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Derivatives and asymptotics of Whittaker

functions

Nadir MATRINGE∗

April 6, 2010

Abstract

Let F be a p-adic field, and Gn one of the groups GL(n, F ), GSO(2n−1, F ), GSp(2n, F ),
or GSO(2(n − 1), F ). Using the mirabolic subgroup or analogues of it, and related “deriva-
tive” functors, we give an asymptotic expansion of functions in the Whittaker model of
generic representations of Gn, with respect to a minimal set of characters of subgroups of
the maximal torus. Denoting by Zn the center of Gn, and by Nn the unipotent radical of its
standard Borel subgroup, we characterize generic representations occurring in L2(ZnNn\Gn)
in terms of these characters.
This is related to a conjecture of Lapid and Mao for general split groups, asserting that the
generic representations occurring in L2(ZnNn\Gn) are the generic discrete series; we prove
it for the group Gn.

Introduction

Let Gn be the points of one of the groups GL(n), GSO(2n− 1), GSp(2n), or GSO(2(n− 1)) over
a p-adic field K. The main result (Theorem 2.1) of this work describes the asymptotic behaviour
of the restriction of Whittaker functions to the standard maximal torus, in terms of a family of
characters which is minimal in some sense. From results of [L-M], this restriction can be described
for split reductive groups in terms of cuspidal exponents.
Here, after having defined analogues of the mirabolic subgroup for the groups Gn, and the corre-
sponding derivative functors, following [C-P] (where the case of completely reducible derivatives
is treated for GL(n)), we choose to describe the restriction of Whittaker functions to the torus
in terms of central exponents of the derivatives.
This description, inspired by [B], is better adapted to understanding when the Whittaker model
of a unitary generic representation is a subspace of L2(ZnNn\Gn) (these representations are con-
jectured to be generic discrete series by Lapid and Mao).
In the first section, we review the groups in question and define their mirabolic subgroups. We
also give a decomposition of the unipotent radical of the standard Borel subgroup, and a descrip-
tion of how nondegenerate characters of this radical behave with respect to this decomposition.
In Section 2, we give properties of the derivative functors, and use them to prove our asymptotic
expansion of Whittaker functions, which is Theorem 2.1.
In Section 3, we characterize generic representations with Whittaker model included in L2(ZnNn\Gn)
in terms of central exponents of the derivatives, in Corollary 3.1. We then prove in Theorem 3.2
the conjecture 3.5 of [L-M].

∗Nadir Matringe, University of East Anglia, School of Mathematics, Norwich, UK, NR4 7TJ. Email:
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1 Mirabolic subgroup and nondegenerate characters

Let F be nonarchimedean local field, we denote by OF its ring of integer, and by PF = ̟FOF

the maximal ideal of this ring, where ̟F is a uniformiser of F .
We give a list of groups, and describe some of their properties which will be used in the sequel:

• Case A:

The group G0 is trivial, and for n ≥ 1, the group Gn is GL(n, F ).

We consider the maximal torus of Gn consisting of diagonal matrices, it is isomorphic to
(F ∗)n.
For n ≥ 2, the simple roots of this group can be chosen to be the characters

αi(diag(x1, . . . , xn)) = xix
−1
i+1

for i between 1 and n− 1.
The root subgroup Uαi

is given by matrices of the form In + xEi,i+1 for x in F .

Standard Levi subgroups of Gn are given by matrices of the form diag(a1, . . . , ar) where ai
belongs to GL(ni, F ), with n1+ · · ·+nr = n. We denote the preceding group by M(n1,...,nr),
and the corresponding standard parabolic subgroup is denoted by P(n1,...,nr), with unipo-
tent radical U(n1,...,nr).

For n ≥ 2 we denote by Un the group U(n−1,1), of matrices of the form

[

In−1 V
1

]

.

It is isomorphic to Fn−1.

For n > k ≥ 1, the group Gk embeds naturally in Gn, and is given by matrices of the form
diag(g, In−k); we denote by Zk its center.
We denote by Pn the mirabolic subgroup Gn−1 ⋉ Un.

• Case B:

The group G0 is trivial.
For n ≥ 2, the group Gn = GO(2n− 1, F ) is the group of matrices g in GL(2n− 1, F ) such
that tgJg belongs to F ∗J . We call the multiplier of an element g in Gn the scalar µ(g) such
that tgJg is equal to µ(g)J (one checks that for this group, the multiplier actually belongs
to (F ∗)2), where J is the antidiagonal matrix of GL(2n − 1, F ) with ones on the second
diagonal. It is the direct product of SO(2n−1, F ) with F ∗, more precisely, of SO(2n−1, F )
and the group I(F ∗) of matrices I(t) = tI2n−1 for t in F ∗.

The maximal torus of Gn is equal to the product of the torus of matrices of the form
diag(x−1

n−1, . . . , x
−1
1 , 1, x1, . . . , xn−1) with I(F ∗) and is isomorphic to (F ∗)n.

For n ≥ 3, the simple roots of this group can be chosen to be the characters

αi+1(diag(tx
−1
n−1, . . . , tx

−1
1 , t, tx1, . . . , txn−1)) = xix

−1
i+1

for i between 1 and n− 2, and α1(diag(tx
−1
n−1, . . . , tx

−1
1 , t, tx1, . . . , txn−1)) = x−1

1 .
The root subgroups Uαi

are given by matrices of the form

diag(u, . . . , 1, u, 1, . . . , 1, u−1, 1, . . . , 1)

for matrices u in the unipotent radical of the Borel of GL(2, F ).
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For n > k ≥ 1, the group Gk embeds naturally in Gn, and is given by matrices of the form
diag(µ(g)Ik, g, In−k), where µ(g) is the multiplier of the element g of Gk.
Its center Zk is given by matrices of the form zk(t) = diag(t2In−k, tI2k−1, In−k) for t in K∗.

For n ≥ 1 , the standard Levi subgroups of Gn are given by matrices of the form

diag(µ(g)τa−1
r−1, . . . , µ(g)

τa−1
1 , g, a1, . . . , ar),

where ai belongs to GL(ni, F ), τa is the transpose of a with respect to the second diagonal,
g belongs to Gm, with 2m−1+2n1+ · · ·+2nr = 2n−1. We denote the preceding group by
M(m;n1,...,nr), and the corresponding standard parabolic subgroup consisting of block upper
triangular matrices is denoted by P(m;n1,...,nr), with unipotent radical U(m;n1,...,nr).

For n ≥ 2 we denote by Un the groupU(n−1;1), of matrices of the form





1 −τV −τV V/2
I2n−3 V

1



.

It is isomorphic to F 2n−3.

For n ≥ 2, we denote by Pn the “mirabolic” subgroup Gn−1 ⋉ Un.

