
HAL Id: hal-00470423
https://hal.science/hal-00470423v1

Submitted on 8 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptable client-server architecture for mobile
multi-player games

Abdul Malik Khan, Ivica Arsov, Marius Preda, Sophie Chabridon, Antoine
Beugnard

To cite this version:
Abdul Malik Khan, Ivica Arsov, Marius Preda, Sophie Chabridon, Antoine Beugnard. Adaptable
client-server architecture for mobile multi-player games. DISIO ’10 : DIstributed SImulation & Online
gaming, Mar 2010, Torremolinos, Malaga, Spain. pp.1-7. �hal-00470423�

https://hal.science/hal-00470423v1
https://hal.archives-ouvertes.fr

Adaptive client-server architecture for mobile multi-
player games

Abdul Malik Khan, Ivica Arsov,
Marius Preda, Sophie Chabridon

Institut TELECOM
TELECOM SudParis
9 rue Charles Fourier

91011 Evry cedex, France
CNRS UMR SAMOVAR

{Abdul_malik.Khan, Ivica.Arsov,
Marius.Preda, Sophie.Chabridon}@institut-

telecom.fr

Antoine Beugnard
Institut TELECOM

TELECOM Bretagne
Computer Science Department

CS83818
F-29238 Brest cedex 3, France

A ntoine. Beugnard@institut-telecom.fr

ABSTRACT
Most of the multiplayer games available online use client-
server architecture because this architecture gives better admin-
istration control to the game providers. Besides controlling the
account and payment information of the players, this architec-
ture also prevents players from cheating as all the game logic is
executing on the centralized server. We have already proposed
a server assisted approach for mobile games in [2]. Because of
the varying and high latency of wireless networks and of the
changing consistency requirements during the game play, it is
difficult to keep the user experience highly interactive in client-
server architecture. We have developed an adaptive hybrid
client-server architecture which changes its behavior according
to network and game environment variations to improve game
state consistency across different mobile terminals. Like a peer-
to-peer architecture, this approach uses client-side capacities to
reduce bandwidth requirements for the server and to improve
consistency in high latency wireless networks. But unlike a
peer-to-peer architecture, we do not need a complete game
logic on mobile terminals if they have limited processing and
memory capacities or if the network latency is not very high.

Categories and Subject Descriptors
SD.1.6.8 [Distributed Systems]: Simulation and Modelling.

General Terms
Client Server Game Design and Algorithms

Keywords
Multiplayer Mobile Games’ Architecture, Latency Hiding,
Consistency Algorithm, MPEG 4

1. INTRODUCTION
In client-server architecture, a server is responsible for all the
communications between the connected clients. In case of a
game server, it is the server which hosts all the game execution
states; the client is only responsible for displaying the game’s
virtual world. The weakness of this architecture is its band-
width requirement and scalability. Peer-to-Peer architectures
have then been proposed to solve these issues. The major
problem with such architectures is that each player is having a
complete game state running on their terminal which is open to
cheating from the player. Another issue is that in the case of a
mobile terminal, we have a variety of devices having different
limited processing and memory capacities, limited screen reso-
lution and different operating systems. So it becomes difficult
for a game developer to write a game code which could run on
a multitude of these terminals. For these reasons, client-server
architecture is favored. Moreover, a centralized control is an
important part in making the game profitable for game compa-
nies.. The game administrators can charge subscription fees
from the players hence compensating for the game develop-
ment costs. Apart from this, a centralized game is easier to im-
plement as there is no need for peer-discovery, distributed
event ordering, cheat prevention or distributed storage manage-
ment as in a peer-to-peer architecture.

When mobile clients are connected to a server through a wire-
less network, the network delays can vary considerably and jit-
ters can occur. As the game logic executes on the server which
normally has some game consistency maintenance and event
ordering mechanisms, the update events can reach different
players at different points in time because of the variation of
the network latency. This can cause inconsistencies between
different clients. Also, the server must send the update mes-
sages frequently enough so that a consistent virtual world can
be displayed on the client’s mobile terminal. This can increase
the bandwidth requirement of the server considerably.

In this paper, we propose a hybrid approach, which adapts it-
self to the varying network latency and changing game envi-
ronment to achieve consistency among different players. This
adaptation takes place at run time and the system dynamically
decides whether a consistency mechanism is required on the
mobile client’s side or not.

