy to

see that if Γ is simple and closed, the deformed curve

Γf (t) = f(Γ(t)) (4)

will also be simple and closed.

Figures 3(a) and (b) show the radial deformation func-

tion ρ(r;σ, α) as a function of r for a range of gain α and

scale σ values respectively. Figures 3(c) and (d) show the

corresponding formlet deformation of an ellipse.

A dictionary D of formlet transformations can be created

by sampling over the range of valid location, scale, and gain

parameters, i.e., (ζ, σ, α) ∈ C × R
+× R.

3.2. Formlet Composition: Forward and Inverse

We define the forward formlet composition problem as

follows. Given an embryonic shape Γ0(t) and a sequence of

K formlets {f1 . . . fK} drawn from a formlet dictionary D,

determine the resulting deformed shape ΓK(t). The prob-

lem is well-posed because the set of simple closed curves

is closed under formlet deformation: multiple formlets can

be composed to generate complex shape transformations.

Thus,

ΓK(t) = (fK ◦ fK−1 ◦ · · · ◦ f1)(Γ
0(t)). (5)

Figure 4 shows an example of forward composition where

the formlet parameters ζ, σ, and α have been randomly se-

lected. Note that a complex shape is generated without in-

troducing topological error.

Figure 4. Shapes generated by random formlet composition over

the unit circle. Red denotes formlet location and relative scale.



Figure 5. Formlet pursuit of a normalized rabbit shape. Pursuit begins with the unit circle, followed by affine fit, then K=1,2,3,4,8,16,32.

A more difficult but interesting problem is inverse form-

let composition: given an observed shape Γobs(t), deter-

mine a sequence of K formlets {f1 . . . fK}, drawn from a

formlet dictionary D, that best approximate Γobs(t) by min-

imizing some reconstruction error ξ. Here we measure error

as the L2 norm of the residual:

ξ(Γobs,ΓK) =
∣

∣

∣

∣Γobs(t) − ΓK(t)
∣

∣

∣

∣

2

=

∫ 1

0

(

Γobs(t) − ΓK(t)
)

(Γobs(t) − ΓK(t))dt.

The inverse problem is then to find the sequence of formlets

{f1 . . . fK} that minimizes ξ(Γobs,ΓK).

4. Formlet Pursuit

To estimate the optimal formlet sequence {f1 . . . fK},

we propose a version of matching pursuit for sparse approx-

imation [14], replacing the linear summation of elements

by a non-commutative composition of formlet components.

Figure 2 shows an example of progressive approximation by

formlet pursuit. Algorithm 1 shows the flow of the formlet

pursuit algorithm.

Initialization Given an observed shape Γobs, we first reg-

ularly sample the contour at constant speed and normalize

to satisfy

∫ 1

0

Re(Γobs(t))2dt =

∫ 1

0

Im(Γobs(t))2dt = 1. (6)

We then initialize formlet pursuit by fitting the observed

shape with an ellipse, i.e., by applying an affine trans-

formation AΓ0 + z0 to the unit circle Γ0. The mapping

A : C → C is computed deterministically as the solution

to a linear system minimizing the error ξ(Γobs, AΓ0 + z0)
with z0 being the center mass of Γobs.

Formlet Selection At iteration k of the formlet pursuit al-

gorithm, we select the formlet fk (z; ζk, σk, αk) that, when

applied to the current approximation Γk−1, maximally re-

duces the approximation error:

fk = argmin
f∈D

ξ(Γobs, f(Γk−1)). (7)

This is a difficult non-convex optimization problem, and

experimentation with gradient descent methods has shown

that the formlet parameter space has many local minima.

Fortunately, solving for fk can be simplified when a formlet

transformation is linear with respect to α. Specifically, one

can solve for the optimal error-reducing gain αk when the

other parameters are known, similar to the way Dubinskiy

et al. solve for an optimal shapelet affine transformation [8].

Expressing a formlet defined in Equation 1 as

f(z; ζ, σ, α) = z + α · g(z − ζ, σ) where

g(zζ ;σ) =
zζ

|zζ |
sin

(

2π|zζ |

σ

)

exp

(

−
|zζ |

2

σ2

)

,
(8)

the optimal gain αk is shown in Appendix C to be

αk =

∫ 1

0

〈

Γobs(t) − Γk−1(t), g
(

Γk−1(t) − ζk;σk

)〉

dt
∣

∣

∣

∣g (Γk−1(t) − ζk;σk)
∣

∣

∣

∣

2

(9)

where 〈·,·〉 is the standard inner product on C.

Algorithm 1: Formlet Pursuit of Γobs.

Initialization: define Γ0 = AΓ0 + z0 to be a best

matching ellipse approximating Γobs

for k = 1, . . . ,K do
Optimal Formlet: compute maximal error

reducing transformation

fk = argmin
f∈D

ξ(Γobs, f(Γk−1))

Update Approximation: apply optimal formlet

Γk = fk(Γk−1)



Figure 6. Occluded pursuit of dolphin and rhino shapes with shapelets (red) and formlets (blue) for K = 1, 2, 4, 8, 16. Dashed lines denote

10% occlusion interval. Note the large shape discrepancy of occluded dolphin body and topological errors of shapelet rhino approximation.