• Case C:

The group G0 is trivial, the group G1 is F ∗.
For n ≥ 2, the group Gn = GSp(2(n − 1), F ), where GSp(2(n − 1), F ) is the group of

matrices g in GL(2(n − 1), F ) such that tgJg belongs to F ∗J , where J =

[

0 W
−W 0

]

and

W is the antidiagonal matrix of GL(n − 1, F ) with ones on the second diagonal. It is the
semi-direct product of Sp(2(n− 1), F ) with F ∗, more precisely, of Sp(2n, F ) and the group
I(F ∗) of matrices I(t) = diag(tIn−1, In−1) for t in F ∗.

The maximal torus of Gn is equal to the product of the torus of matrices of the form
diag(x−1

n−1, . . . , x
−1
1 , x1, . . . , xn−1) with I(F ∗) and is isomorphic to (F ∗)n.

The simple roots of this group are the characters αi+1(diag(tx
−1
n−1, . . . , tx

−1
1 , x1, . . . , xn−1)) =

xix
−1
i+1 for i between 1 and n− 2, and α1(diag(tx

−1
n−1, . . . , tx

−1
1 , x1, . . . , xn−1)) = tx−2

1 .
For i less than n, the root subgroup Uαi

is given by matrices of the form

diag(1, . . . , 1, u, 1, . . . , 1, u−1, 1, . . . , 1),

for matrices u in the unipotent radical of the Borel of GL(2, F ), whereas Uαn
is given by

matrices diag(1, . . . , 1, u, 1, . . . , 1), for matrices u in the unipotent radical of the Borel of
GL(2, F ).

For n > k ≥ 2, the group Gk embeds naturally in Gn, and is given by matrices of the form
diag(µ(g)In−k, g, In−k), where µ(g) is the multiplier of the element g of Gk. Its center Zk
is given by matrices of the form zk(t) = diag(t2In−k, tI2(k−1), In−k) for t in F ∗. The group
G1, which is equal to its center Z1, embeds as I(F ∗).

For n ≥ 1, the standard Levi subgroups of Gn are:

– either matrices
diag(µ(g)τa−1

r−1, . . . , µ(g)
τa−1

1 , g, a1, . . . , ar),

where ai belongs to GL(ni, F ), g belongs to Gm with m ≥ 2, with 2(m− 1) + 2n1 +
· · ·+ 2nr = 2(n− 1). We denote the preceding group by M(m;n1,...,nr), and the corre-
sponding standard parabolic subgroup consisting of block upper triangular matrices is
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denoted by P(m;n1,...,nr), with unipotent radical U(m;n1,...,nr).

– or the matrices
z1.diag(a

−1
r−1, . . . , a

−1
1 , a1, . . . , ar),

with ai in GL(ni, F ), 2n1 + · · ·+ 2nr = 2(n− 1), and z1 in G1.

For n ≥ 2, we denote by Un the group U(n−1;1), of matrices of the form









1 −τV2
τV1 x

In−2 V1

In−2 V2

1









.

For n ≥ 3, it is an extension of F 2(n−2) by F , which is the Heisenberg group corresponding to
the alternating bilinear form on F 2(n−2), given by (W1,W2)×(V1, V2) 7→ −τW2.V1+

τW1.V2.
It is a two steps nilpotent subgroup, with center equal to its derived subgroup, given by
matrices with V1 = V2 = 0, and the maximal abelian quotient Uab

n of Un is F 2(n−2).
The group U2 is the unipotent radical of the standard Borel of G2 = GSp(2, F ) = GL(2, F ),
and is isomorphic to (F,+).

For n ≥ 2, we denote by Pn the “mirabolic” subgroup Gn−1 ⋉ Un.

• Case D:

We denote by G0 the trivial group. The group G1 is F ∗.

For n ≥ 2, the group Gn = GSO(2(n − 1), F ) is the group of matrices g in GL(2n, F )
satisfying that tgJg belongs to F ∗J , where J is the antidiagonal matrix of GL(2n, F ) with
ones an the second diagonal. It is the semi-direct product of SO(2(n−1), F ) with the group
I(F ∗), of the matrices I(t) = diag(tIn, In) for t in F ∗.

The maximal torus of Gn is equal to the product of the torus of matrices of the form
diag(x−1

n−1, . . . , x
−1
1 , x1, . . . , xn−1) with I(F ∗) and is isomorphic to (F ∗)n.

If n is 2, then G2 is the diagonal torus of GL(2, F ).
For n ≥ 3, the simple roots of this group can be chosen to be the characters

αi+1(diag(tx
−1
n−1, . . . , tx

−1
1 , x1, . . . , xn−1)) = xix

−1
i+1

for i between 1 and n− 2, and α1(diag(tx
−1
n , . . . , tx−1

1 , x1, . . . , xn)) = tx−1
1 x−1

2 .
For i ≥ 1, the root subgroup Uαi+1

is given by matrices of the form

diag(1, . . . , 1, u, 1, . . . , 1, u−1, 1, . . . , 1)

for matrices u in the unipotent radical of the Borel of GL(2, F ), whereas Uα1
is given by

matrices diag(1, . . . , 1, u, 1, . . . , 1) for matrices u of the form









1 y
1 −y

1
1









, with y in F .

For n > k ≥ 2, the group Gk embeds naturally in Gn, and is given by matrices of the form
diag(µ(g)In−k, g, In−k), where µ(g) is the multiplier of the element g of Gk. For k ≥ 3, its
center Zk is given by matrices of the form zk(t) = diag(t2In−k, tI2(k−1), In−k) for t in F ∗.
We denote by Z2 the subgroup of the torus G2, given by matrices of the form

z2(t) = diag(tIn−2,1, t, In−2) for t in F∗.
The group G1 which is equal to its center Z1, embeds as I(F ∗).

The standard Levi subgroups of Gn are the following:
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– The groups given by matrices of the form

diag(µ(g)τa−1
r , . . . , µ(g)τa−1

1 , g, a1, . . . , ar),

where ai belongs to GL(ni, F ), g belongs to Gm with m ≥ 3, with 2(m− 1) + 2n1 +
· · · + 2nr = 2(n − 1). We denote the preceding group by M(m;n1,...,nr), and the cor-
responding standard parabolic subgroup is denoted by P(m;n1,...,nr), with unipotent
radical U(m;n1,...,nr).

– The groups given by matrices of the form

g2.diag(
τa−1
r , . . . ,τa−1

1 , 1, 1, a1, . . . , ar),

with ai in GL(ni, F ), 2n1 + · · ·+ 2nr = 2(n− 2), and g2 in G2.

– The groups given by matrices of the form

z1.diag(
τa−1
r , . . . ,τa−1

1 , a1, . . . , ar),

with ai in GL(ni, F ), 2n1 + · · ·+ 2nr = 2(n− 1), and z1 in G1.