This paper is organized as follows. In section 2, we analyze
some related works concerning consistency maintenance in
multiplayer games and 3D visualization on mobile phones. In

mailto:antoine.beugnard@institut-telecom.fr
mailto:antoine.beugnard@institut-telecom.fr
mailto:antoine.beugnard@institut-telecom.fr

section 3, we first discuss server oriented architectures in
which all the game is executed on the server side while the
clients are responsible only for rendering the game state; we
then discuss a heavy-client approach, in which servers are
used mainly for message passing and player’s account storage.
Then, in section 4, we present our hybrid architecture and a
communication protocol, and also give an evaluation of our
proposal. In section 5, we conclude our paper and give some
perspectives of our work.

2. RELATED WORK
In [4], the authors presents a consistency mechanism for mir-
rored-server architecture in which the servers are connected in
peer-to-peer while clients are connected to the nearest server in
client-server architecture. The idea is to reduce the bandwidth
requirement on the servers by having multiple servers and to
reduce the latency between clients and the servers as each
client has to connect to the geographically nearest server. For
consistency maintenance, a trailing state synchronization (TSS)
algorithm is proposed. TSS keeps two copies of the same
game world, each at a different local simulation time separated
by some synchronization delay. The latest one in time is called
the leading state and the other one, the trailing state. When an
inconsistency is detected in the leading state and rollback is re-
quired, TSS copies the game state from the trailing state to the
leading state, and then performs all commands between the in-
consistency point and the present point again.

This architecture is a static design time approach. Moreover be-
cause of the mobility of mobile terminals, it suffers from deal-
ing with variations in latency which may cause huge inconsis-
tencies at each client and could require a lot of roll-backs. Be-
sides, roll-backs require storing previous states in memory,
which is limited in case of mobile devices. This algorithm also
considers that all the clients are equivalent in terms of their ca-
pacities. In our approach, we decide at run time whether a
client-side consistency is required or not keeping in view varia-
tions in network and game environment and also dealing ap-
propriately with heterogeneous devices having different capaci-
ties.

[3] proposes to use a cluster of servers for multiplayer games.
Their idea is to divide games into different regions, each server
executing different regions of the game. This increases the
scalability and reduces the bandwidth requirement on the
server side. However, again this is a static architecture and suf-
fers from client side latency issues because of changing net-
work latency and jitters. Also, as before, it does not take into
account the heterogeneity of client devices.

(Here, the starting text looks at bit our of place. Also we should
add related work on server-assisted approach. The given work
is not very relevant.) Another approach for solving the consis-
tency issue is the thin-client architecture. The game is executed
on the server side and the result is sent to the client. Because
everything is executed on the server, all of the clients will dis-
play the same game state. But if the latency between a client
and the server becomes too large, significant differences will
start to appear between the clients. The thin client approach has
already been used for visualizing 2D and 3D data. It is appro-
priate for accessing huge amount of data [7], for example med-
ical data, 3D scanned data or very complex CAD models from
less powerful devices like mobile phones or PDAs. Most of
the techniques use video streaming, as in [14], for viewing the
rendered result. The Games@Large [13] group presented archi-
tecture that besides streaming a video can also stream the data
that is sent to the graphics cards to the client, but the client
needs to have a good graphic card, i.e. a “fat-client”, to be able

to render the data. In 2006, Winter et al. [5] proposed a solu-
tion where video streaming is used when there is a significant
amount of motion on the screen e.g. a game and uses the VNC
protocol otherwise. Recently the gaming industry started to use
the video streaming approach. Different systems for Virtual
Networked Gaming (VNG) are already available [8].

3.CLIENT-SERVER ARCHITECTURE
FOR MOBILE GAMES
In this section we discuss the already proposed thin-client and
heavy-client approach and their limitations in mobile setting.

3.1 Server centric approach
Two main categories of requirements drive our developments
in proposing the client-server architecture:

- For game creators, the deployment of a game on a large cate-
gory of terminals should not conduct to additional development
costs,

- For players, the game experience (mainly measured in the
game reactivity and loading times) should be similar or better
compared with a locally installed and executed game.

The main idea is to separate the different components pre-
sented in a traditional game into components that are executed
on the server and components that are executed on the client
terminal.

As demonstrated in [14], the MPEG-4 standard provides tech-
nologies able to represent (in a compressed form) a scene graph
and graphics primitives. A MPEG-4 player is then able to inter-
pret them to produce a synthetic image. It was proposed to re-
place the rendering engine of the game with a MPEG-4 player,
with the following consequences: the scene graph (or parts of
it) has to be transmitted to the client and the user input (cap-
tured by the client) has to be transmitted to the server. Figure 1
illustrates the proposed architecture.