Our approach in this paper is therefore to exhaustively

search over a regular sampling of the location ζ and scale σ
parameters and then solve for the associated optimal gain α
by Equation 9. We note our method could likely be made

more efficient by a coarse sampling of the parameter space

followed by selective gradient descent.

5. Evaluation

We evaluated the proposed formlet representation on a

database of natural object shapes, comparing against the

multi-scale contour-based shapelet representation proposed

by Dubinskiy and Zhu [8].

Specifically, we evaluated these two methods on a oc-

cluded pursuit problem in which silhouette shapes of ob-

jects are partially occluded. The algorithms were provided

with only the visible portion of target shape, and were

thus required to hallucinate the occluded portion. We mea-

sured the residual error between the approximation and tar-

get shape for both the visible and occluded portions of the

shapes. Performance on the occluded portions, where the

model is under-constrained by the data, reveals the degree

of consistency between the structure of the model and typi-

cal natural shapes.

The database consisted of 391 blue-screened images of

animal models from the Hemera object database. The

boundary of each object was sampled at regular arc-length

intervals: 128 samples per object were used for our ex-

periments. Target shapes were occluded over a randomly-

selected contiguous section of their boundaries comprising

10% or 30% of total arclength.

Both the formlet and shapelet representations rely upon

sampling certain parameters; we attempted to make the

comparison fair by sampling as finely as was feasible given

time constraints. The shapelet representation assumes an

arc-length representation of the curves on t ∈ [0, 1], and

each shapelet component has an arc-length position µ and

scale σ. We sampled the position parameter µ at 128

regularly-spaced values over [0, 1], and the scale param-

eter σ at 128 regularly-spaced values over
(

0, 1

3

]

(scales

over 1/3 cause significant topological errors in the result-

ing shapelets). Additional optimal affine parameters were

computed directly [8].

For the formlet approach, the position parameter ζ was

sampled on a 128 × 128 grid roughly 4 times the extent

of the average shape, and the scale parameter σ at 128

regularly-spaced values over (0, 1]. The optimal gain pa-

rameter α was computed directly as described in Section 4.

Both formlet and shapelet pursuit were governed by a

minimization of the L2 error over the visible portion of the

curves only. Both shapelet and formlet models were initial-

ized with the same ellipse approximations. We measure per-

formance using a generalization of the Hausdorff distance.

Specifically, we define the error between the target shape

and the approximation as the average minimum distance of

a point on one of the shapes to the other. See Appendix A

for supplementary information.

5.1. Results

Figure 6 shows some example qualitative results from

this experiment. Note that as pursuit progresses, topologi-

cal errors are induced in the shapelet representation at both

the visible and occluded regions, whereas the formlet model

remains topologically correct.

Figure 7 shows the quantitative results of this experi-

ment. A first observation is that, for a fixed budget of com-

ponents, the shapelet and formlet models achieve compara-

ble error on the visible portions of the boundaries. How-

ever, we see a different pattern for the occluded portions:

for a given component budget, approximation error is sub-

stantially less for the formlet representation. The result is

that for a given visible error, the occluded error is sub-

stantially lower for formlet approximations. This suggests

that by preserving the topology of shape throughout pursuit,

formlet coding also better exhibits quantitative regularities

present in the shapes of natural objects.
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Figure 7. Results of occlusion pursuit with occlusion ratios of 10%

and 30%. Black denotes error of the affine-fit ellipse.

6. Conclusion

We have developed a novel generative model of planar

shape that satisfies a number of essential properties. In this

model, complex shapes are seen as the evolution of a simple

embryonic shape by successive application of simple diffeo-

morphic transformations of the plane called formlets. The

system is both complete and closed, since arbitrary shapes

can be modeled, and generated shapes are guaranteed to

be topologically valid. This means that the model has the

potential to support accurate probabilistic modeling. We

have demonstrated a novel formlet pursuit algorithm that se-

lects formlets to efficiently approximate given target shapes.

Evaluation of the formlet pursuit model on the problem of

shape completion revealed that the model is better able to

approximate parts of shapes missing due to occlusion than

a competing contour-based method.

Future Work We hope to extend the present work in a

number of ways. First, we would like to increase the ex-

pressiveness of formlet components by replacing the scalar

gain parameter with an affine transformation. This will al-

low the model to more efficiently estimate limbs and other

elongated features. A second objective is to increase the

efficiency of formlet pursuit by combining a coarsely quan-

tized formlet dictionary with selective gradient descent. Fi-

nally, we are interested in probabilistic modeling of shapelet

components and their relationships, which may lead to ap-

plications in recognition, synthesis, and denoising.
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Appendix

A. Supplementary Information and Materials

The running time and performance of both shapelet and formlet

pursuit algorithms is dependent on multiple parameters as previ-

ously described. For the choice of parameters described in Section

5, the 32-component formlet pursuit of an unorccluded shape is

computed in approximately 10 minutes running on standard desk-

top hardware. In comparison, our implementation of shapelet pur-

suit requires approximately 5 minutes with a similar parameter

choice.