– The groups given by matrices of the form

z2.diag(
τa−1
r , . . . ,τa−1

1 , g, a1, . . . , ar),

where ai belongs to GL(ni, F ), and g in GL(2(m− 1), F ) is of the form









A V
t′ L′

L t
V ′ A′









,

with
[

A V
L t

]

∈ GL(m− 1, F ),

A a (m− 2×m− 2)-matrix,

[

τA′ τL′

τV ′ t′

]

=

[

A V
L t

]−1

,

with 2m+ 2n1 + · · ·+ 2nr = 2n and z2 in Z2.

For n ≥ 3 we denote by Un the subgroup U(n−1;1) of Gn, of matrices of the form





1 −τV −τV V/2
I2(n−2) V

1



 .

It is isomorphic to F 2n−2.

For n ≥ 3 denote by Pn the “mirabolic” subgroup Gn−1 ⋉ Un.
We denote by U2 the group Uα1

, and by P2 the group G1 ⋉ U2.

Lemma 1.1. We denote by Zi the center of Gi, except in case D when n = 2, where we denote
by Z2 the subgroup diag(1, t) with t in F ∗ of G2. In all cases, one checks that the maximal torus
An of Gn is the direct product Z1.Z2 . . . Zn−1.Zn, and each Zi is isomorphic to F ∗. Moreover,
the i-th root has the property that αi(z1 . . . zn) = zi, in other words these coordinates parametrize
the torus An such that simple roots become canonical projections.
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The unipotent radical Nn+1 of the standard Borel subgroup of Gn+1 is equal to U2 . . . Un+1.
Let θ be a nondegenerate character of Nn+1 (i.e. that restricts non trivially to any of the simple
root subgroups). We denote by θi+1 the character θ|Ui+1

, except in the case D, for i = 2. In this
case U3 = Uα1

× Uα2
, and we denote by θ3 the character θ3(uα1

uα2
) = θ(uα2

).
Because θ is trivial on Uder, and according to the description of Uder in Theorem 4.1 of [B-H],
the character θi+1 must be trivial on every root subgroup Uα contained in Ui+1 such that α is
not simple, moreover for case D, n = 2, the character θ3 is trivial on Uα1

.
Conversely, if a non trivial character θi+1 of Ui+1 is trivial on every Uα ⊂ Ui+1 which is not simple,
and if, in case D, n = 2, we impose in addition that θ3 is trivial on Uα1

, then one checks that the
normalizer of θi+1 in the mirabolic subgroup Pi+1 is PiUi+1. As the group U2 . . . Ui is a subgroup
of Pi, a family of non trivial characters θi+1 of Ui+1, trivial on every Uα ⊂ Ui+1 except Uαi

,
defines a nondegenerate character of Nn+1 = U2 . . . Un+1 by θ(u2 . . . un+1) =

∏n
i=1 θi+1(ui+1).

Now we fix such a nondegenerate character θ, and write θk for the character θ2 . . . θk of Nk.

2 Derivatives and Whittaker functions

If G is an l-group, we denote by Alg(G) the category of smooth complex G-modules. If (π, V )
belongs to Alg(G), H is a closed subgroup of G, and χ is a character of H , we denote by V (H,χ)
the subspace of V generated by vectors of the form π(h)v − χ(h)v for h in H and v in V . This
space is actually stable under the action of the subgroup NG(χ) of the normalizer NG(H) of H
in G, which fixes χ.
We denote by δH the positive character of NG(H) such that if µ is a right Haar measure on G, and
λ is the left translation of smooth functions with compact support on G, then µ◦λ(n−1) = δH(n)µ
for n in N .
This gives the spaces V (H,χ) and VH,χ = V/V (H,χ) (that we simply denote by VH when χ is
trivial) a structure of smooth NG(χ)-modules.

Notations being as in the first section, and for k be an integer between 2 and n we define the
following functors:

• First we recall the definition of the Jacquet functors:
Let P be a parabolic subgroup of Gn, with Levi subgroup M , and unipotent radical U .
We denote by JP the functor from Alg(Gn) to Alg(M) such that, if (π, V ) is a smooth
Gn-module, we have JP (V ) = VU , and M acts on JP (V ) by JPπ(m)(v + V (U, 1)) =
δU (m)−1/2π(m)v + V (U, 1).

• With the same notations, we denote by iGP the functor from Alg(M) to Alg(Gn) such that,
if ρ is a smooth M -module, and ρ̄ is the corresponding P -module obtained by inflation of
ρ to P , then iGP (ρ) is the Gn-module indGn

P (ρ̄) where ind is the usual compact induction.

• The functor Φ−
θk

(denoted rUk,θk in section 1 of [B-Z.2]) from Alg(Pk) to Alg(Pk−1) such

that, if (π, V ) is a smooth Pk-module, Φ−
θk
V = VUk,θk , and Pk−1 acts on Φ−

θk
(V ) by

Φ−
θk
π(p)(v + V (Uk, θk) = δUk

(p)−1/2π(p)(v + V (Uk, θk).

• The functor Φ+
θk

(denoted iUk,θk in section 1 of [B-Z.2]) from Alg(Pk−1) to Alg(Pk) such

that, for π in Alg(Pk−1), one has Φ+
θk
π = indPk

Pk−1Uk
(δ

1/2
Uk

π ⊗ θk), where ind is the usual
compact induction.

• The functor Φ̂+
θk

(IUk,θk in section 1 of [B-Z.2]) from Alg(Pk−1) to Alg(Pk) such that, for π

in Alg(Pk−1), one has Φ+
θk
π = IndPk

Pk−1Uk
(δ

1/2
Uk

π ⊗ θk), where Ind is the usual induction.
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• The functor Ψ− is the Jacquet functor JUk
, (denoted rUk,1 in section 1 of [B-Z.2]) from

Alg(Pk) to Alg(Gk−1), such that if (π, V ) is a smooth Pk-module, Ψ−V = VUk,1, and Gk−1

acts on Ψ−(V ) by Ψ−π(g)(v) + V (Uk, θk) = δUk
(g)−1/2π(p)(v + V (Uk, 1)).

• The functor Ψ+ (denoted iUk,1 in section 1 of [B-Z.2]) from Alg(Gk−1) to Alg(Pk), such

that for π in Alg(Gk−1), one has Ψ+π = indPk

Gk−1Uk
(δ

1/2
Uk

π ⊗ 1) = δ
1/2
Uk

π ⊗ 1.

As we already fixed the character θ of Nn, we will most of the time forget the dependence in
θk of Φ−

θk
and Φ+

θk
, and we will write these functors Φ− and Φ+. These functors have the following

properties which follow (except for c) an d) which are trivial) from Proposition 1.9 of [B-Z.2]:

Proposition 2.1. a) The functors Φ−, Φ+, Ψ−, and Ψ+ are exact.
b) Ψ− is left adjoint to Ψ+.
b’) Φ− is left adjoint to Φ̂+.
c) Φ−Ψ+ = 0
d) Ψ−Ψ+ = Id.