Figure 1. Proposed architecture for mobile games using a
MPEG-4 player on the client side.

The main underlying idea of the architecture proposed in Fig-
ure 1 is to execute the game logic on the server and the render-
ing on the terminal. In addition, the player receives only what
is necessary at each step of the game (interface 1). For exam-
ple, in the initial phase, only some 2D graphics primitives rep-
resenting the menu of the game are transmitted. When the
game starts, the 3D assets are sent only when they are used, the
MPEG-4 compression ensuring fast transmission. During the
game play, the majority of the communication data consists in
updates (position, orientation) of assets in the local scene. We
should note that for games containing complex assets it is also
possible to download the scene graph, i.e. an MPEG-4 file, be-
fore starting to play. The off-line content transferring has simi-
lar functionality as the caching mechanism proposed in [6]. In

addition, it is possible to adapt the graphics assets for a specific
terminal [12] allowing for the best possible trade-off between
performance and quality. In the proposed architecture, the com-
munication characterized by interfaces 1 and 2 in Figure 1, un-
like in [13], is based on a higher level of control: the graphic
primitives can be grouped and controlled as a whole by using
few parameters. The MPEG-4 standard allows any part of the
scene to be loaded, changed, reorganized or deleted. For exam-
ple, the same game can be played on a rendering engine that
supports 3D primitives, most probably accelerated by dedicated
hardware, and simultaneously on a rendering engine that only
supports 2D primitives. This flexible approach allows the dis-
tribution of the games on multiple platforms without the need
to change the code of the game logic. Another advantage is the
possibility to improve the game logic without additional costs
for the client, allowing easy bug-fixing, adding features and
different optimizations.

In the case of multiplayer gaming, synchronization between
different players is directly ensured by the server by controlling
at each step the scene graph of each terminal. It means that all
players will always see the game in the same state. Therefore,
the use of techniques for synchronization between the clients is
not needed. The main drawback of the proposed method is the
sensibility to the network latency. Big latencies can cause dif-
ferent players to view the game in different states at the same
global time. This can cause disadvantage for the players that
see the state later than the other players. To solve this synchro-
nization problem, it is necessary to have a thin layer of the
game logic on the client side itself for consistency mainte-
nance. In the next section, we discuss client side consistency
maintenance approach.

3.2 Client Centric approach
In this section, we discuss how consistency is maintained in
client-server architecture when the logic of the game resides on
the client side. In this case, the game logic is totally on the
client side and the server performs only message passing and
some administrative works such as maintaining a database of
players, their accounts etc.

In this paper we consider the clients to be on mobile devices
such as mobile phones, PDAs, and laptops. The heavy-client
approach, as we call it, gives the player more control over the
game and reduces the bandwidth requirements on the server
side. This approach has the following advantages over the
server centric approach:

- With the deployment of all the game logic on the client side,
we do not need high capacity servers or mirrored servers dedi-
cated to execute the game logic [4].

- Because all the logic is on the client side, the clients now
need to send messages to other clients through the server less
frequently and only when required, using dead-reckoning algo-
rithms [1]. This resolves the bandwidth issue which could be a
bottleneck in case the server has to send messages for display-
ing on the clients at the frame rate.

This approach has some disadvantages:

- Because of the heterogeneity of mobile devices, it is difficult
to develop a game that runs on so many different devices
which have different memory capacities, different screen reso-
lutions and are connected to the server through different net-
works such as WIFI, Bluetooth and/or GPRS.

-Because of the player’s complete control over the game, he
can add cheating mechanism thereby changing the end game
results.

-As the game logic resides on the client side, the total delay is
equivalent to client-to-client delay which could be approxi-
mately double that of server-to-client delay. In case of high
network latency, the resolution of state inconsistencies be-
comes even more difficult.

We have previously proposed a dynamic consistency mainte-
nance mechanism for heavy-client-light-server architecture [9].
In this approach, we combine two different synchronization
schemes namely dead-reckoning [1] and local-lag [11]. In case
of dead-reckoning, there is a prediction model at the sender’s
side to predict the position of this local player as displayed by
the remote player. When the error between the predicted model
and the real position exceeds some threshold error value, the
player sends an update message to the remote players. Nor-
mally this threshold error is fixed for the entire duration of the
game and for all objects. In the local-lag approach, we delay
the display of local messages for a certain time, hoping that
during this lag time the update message from a local player will
have reached a remote player and hence consistency will be
maintained. This local-lag value is fixed and is the same for all
objects and for the whole duration of the game. A more flexible
and adaptive approach is therefore needed.