We invite the reader to view additional illustrations and

movies made publicly available. In addition, our MATLAB

implementation of formlets and shapelets, and canonical an-

imal image database used for evaluation, are accessible on-

line. All of these resources and documentation can be found at

http://www.elderlab.yorku.ca/formlets.

B. Gain Constraint of Diffeomorphic Formlets

Here we address the issue of constraining formlet parameters

such that the resulting functions are diffeomorphisms of the com-

plex plane. As the formlets defined in Equation 1 are both isotropic

and angle preserving, it is sufficient to require that the radial defor-

mation ρ be a diffeomorphism of R
+. This in turn can be enforced

by requiring that ρ(r; σ, α) be strictly increasing in r. For fixed

σ ∈ R
+, we see

0 <
∂

∂r
ρ(r; σ, α)

⇔ −1 < α
∂

∂r
sin

„

2πr

σ

«

exp

„

−r2

σ2

«

.

(10)

Finding an explicit solution of this inequality for α is a non-

trivial task. However, if we assume α < 0, it is easy to see that the

minimal slope of ρ is attained when r → 0+. Hence, we evaluate

Equation 10 at r = 0 to find the gain lower-bound:

−1 < α
2π

σ
⇔ −(2π)−1

<
α

σ
. (11)

As we were unable to find a closed-form expression for the

upper-bound of α, an approximation was calculated from numeri-

cal simulations:

−1 < α
≈ −5.1125

σ
⇔

α

σ
/ 0.1956 (12)

Together, Equations 11 and 12 provide a necessary and suffi-

cient condition for the monotonicity of the radial deformation ρ.

Therefore, by enforcing the constraint of Equation 2 on the gain

parameter α, we guarantee that the formlet f(z, ζ, σ, α) is a dif-

feomorphism of the plane.

C. Computation of Optimal Gain

Suppose that the observed curve Γobs is approximated by

Γk−1. Given certain formlet scale and space parameters ζk and

σk, we wish to compute the optimal gain

αk = argmin
α∈R

ξ(Γobs
, f(Γk−1; ζk, σk, α)) (13)

where, for curves a and b, ξ(Γa, Γb) denotes the L2 error metric

Z

1

0

Re

“

Γa(t) − Γb(t)
”2

+ Im

“

Γa(t) − Γb(t)
”2

dt. (14)

Utilizing the linearized formlet expression of Equation 8, we

differentiate ξ with respect to α:

∂

∂α
ξ(Γobs

, f(Γk−1; ζk, σk, α))

=
∂

∂α

Z

1

0

Re

“

Γobs(t) − Γk−1(t) − αg
k(t)

”2

+ Im

“

Γobs(t) − Γk−1(t) − αg
k(t)

”2

dt

= 2

Z

1

0

α
“

Re g
k(t)

”2

− ReΓres(t)Re g
k(t)dt

+ 2

Z

1

0

α
“

Im g
k(t)

”2

− ImΓres(t) Im g
k(t)dt

where g
k(t) = g

“

Γk−1(t) − ζk; σk

”

.

(15)

Note that Γres again denotes the residual curve Γobs
− Γk−1. We

then set Equation 15 to zero and solve:

∂

∂α
ξ(Γobs

, f(Γk−1; ζk, σk, α)) = 0

⇒ α

Z

1

0

“

Re g
k(t)

”2

+
“

Im g
k(t)

”2

dt

=

Z

1

0

ReΓres(t)Re g
k(t)dt

+

Z

1

0

ImΓres(t) Im g
k(t)dt

⇒ α
˛

˛

˛

˛g
k

˛

˛

˛

˛

2
=

Z

1

0

D

Γres(t), gk(t)
E

dt

⇒ α =

R

1

0

˙

Γres(t), gk(t)
¸

dt
˛

˛

˛

˛gk
˛

˛

˛

˛

2

.

(16)

As a result, when ζk and σk are known, the optimal gain αk

that maximally reduces the L2 error between the observed curve

Γobs and current approximation Γk−1 is deterministically com-

puted as

αk =

R

1

0

˙

Γobs(t) − Γk−1(t), g
`

Γk−1(t) − ζk; σk

´¸

dt
˛

˛

˛

˛g (Γk−1(t) − ζk; σk)
˛

˛

˛

˛

2

. (17)

Note that with certain space and scale parameters, Equation 17

may produce an optimal gain outside the monotonicity bounds of

Equation 2 and Appendix B. When this occurs, the formlet is not

guaranteed to preserve topology, and should be ignored. Alterna-

tively, the gain could be set to the nearest constraint endpoint, or

some other topology-preserving value.