Now we want to know how these functors restrict to smooth Pk-modules which are submodules
of the space C∞(Nk\Pk, θ

k) = IndPk

Nk
(θk) of functions on Pk, fixed by some open subgroup of Pk

under right translation, and which transform by θk under left translation by elements of Nk.
The next proposition shows the stability of this type of modules under Φ− and Φ+.

Proposition 2.2. For any submodule τ of C∞(Nk\Pk, θ
k), the Pk−1-module Φ−τ is a submodule

of C∞(Nk−1\Pk−1, θ
k−1), with model given by restriction of functions δ

−1/2
Uk

W in τ to Pk−1, and
such that we have Ψ−τ(p)W = ρ(p)W for p in Pk−1, where ρ is the action by right translation.
Conversely, the Pk+1-module Φ+τ can be identified with a submodule of C∞(Nk+1\Pk+1, θ

k+1),
with the natural action of Pk+1 by right translation.

Proof. The first property will hold if we show that C∞(Nk\Pk, θ
k)(Uk, θk) is the kernel of the

restriction map to C∞(Nk−1\Pk−1, θ
k−1), this is a straightforward adaptation of the proof of

Proposition 2.1 of [C-P].
The second property is a consequence of the following equalities and inclusions:

Φ+(C∞(Nk\Pk, θ
k)) = ind

Pk+1

PkUk+1
(δ

1/2
Uk+1

.IndPk

Nk
(θk)⊗ θk+1)

⊂ Ind
Pk+1

PkUk+1
(δ

1/2
Uk+1

.IndPk

Nk
(θk)⊗ θk+1)

.

Then
δ
1/2
Uk+1

.IndPk

Nk
(θk) ≃ IndPk

Nk
(θk)

because the character δ
1/2
Uk+1

of Pk is trivial on Nk.
Finally

Ind
Pk+1

PkUk+1
(IndPk

Nk
(θk)⊗ θk+1) ≃ Ind

Pk+1

Nk+1
(θk+1)

More can be said about smooth Pk-submodules of the space C∞(Nk\Pk, θ
k) = IndPk

Nk
(θk). If

τ is a Pk-submodule of C∞(Nk\Pk, θ
k), then the derived subgroup of Uk (which is trivial except

in case D) acts trivially.
To see this, take W in C∞(Nk\Pk, θ

k), we claim that if u belongs to the derived subgroup Uder
k

of Uk, then τ(u)W and W are equal. So let p belong to Pk; one has τ(u)W (p) = W (pu) =
W (pup−1p) = θk(pup−1)W (p). But Pk normalizes Uk (so θk(pup−1) = θk(pup

−1)), so that it
normalizes its derived subgroup as well; as θk is trivial on this subgroup, this proves our claim.

For such modules Pk-modules, there is a nice interpretation of V (Uk, 1) in terms of the ana-
lytic behaviour of Whittaker functions. First, we make the following observation.
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Remark 2.1. For k ≥ 3, as a consequence of the Iwasawa decomposition, any element g of Gk−1

can be written in the form pzc with p in Pk−1, z in Zk−1, and k in K = Gk−1(OF ), and the
absolute value of z depends only on g, so we can write it |z(g)|F .
If a function W is in the space of C∞(Nk\Pk, θ

k), then for g in Gk−1, we show that W (g) vanishes
whenever |z(g)|F is large enough.
Indeed if we take the “natural” group isomorphism u from (Fm,+) to Uab

k , for some positive
integer m, and recalling that it is in fact Uab

k that acts on V , then u(x) will fix W for x near zero
in Fm.
But then, for g in Gk−1 of the form pzk, one has W (g) = W (gu(x)) = θk(gu(x)g

−1)W (g),
which is equal θk(zku(x)(cz)

−1)W (g) because Pk−1 normalizes θk. This implies the equality
[θk(zku(x)(kz)

−1) − 1]W (g) = [θk(u(zkx)) − 1]W (g) = 0 for any x in a neighbourhood of zero
depending only on W . The assertion follows easily.

Proposition 2.3. Let (τ, V ) be a Pk-submodule of C∞(Nk\Pk, θ
k). Then the space V (Uk, 1) is

the subspace of V , of functions W such that there exists an integer NW with W (g) = 0, for any
g satisfying |z(g)|F ≤ q−NW

F .

Proof. Suppose first that a function W is in V (Uk, 1), so we can write it π(u)W ′ −W ′ for some
u in Uab

k and some W ′ in V . Then, writing g as pzk, and u as u(x) for x in Fm, we have
[π(u)W ′ −W ′](g) = [θk(u(zkx))− 1]W ′(g), which will be zero to 0 when |z|F is close to zero.
Conversely, we use the characterization of Jacquet and Langlands asserting that the elements W
of V (Uk, 1) = V (Uab

k , 1) are those such that
∫

U τ(u)Wdu is zero as soon as the open compact

subgroup U of Uab
k contains some compact open subgroup UW . So suppose W is in V and that

it vanishes on elements g of Gn−1(F ) satisfying |z(g)|F ≤ q−NW

F .
Let U be any open compact subgroup of Uab

k , that we identify with a subgroup of Fm. The
integral

∫

U τ(u)Wdu evaluated at g = pzk, is equal to
∫

x∈U θk(zkx)W (g)dx. Hence this integral

is always zero for |z|F ≤ q−NW

F because W (g) is.
We now recall that as θk is a non trivial character of Uab

k , there exists a compact open ball U0 of
Uab
k ≃ Fn such that, the integral

∫

x∈U θk(x)dx is zero whenever the compact open subgroup U

of Uab
k contains U0. But then for |z|F ≥ q−NW

F , if tW is an element of F ∗ of absolute value qNW

F ,
the integral

∫

x∈U
θk(zkx)W (g)dx is also zero as soon as U contains tWU0. Hence

∫

U
τ(u)Wdu

is zero when U is a compact open subgroup of Uab
k containing UW = tWU0, and W belongs to

V (Uk, 1).

For any smooth Pn-module τ , and any integer k ≥ 1, we denote by τ(k) the representation of

Pn−k+1 equal to Φk−1τ , and by τ (k) the representation of Gn−k equal to Ψ−Φk−1τ = Ψ−τ(k).
We say that a smooth irreducible representation π of Gn is θn-generic if it is isomorphic to a
submodule of the induced representation IndGn

Nn
(π). If it is the case, the submodule of IndGn

Nn
(π)

isomorphic to π is unique, it is called the Whittaker model of π and denoted by W (π, θn).
Now we let (π, V ) be a θn-generic representation of Gn (hence a smooth Pn-module as well), we
denote by (π′, V ′) the representation of Pn obtained on the space of restrictions of functions in
W (π, θ) to Pn, it is a quotient of π as a Pn-module, and restriction to Pn is known to be an
isomorphism in case A.