4. A HYBRID CLIENT - SERVER AP-
PROACH
From the above discussions, it becomes clear that both client-
server and heavy-client approaches have advantages and disad-
vantages. For this reason, we propose a hybrid approach com-
bining thin and heavy client architectures to comebine their ad-
vantages in the same system. This combination is made adap-
tive in that the system can decide at runtime according to the
game and context requirements what part of the game logic is
executed on the client side and what part is executed on the
server side. In the case of a high latency and when the game re-
quires strong consistency, a significant part of the game logic
has to be executed on the client side in order to apply consis-
tency mechanisms to reach the same state at different termi-
nals. With low network latency, and when the virtual world ob-
jects are at a position/speed where small inconsistencies can be
tolerated and/or when the capacities of the client’s terminal are
limited, the client terminal only uses some display mechanism
to show the messages directly arriving from the game server.

This hybrid and adaptive approach works well when we have a
complex game with a variety of objects with different speeds
and a network where delays can vary considerably.

A game can be divided into different regions which will have
different consistency requirements. In some regions, for exam-
ple when a player is far away from other players and his move-
ment is considerably slow, it is not necessary to have tight con-
sistency maintenance and only server updates can suffice. On
other complex regions where we have many objects near each
other with different speed vectors, a stronger consistency main-
tenance which can only be done on the client side is needed.
We call these regions, the critical regions.

We recommend initializing and dynamically changing the val-
ues of dead-reckoning threshold and local lag according to
three criteria:

1) When the network conditions change. For example, when
the delay increases because of a sudden heavy traffic in the net-
work or when some jitters occur.

2) When a player enters a critical region [9] in the game’s vir-
tual world, we change the values of dead-reckoning threshold
and local lag so that we send messages frequently and do not

delay messages for a long time to achieve strong consistency in
these critical regions.

3) To fix the values of these two parameters according to the
requirements of different objects. For example, to have differ-
ent values for fast moving objects and slow moving objects in
the game world.

We now present an adaptive communication protocol to allow
client-server mechanisms to change dynamically their behav-
iour according to the above mentioned criteria.

Figure 2. Hybrid architecture for client-server mobile
multiplayer games

4.1 Server side protocol
As shown in Figure 2, a server has two main components: a
Game Logic component and a Communication Controller. The
game logic is further divided into different units necessary for
the successful execution of the game world. The Server Com-
munication Controller is responsible for the communication
with different clients (players) playing this game. While com-
municating with different clients, it sends the messages to the
clients according to three criteria:

1. If a client, to whom the server is sending the message, is
having limited memory, processing speed or screen resolution,
it sends only scene graphs to be displayed directly by the lim-
ited capacity device. In the message, it signals to the client that
no game logic processing is required on the client side. This in-
formation is stored in the terminal profile which registers the
capacities of different clients before the game starts.

2. In case the network latency is very high, or there are jitters
on the communication delay with a certain client, the server in-
forms the corresponding client about the high latency/jitters.
Because of high latency, inconsistencies can occur at different
clients. These clients, with this feedback from the server, have
to apply the necessary consistency mechanisms which we ex-
plain in the next section. The information about the network
conditions is stored in the network profile and the server
checks it before sending messages to the clients.

3) The consistency requirements of a game depend upon differ-
ent parameters of a player or object such as position, direction

and speed in the virtual world. For example, if an object is soli-
tary in the virtual world and its speed is not very high, it may
not need a strongly consistent view of others. The information
about different game zones, e.g. a circle around a player, is
stored in the game profile for each player. If a player has no
other player in their critical zone, there is no need for strong
consistency on the client side. Hence, in this case, the server
should signal the corresponding client that it does not need to
apply any consistency maintenance mechanism and that only
the scene graph should be updated and be displayed by the ren-
dering engine.

4.2 Client side protocol
On the client side, there is a Communication Manager compo-
nent, a Game Logic component, and a Rendering Engine for
displaying the game world. The game logic on the client side is
only a subset of the game logic on client side, that is M<N in
the diagram. The client side game logic contains only those
components which are necessary for consistency maintenance.
For example, to use dead-reckoning algorithm for consistency
maintenance on the client side in case of a car racing game, it is
necessary for the client to have a car track component and
some other components to do the necessary predictions on the
client’s side. The communication manager is the component
which receives messages from the server and decides according
to the signals/information for the server whether to do some
necessary consistency maintenance or not. As mentioned
above, the client needs consistency maintenance on its side ac-
cording to three criteria: Terminal capacity, network conditions
and the player’s position and speed in the game world.