The following proposition follows from applying repeatedly Proposition 2.2, and from Propo-
sition 2.3.

Proposition 2.4. Let τ be a smooth Pn-submodule of C∞(Nn\Pn, θ
n), and k ≥ 0 be an integer,

then the Pk+1-module τ(n−k−1) is a submodule of C∞(Nk+1\Pk+1, θ
k+1), with model given by re-

striction of functions [δUk+2
. . . δUn

]−1/2W in τ to Pk+1. In this realisation, one has τ(n−k−1)(p)W =
ρ(p)W for p in Pk+1, where ρ is the action by right translation.
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The next proposition asserts amongst other things that for every k ≥ 1, the Gn−k-module
π(k) has finite length.

Proposition 2.5. If (π, V ) is a smooth representation of Gn of finite length, then for k between
1 and n− 1, the Gk-module π(n−k) (hence its quotient π′(n−k)) has finite length.

Proof. For k ≥ 1, except in case D, k = 2, we denote by Uk,n−k the unique standard unipotent
radical (denoted by U(k;n−k) in the previous section) containing Uαk

as only simple root subgroup.
In case D, for k = 2, we be denote U2,n−2 the unique standard unipotent radical containing Uα1

and Uα2
as only simple root subgroups.

In all cases, the corresponding Levi Mk,n−k is the direct product of Gk with GL(n− k, F ).
Now the module Gk-module π(n−k) is a quotient of the Jacquet Gk ×GL(n− k)-module

(πUk,n−k
, V/V (Uk,n−k, 1)),

as the kernel of the surjective map π ։ π(n−k) contains V (Uk,n−k, 1). More precisely, let Nn−k,A

be the unipotent radical of the standard Borel subgroup of GL(n− k, F ), the group Uk+1 . . . Un
is the semidirect product Nn−k,A ⋉ Uk,n−k, so that the space V (n−k) of π(n−k) is equal to the
quotient

V/V (Nn−k,A ⋉ Uk,n−k, θ
n
|Nn−k,A

⊗ 1Uk,n−k
)

where V is the space of π.
We denote by Ik the surjection obtained by facorisation from VUk,n−k

onto V (n−k). From Lemma
2.32 of [B-Z], the map Ik identifies with the projection

VUk,n−k
։ (VUk,n−k

)Nn−k,A,θn|Nn−k,A

= VUk,n−k
/VUk,n−k

(Nn−k,A, θ
n
|Nn−k,A

).

The map Ik is in fact a Gk-modules morphism, because of the equality of modulus characters

(δUk,n−k
)|Gk

= (δUk+1
. . . δUn

)|Gk

which is itself a consequence of the decomposition

Uk,n−k =
n
∏

i=k+1

(Uk,n−k ∩ Ui).

The groupNA,n−k being a union of compact subgroups, the map Ik preserves exact sequences.
As the Jacquet module functor preserves finite length, the Gk × GL(n − k, F )-module πUk,n−k

has a finite composition series 0 ⊂ (πUk,n−k
)1 ⊂ · · · ⊂ (πUk,n−k

)rk = πUk,n−k
. We put π

(n−k)
i =

Ik[(πUk,n−k
)i].

Hence π
(n−k)
i /π

(n−k)
i−1 is equal to [(πUk,n−k

)i/(πUk,n−k
)i−1]Nn−k,A,θ|Nn−k,A

, but as a Gk ×GL(n−

k, F )-module, the quotient (πUk,n−k
)i/(πUk,n−k

)i−1 isomorphic to ρ1⊗ρ2 for irreducible represen-
tations ρ1 and ρ2 ofGk andGL(n−k, F ) respectively. Because the character θn restricts toNn−k,A

as a nondegenerate character, the quotient π
(n−k)
i /π

(n−k)
i−1 is equal to ρ1⊗(ρ2)Nn−k,A,θn|Nn−k,A

, thus

it is zero unless ρ2 is generic, in which case it is equal to the irreducible representation ρ1.
So we proved that π(n−k) has finite length as Gk-module, smaller than the length of the Jacquet
module πUk,n−k

as a Gk ×GL(n− k, F )-module.

There is another property of the maps Ik defined in the proof of the preceding proposition
that is worth mentioning, which is that their restriction to generalised characteristic subspaces is
nonzero. More formally, let G be an l-group, and T be a closed abelian subgroup of G. If V is a
smooth G-module, following [C], we define for each character χ of T , the T -submodule

Vχ,∞ = {v ∈ V | ∃n ∈ N, ∀t ∈ T, (τ(t) − χ(t)Id)n(v) = 0}.
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If V is T -finite (i.e. every vector in V generates a finite dimensional T -module), then it is the
finite direct sum of its (nonzero by definition) generalised characteristic subspaces, and every such
(nonzero) Vχ,∞ contains the nonzero generalised eigenspace

Vχ = {v ∈ V | ∃n ∈ N, ∀t ∈ T, (τ(t) − χ(t)Id)(v) = 0}.

First recall that smooth (F ∗)r-modules E, with a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er−1 ⊂
Er = E such that (F ∗)r acts by a character on each quotient are (F ∗)r-finite.

Lemma 2.1. Let E be a smooth (F ∗)r-module E, with a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er−1 ⊂
Er = E such that (F ∗)r acts by a character ci+1 on each quotient Ei+1/Ei, then any vector of E
lies in a finite dimensional (F ∗)r-submodule.

Proof. One proves this by induction on the smallest i such that Ei contains v. If this i is 1, the
group (F ∗)r only multiplies v by a scalar, and we are done.
Suppose that the result is known for Ei, and take v in Ei+1 but not in Ei. Then for every t in
(F )∗, the vector τ(t)v − ci+1(t)v belongs to Ei. By smoothness, the set {τ(u)v |t ∈ (UF )

r} is
actually equal to {τ(u)v |u ∈ P} for P a finite set of (UF )

r. The vector space generated by this
set is stabilized by (UF )

r, and has a finite basis v1, . . . , vm. Now the vectors

τ(1, . . . , 1, ̟F , 1, . . . , 1)vl − ci+1(1, . . . , 1, ̟F , 1, . . . , 1)vl

belong to Ei, hence by induction hypothesis, to a finite dimensional (F ∗)r-submodule Vl of Ei.
Finally the finite dimensional space V ect(v1, . . . , vm) + V1 + · · ·+ Vm is stable under (UF )

r and
the elements (1, . . . , 1, ̟F , 1, . . . , 1), hence (F ∗)r, and contains v.

This in particular applies to the ZkZn-module VUk,n−k
and the Zk-module V described in the

proof of Proposition 2.5, as both are respectively Gk × GL(n − k, F ) and Gk-modules of finite
length.