If consistency maintenance is required on the client side, the
communication manager first sends the message to the game
logic which processes the message and applies the necessary
consistency maintenance algorithms. After that, the message is
used to update the scene graph to be displayed by the rendering
engine. If no consistency is required, the communication man-
ager sends the message directly to update the scene graph and
render it.

4.3 Evaluation
We have done a first evaluation of the hybrid and adaptive ap-
proach we propose. We have evaluated client and server side
consistencies in case of high and low latencies. Figure 3 shows
the dynamic switching of the game architecture from thin-
client to heavy-client mode and vice versa.

In Figure 3, at time t0, when the latency is low, the game logic
and consistency maintenance algorithms run on the server side
as represented by the green wheel and the client only displays
the messages through its rendering engine. At time t1, when the
latency is high, the client also executes some part of the game
logic necessary for consistency maintenance, represented by
the red wheel, to hide the high latency from the user.

Figure 3. Dynamic adaptation of the game architecture
during the runtime

At time t2 the latency is low again and the system switches to
thin-client mode. At time t3, although the latency is low, but a
player has entered the critical region e.g. player’s car is ap-
proaching the finishing line, therefore the system switches to
heavy-client mode to achieve strong consistency in this critical
region.

Figure 4 shows our evaluation for three different scenarios for
a car racing game using only two cars.

 The ‘Local’ curve shows the actual positions of a local player
on the server on which game logic is running. The positions
values are drawn on the Y-axis against the time shown on the
X-axis. Time value 0 denotes the start of the game. As the car
starts moving towards the left of the screen on a mobile phone,
the value of its position pixels decreases until it reaches zero
which denotes the finishing line.

The “RemoteWithlowLatency” curve shows the positions of the
car on the remote client, when the latency between the client
and the server is very low and all the messages coming from
the server are shown directly on the client screen, i.e. without
applying any algorithm and without utilising any game logic on
the client side. In this case, the difference between the actual
car positions and the displayed car is minimal.

In the case of high network latency (between 1000 and 2000
milliseconds in our implementation), the difference between
the actual car positions and the displayed car on the client side
becomes quite visible when no client side mechanism is ap-
plied, as shown by the “HighLatencyWithNoConsistency”
curve. In case of high latency and/or high speed of the car, we
need to apply some client side consistency maintenance to syn-
chronize the data between server and client. In our experimen-
tal implementation, we applied our dynamic dead-reckoning
and adaptable local-lag approach [9]. This result is shown by
the “highLatencyWithClientSideConsistency” curve. This curve
is closer to the ‘local’ curve than the one in which latency is
high and no client server consistency maintenance algorithm is
used. By closer, we mean that the difference between the actual

positions on the server and the displayed positions on the client
is minimum and hence the consistency is improved. This curve
is not as straight as the others because when apply prediction
algorithms, prediction errors can occur, which need some re-
covery time to arrive at the correct position.

From the figure, we can safely argue that in case of very low
latencies and when the objects move with a slow pace, mes-
sages coming from the server can be displayed directly on the
client screen without the fear of high inconsistencies. On the
contrary, in case of fast-moving objects and high network la-
tency, we need some mechanism on the client side to do neces-
sary consistency maintenance for which some part of the game
logic must reside on the client terminal.

5. CONCLUSION AND PERSPECTIVES
In this paper, we proposed a hybrid and adaptive approach to
achieve better user experience for multiplayer games on mobile
phones. We argued about the need of such an adaptive
approach because of the changing wireless network conditions
and game’s virtual world. We compared the results for both
thin-client and heavy-client architectures and showed that a
dynamic approach works better than a static approach.

Figure 4. Comparison of client and server inconsistencies with high and low latency

In the future, we intend to evaluate this combined approach on
different devices having different capacities. We also would
like to test different consistency maintenance algorithms such
as critical zone approach using our dynamic hybrid system and
using some complex games. We finally intend to implement
the communication manager component as part of our
Synchronization Medium [10].

6. ACKNOWLEDGEMENTS
This work is a part of the project JEMTU (2006-2008), which
aims to design solutions for the technical and psychological
issues that slow down the development of multiplayer games
on mobile phones (http://proget.int-evry.fr/projects/JEMTU/)

7. REFERENCES
[1] Application protocols. In IEEE Standard for Distributed

interactive Simulation. IEEE Standard 1278.1-1995,
1995.