Now we can prove the following property of the maps Ik:

Proposition 2.6. Let (π, V ) be a θn-generic representation of Gn, and for k ≥ 1, let Uk,n−k and
Mk,n−k ≃ Gk×GL(n−k, F ) the subgroups of Gn defined in the proof of Proposition 2.5. Let χ be a
character of the central subgroup ZkZn of Mk,n−k, and denote by the same letter its restriction to
the central subgroup Zk of Gk. If the generalised characteristic subspace (VUk,n−k

)χ,∞ is nonzero,

then the map Ik restricts non trivially to (VUk,n−k
)χ. In particular the space V

(n−k)
χ is nonzero.

Proof. Suppose that the subspace (VUk,n−k
)χ,∞ of VUk,n−k

is nonzero, hence (VUk,n−k
)χ is nonzero.

The space (VUk,n−k
)χ is Mk,n−k-submodule of VUk,n−k

, so it has finite length, hence it contains
some irreducible representation ρ1⊗ρ2 of Mk,n−k. Hence HomMk,n−k

(ρ1⊗ρ2, VUk,n−k
) is nonzero,

but then from Bernstein’s second adjointness theorem (see [Bu], Theorem 3), we deduce that V
is a quotient of the representation ρ1 × ρ2 parabolically induced from ρ1 ⊗ ρ2. As V admits a
nonzero Whittaker form, so does ρ1 × ρ2, and from a classical result of Rodier (Theorem 7 of
[R]), this implies that ρ1 and ρ2 are generic with respect to some nondegenrate character. As
generiticity doesn’t depend on the character for GL(n − k, F ), we deuce that Ik(ρ1 ⊗ ρ2) = ρ1.
Hence Ik restricts non trivially to (VUk,n−k

)χ, and the image Ik[(VUk,n−k
)χ] contains ρ1 which is

a nonzero submodule of V
(n−k)
χ .

We will also need to know that, if k is an integer between 1 and n−1 and χ is a character of Zk,
then the Zk-modules (V (n−k))χ and (V ′(n−k))χ are nonzero at the same time. We already know
from the previous proposition that this is equivalent to the fact that the Zk-modules (V ′(n−k))χ
and (VUk,n−k

)χ are nonzero at the same time, and that (V ′(n−k))χ nonzero implies that (VUk,n−k
)χ

is nonzero.
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Proposition 2.7. If (π, V ) is a θn-generic representation of Gn, and for k ≥ 1, let Uk,n−k and
Mk,n−k ≃ Gk × GL(n − k, F ) be the subgroups of Gn defined in the proof of Proposition 2.5.
Let χ be a character of the central subgroup ZkZn of Mk,n−k, and denote by the same letter its
restriction to the central subgroup Zk of Gk, then the space (VUk,n−k

)χ is nonzero if and only if

the space (V ′(n−k))χ is nonzero.

Proof. We only need to prove that if (VUk,n−k
)χ is nonzero, then the space (V ′(n−k))χ is nonzero.

So suppose that the Mk,n−k-module (VUk,n−k
)χ is nonzero, it is of finite length, hence it contains

an irreducible Mk,n−k-submodule ρ. Call Pk,n−k the parabolic subgroup Mk,n−kUk,n−k, and
P−
k,n−k its opposite parabolic subgroup (with unipotent radical (Uk,n−k)

−). We already saw

that by Bernstein’s second adjointness theorem, the induced representation iGn

P−
k,n−k

(ρ) has π as

a quotient, and therefore iGn

P−
k,n−k

(ρ) is θn-generic. Then from Theorem 7 of [R], the Mk,n−k-

module ρ is θ-generic, where θ is the restriction of θn to the unipotent radical of the Borel
of Mk,n−k. Both have the same Whittaker model W (π, θn), i.e. the (unique up to scalar)

Whittaker form on the space of iGn

P−
k,n−k

(ρ) facorises through the projection from iGn

P−
k,n−k

(ρ) to π.

Let L− be a nonzero θ-Whittaker form on the space of ρ, by Theorems 1.4 and 1.6 of [C-S],
there is a nonzero Whittaker form L on the space of iGn

P−
k,n−k

(ρ) whose restriction to the subspace

C∞
c (P−

k,n−k\P
−
k,n−kUk,n−k, (δU−

k
)1/2ρ) of functions with support in P−

k,n−kUk,n−k is given by

f 7→

∫

Uk,n−k

L−(f(u))θ−1(u)du.

We denote by L̄ the Whittaker form on the space of π which lifts to L. In particular, for any f̄
in the space of π, which is the image of f in C∞

c (P−
k,n−k\P

−
k,n−kUk,n−k), one has

L̄(f̄) =

∫

Uk,n−k

L−(f(u))θ−1(u)du.

Let v be a vector in the space of ρ, such that L−(v) is nonzero. Let K ′ be a compact subgroup of
Gn, with Iwahori decomposition with respect to Pk,n−k, and such that K ′ ∩Mk,n−k fixes v, then
the function α equal to u−mu 7→ ρ(m)v on (Uk,n−k)

−Mk,n−k(Uk,n−k ∩ K ′), and zero outside,
is well defined and belongs to the space C∞

c (P−
k,n−k\P

−
k,n−kUk,n−k, ρ). We denote by Wα the

corresponding Whittaker function g 7→ L̄(π(g)ᾱ). If a belongs to the group Zk, one has

Wα(a) =

∫

Uk,n−k

L−(α(ua))θ−1(u)du

= χ(a)δ
−1/2
Uk,n−k

(a)

∫

Uk,n−k

L−(α(a−1ua))θ−1(u)du

= χ(a)δ
1/2
Uk,n−k

(a)

∫

Uk,n−k

L−(α(u))θ−1(aua−1)du

= χ(a)δ
1/2
Uk,n−k

(a)L−(v)

∫

Uk,n−k

θ−1(aua−1)du

In this last integral, u stays in the compact set Uk,n−k ∩ K ′, hence there is a (punctured)
neighbourhood of zero in Lie(Zk) = F , such that a(Uk,n−k ∩K ′)a−1 is a subset of Ker(θ) when
a belongs to this neighbourhood. Finally, up to multiplication of the function α by a scalar, one
has

Wα(a) = χ(a)δ
1/2
Uk,n−k

(a)L−(v)

whenever a is this neighbourhood of zero.
A similar computation gives the equality

Wα(zg) = χ(z)δUk,n−k
(z)1/2cg
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for z in Zk in a neighbourhood of zero and g in Gk, where cg is the constant
∫

Uk,n−k
L−(α(ug))du.

Hence from Propositions 2.3, 2.4, and the equality (δUk,n−k
)|Gk

= (δUk+1
. . . δUn

)|Gk
, we deduce

that the vector (δUk+2
. . . δUn

)−1/2Wα in the space of π′
(n−k+1) is such that its image in π′(n−k)

is nonzero and belongs to the space (π′(n−k))χ. This proves the proposition.

A straightforward generalisation of the proof of the preceding proposition gives the following
corollary.

Corollary 2.1. Let G be the F -points of a quasi-split reductive group defined over F . Let P be a
parabolic subgroup of G with a Levi subgroup M , and P− its opposite subgroup with P ∩P− = M .
Let (π, V ) be a smooth θ-generic representation of G, for some nondegenerate character θ of the
unipotent radical U of a Borel subgroup of G contained in P . We denote by jP− be the map
defined in Theorem 3.4 of [D] from (V ∗)Uθ to (JP (V )∗)M∩Uθ . If L is a nonzero vector of the
line (V ∗)Uθ , then the linear form jP−(L) restricts non trivially to any irreducible M -submodule
of JP (V ) whenever the Jacquet module JP (V ) is nonzero.

We now come back to the study of F ∗-modules E with finite factor series such that F ∗ acts by
a character on each quotient. From Lemma 2.1, any vector of E will belong to a finite dimensional
F ∗-submodule E′ as in:

Proposition 2.8. If E′ is a non zero finite dimensional F ∗-submodule of E, then E′ has a basis
B in which the action of F ∗r is given by a block diagonal matrix MatB(τ(t)) with each block of
the form:















c(t) c(t)P1,2(vF (t)) c(t)P1,3(vF (t)) . . . c(t)P1,q(vF (t))
c(t) c(t)P2,3(vF (t)) . . . c(t)P2,q(vF (t))

. . .
...

c(t) c(t)Pq−1,q(vF (t))
c(t)















,

for c one of the ci’s, q a positive integer depending on the block, and the Pi,j ’s being polynomials
with no constant term of degree at most j − i.

Proof. First we decompose E′ as a direct sum under the action of the compact abelian group UF .
Because E′ has a filtration by the spaces E′ ∩ Ei, and that F ∗ acts on each sub factor as one of
the ci’s, the group UF acts on each weight space as the restriction of one of the ci’s. Now each
weight space is stable under F ∗ by commutativity, and so we can restrict ourselves to the case
where E′ is a weight-space of UF .
Again E′ has a filtration, such that F ∗ acts on each sub factor as one of the ci’s (with all these
characters having the same restriction to UF ), say ci1 , . . . , cik , in particular, we deduce that the
endomorphism τ(̟F ) has a triangular matrix in a basis adapted to this filtration, with eigenvalues
ci1(̟F ), . . . , cik(̟F ). As τ(̟F ) is trigonalisable, the space E

′ is the direct sum its characteristic
subspaces, and again these characteristic subspaces are stable under F ∗.
So finally one can assume that E′ is a characteristic subspace for some eigenvalue c(π) of τ(̟F ),
on which UF acts as the character c, where c is one of the ci’s.

Hence there is a basis B of E′ such that

MatB(c
−1(t)τ(t)) =















1 A1,2(t) A1,3(t) . . . A1,q(t)
1 A2,3(t) . . . A2,q(t)

. . .
...

1 Aq−1,q(t)
1















for any t in F ∗, where the Ai,j ’s are smooth functions on F ∗. So we only have to prove that the
Ai,j ’s are polynomials of the valuation of F with no constant term.
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We do this by induction on q.
It is obvious when q = 1. Suppose the statement holds for q−1, and suppose that E′ is of dimen-
sion q, with basis B = (v1, . . . , vq). Considering the two c−1τ(F ∗)-modules V ect(v1, . . . , vq−1)
and V ect(v1, . . . , vq)/V ect(v1) of dimension q− 1, we deduce that for every couple (i, j) different
from (1, q), there is a polynomial with no constant term Pi,j of degree at most j − i, such that
Ai,j = Pi,j ◦vF . Now because c−1τ is a representation of F ∗, and because the Pi,j ◦vF ’s vanish on
UF for (i, j) 6= (1, q), we deduce that A1,q is a smooth morphism from (UF ,×) to (C,+), which
must be zero because (C,+) has no nontrivial compact subgroups. From this we deduce that
A1,q is invariant under translation by elements of UF (i.e. A1,q(̟

k
Fu) = A1,q(̟

k
F ) for every U in

UF ).
Denote by M(k) the matrix MatB(c

−1τ(̟k
F )) for k in Z. One has M(k) = M(1)M(k − 1)

for k ≥ 1, which in implies A1,q(̟
k
F ) =

∑q−1
j=2 P1,j(1)Pj,q(k − 1) + A1,q(̟

k−1
F ) + A1,q(̟F ) =

Q(k) +A1,q(̟
k−1
F ) +A1,q(̟F ) for Q a polynomial of degree at most q − 2. This in turn implies

that A1,q(̟
k
F ) =

∑k−1
l=1 Q(l) + kA1,q(̟F ) = R(k) for R a polynomial of degree at most q − 1,

according to the theory of Bernoulli polynomials, for any k ≥ 0. The same reasoning for k ≤ 0,
implies A1,q(̟

k
F ) = R′(k) for R′ a polynomial of degree at most q − 1, for any k ≤ 0. We need

to show that R = R′ to conclude.
We know that M(k) is a matrix whose coefficients are polynomials in k for k > 0 of degree at
most q − 1, we denote it by P (k). The matrix M(k) has the same property for k < 0, we denote
it by P ′(k). Moreover for any k ≥ 0 and k′ ≤ 0, with k+ k′ ≥ 0, one has P (k+ k′) = P (k)P ′(k′).
Fix k > q − 1, then the matrices P (k + k′) and P (k)P ′(k′) are equal for k′ in [1− q, 0], as their
coefficients are polynomials in k′ with degree at most q − 1, the equality P (k + z′) = P (k)P ′(z′)
holds for any complex number z′. Now fix such a complex number z′, the equality P (k + z′)
and P (k)P ′(z′) holds for any integer k > q − 1, and as both matrices have coefficients which are
polynomials in k, this equality actually holds for any complex number z, so that P (z+ z′) equals
P (z)P ′(z′) for any complex numbers z and z′.
As P (0) = Iq , we deduce that P and P ′ are equal on C, and this implies that R is equal to R′.

From this we deduce the following theorem, giving an expansion at infinity of Whittaker
functions of generic representations of Gn, for GL(n), the statement holds for ant smooth Pn-
submodule of finite length of C∞(Nn\Pn):

Theorem 2.1. Let θ be a nondegenerate character of the group Nn, let π be a θ-generic repre-
sentation of Gn, and let c1,n−k, . . . , crk,n−k be the characters of Zk appearing in a composition
series of τ = π(n−k). Then, for any function W in the space of π, the function

W (z1, z2, ..., zn−1) = W (z1z2, ...zn−1)

is a linear combination of functions of the form

n−1
∏

k=1

[cik,kδ
1/2
Uk+1

. . . δ
1/2
Un

](zk)vF (zk)
mkφk(zk)

for ik between 1 and rk, positive integers mk, and functions φk in C∞
c (F ).