[2] Arsov, I., Preda, M., and Prêteux, F., 2008, MPEG-4 3D
graphics for mobile phones, Proceedings First
International Workshop on Mobile Multimedia
Processing (WMMP'08), Tampa, FL.

[3] Chia-chun Hsu, Jim Ling, Qing Li and C.-C. Jay Kuo.
2003. On the design of multiplayer online video game
systems. Multimedia Systems and Applications VI
ITCom 2003, Proc. of SPIE, volume 5241, Orlando,
Florida, USA , September 7-11, 2003.

[4] Cronin, E., Filstrup, B., Kurc, A. R., and Jamin, S. 2002.
An efficient synchronization mechanism for mirrored
game architectures. In Proceedings of the 1st Workshop
on Network and System Support For Games
(Braunschweig, Germany, April 16 - 17, 2002).
NetGames '02.

[5] De Winter, D., Simoens, P., Deboosere, L., De Turck, F.,
Moreau, J., Dhoedt, B., and Demeester, P. 2006. A
hybrid thin- client protocol for multimedia streaming and
interactive gaming applications. In Proceedings of the
2006 international Workshop on Network and Operating
Systems Support For Digital Audio and Video (Newport,
Rhode Island, November 22 - 23, 2006). NOSSDAV
'06. ACM, New York, NY, 1-6.

[6] Eisert, P. and Fechteler, P., 2008,"Low Delay Streaming
of Computer Graphics," Proc. International Conference
on Image Processing (ICIP), San Diego, USA.[6]

[7] Grimstead, I. J., Avis, N. J., and Walker, D. W. 2005.
Visualization across the pond: how a wireless PDA can
collaborate with million-polygon datasets via 9,000km of
cable. In Proceedings of the Tenth international
Conference on 3D Web Technology (Bangor, United
Kingdom, March 29 - April 01, 2005). Web3D '05.
ACM, New York, NY, 47-56.

[8] Jurgelionis, A., Fechteler, P., Eisert, P., et al., 2009
“Platform for Distributed 3D Gaming,” International
Journal of Computer Games Technology, Article ID
231863, 15 pages, 2009.

[9] Khan, A. M., Chabridon, S., and Beugnard, A. 2008. A
dynamic approach to consistency management for mobile
multiplayer games. In Proceedings of the 8th
international Conference on New Technologies in
Distributed Systems (Lyon, France, June 23 - 27, 2008).

[10] Khan, A. M., Chabridon, S., and Beugnard, A., 2007,
Synchronization medium: a consistency maintenance
component for mobile multiplayer games. In NetGames
'07: Proceedings of the 6th ACM SIGCOMM workshop
on Network and system support for games, pages 99
Melbourne, Australia.

[11] Mauve M, Vogel J, Hilt V, Effelsberg W. Local-lag and
timewarp:Providing consistency in replicated continuous
interactive media. IEEE Trans. Multimedia, 2004, 6(1):
47--57. [11]

[12] Morán, F., Preda, M., Lafruit, G., Villegas, P. and
Berretty, RP., 2007, "3D Game Content Distributed
Adaptation in Heterogeneous Environments", EURASIP
Journal on Advances in Signal Processing Volume 2007,
Issue 2, Pages: 31 – 41.

[13] Nave, I.; David, H.; Shani, A.; Tzruya, Y.; Laikari, A.;
Eisert, P.; Fechteler, P., 2008, "Games@large graphics
streaming architecture," Consumer Electronics, 2008.
ISCE 2008. IEEE International Symposium on , vol., no.,
pp.1-4, 14-16 April 2008.

[14] Sanna, A. 2007. A Streaming-Based Solution for Remote
Visualization of 3D Graphics on Mobile Devices. IEEE
Transactions on Visualization and Computer Graphics
13, 2 (Mar. 2007), 247-260.

http://proget.int-evry.fr/projects/JEMTU/)

	2. RELATED WORK
	3.CLIENT-SERVER ARCHITECTURE FOR MOBILE GAMES
	3.1 Server centric approach
	3.2 Client Centric approach

	4. A HYBRID CLIENT - SERVER APPROACH
	4.1 Server side protocol
	4.2 Client side protocol
	4.3 Evaluation

	5. CONCLUSION AND PERSPECTIVES
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