Proof. Actually we prove the following stronger statement, which is satisfied by π(0) according to
Proposition 2.5:

. Let π be a submodule of C∞(Nn\Pn, θ), such that for every k between 1 and n − 1, the Gk-
module τ = π(n−k) = Ψ−(Φ−)n−k−1(π) has a composition series such that on each respective
quotient, the central subgroup Zk acts by the characters c1,n−k, . . . , crk,n−k.
Then, for any function W in the space of π, the function W (z1, z2, ..., zn−1) = W (z1z2, ...zn−1)
is a linear combination of functions of the form

n−1
∏

k=1

[cik,kδ
1/2
Uk+1

. . . δ
1/2
Un

](zk)vF (zk)
mkφk(zk)
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for ik between 1 and rk, positive integers mk, and functions φk in C∞
c (F ).

The proof is by induction on n.
Let W belong to the space of π. We denote by v its image in the space E of π(1). The vector v
belongs to a finite dimensional Zn−1-submodule E′ of E, on which Zn−1 acts by a matrix of the
form determined in Proposition 2.8. We fix a basis B = (e1, . . . , eq) of E

′, and denote byM(a) the
matrix MB(τ(a)) (with a in Zn−1 and τ(a) = π(1)(a)), hence we have τ(a)el =

∑q
k=1 M(a)k,lek

for each l between 1 and q.

Taking preimages Ẽ1, . . . , Ẽq of e1, . . . , eq in π(0), we denote by Ẽ the function vector







Ẽ1

...

Ẽq






.

If the image v of W in π(1) is equal to x1e1 + · · · + xqeq, there is an integer M , such that for
every (z1, . . . , zn−2) in Z1 × · · · × Zn−2, the function

W (z1, . . . , zn−1)− (x1, . . . , xq)Ẽ(z1, . . . , zn−1)

vanishes for |zn−1|F ≤ q−MF . We denote by S the function (x1, . . . , xq)Ẽ.
Because of Remark 2.1, there is an integer M ′, such that for any (z1, . . . , zn−2) in Z1 × · · · ×
Zn−2, and any zn−1 in Zn−1 of absolute value greater than qM

′

F , both W (z1, . . . , zn−1) and
S(z1, . . . , zn−1) are zero, so that the difference D(z1, . . . , zn−1) of the two functions is a smooth
function which vanishes whenever zn−1 has absolute value outside [q−MF , qM

′

F ]. Moreover there
is a compact subgroup U of Zn−1(OF ) independent of (z1, . . . , zn−1) such that both functions
(hence D) are invariant when zn−1 is multiplied by an element of U . Denoting by (zα)α ∈ A a
finite set of representatives for

{z |q−MF ≤ |zn−1|F ≤ qM
′

F }/U,

this implies that D(z1, . . . , zn−1) is equal to
∑

α ∈ AD(z1, . . . , zn−2, zα)1zαU (zn−1), which we

can always write as
∑

α ∈ AD(z1, . . . , zn−2, zα)δ
1/2
Un

(zn−1)Dα(zn−1) with Dα = δ
−1/2
Un

1zαU in
C∞
c (Lie(Zn−1)).

Each function D(z1, . . . , zn−2, zα) is equal to W (z1, . . . , zα)−S(z1, . . . , zα), and the restrictions to

Pn−1 of the functions δ
−1/2
Un

[π(zα)D] belong to the smooth submodule Φ−(π) ofC∞(Nn−1\Pn−1, θ),
which still satisfies the hypothesis of the statement.
Hence, by induction hypothesis, the function D is a sum of functions of the form

n−1
∏

k=1

[cik,kδ
1/2
Uk+1

. . . δ
1/2
Un

](zk)vF (zk)
m′

kφ′
k(zk)

for ik between 1 and rk, null or positive integers or integer vectors m′
k, and functions φ′

k in
C∞
c (Lie(Zk)).

Now, call p the projection W ′ 7→ (δ
1/2
Un

W ′)|Pn−1
from π(0) to π(1), then for any a in Zn−1, one

has ρ(a)p(Ẽl) =
∑q

k=1 M(a)k,lp(Ẽk). Hence as ρ(a)p(Ẽl) equals δ
−1/2
Un

(a)π(0)(a)Ẽl, we deduce
that there is a punctured neighbourhood of zero in Zn−1, such that for each l, the function

δ
−1/2
Un

(a)π(0)(a)Ẽl −
∑q
k=1 M(a)k,lẼk vanishes on elements g = pac of Gn−1 (p in Pn−1, a in

Zn−1, c in Gn−1(OF )) such that a is in this neighbourhood.
In particular, there exists Na such that for every (z1, . . . , zn−1), the vector function

δ
−1/2
Un

(a)π(0)(a)Ẽ(z1, . . . , zn−1)−
tM(a)Ẽ(z1, . . . , zn−1)

vanishes when we have |zn−1|F ≤ q−Na

F .

This implies, as in the proof of Proposition 2.6. of [C-P], the following claim:
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Claim. There is actually an M ′′, such that for every z in Zn−1, with |zn−1|F ≤ q−M
′′

F , and every

a in Zn−1, with |a|F ≤ 1, the function Ẽ(z1, . . . , zn−1a) is equal to δ
1/2
Un

(a)tM(a)Ẽ((z1, . . . , zn−1).

Proof of the claim. We denote (z1, . . . , zn−2) by x, and zn−1 by z.
If U is an open compact subgroup of Zn−1(OF ), such that Ẽ and the homomorphism a ∈ Zn−1 7→
M(a) ∈ Gq(C) are U invariant, we denote by u1, . . . , us the representatives of Zn−1(OF )/U , and
by ω, the canonical generator of Zn−1/Zn−1(OF ). We put M ′′ = maxi,j(Nui

, Nω).

Then for z in {z ∈ Zn−1, |z|F ≤ q−M
′′

F }, and a = ωruiu in {z ∈ Zn−1, |z|F ≤ 1} (with u in U ,
and r ∈ N), we have

Ẽ(x, za) = Ẽ(x, zωrui) = δ
1/2
Un

(ui)
tM(ui)Ẽ(x, zωr)

because zωr belongs to {z ∈ Zn−1, |z|F ≤ q−M
′′

F } ⊂ {z ∈ Zn−1, |z|F ≤ q
−Nui

F }. But if r ≥ 1,
again one has

Ẽ(x, zωr) = δ
1/2
Un

(ω)tM(ω)(ωi)Ẽ(x, zωr−1),

and zωr−1 belongs to

{z ∈ Zn−1, |z|F ≤ q−N2

F } ⊂ {z ∈ Zn−1, |z|F ≤ q−Nω

F },

and repeating this step, we deduce the equality Ẽ(x, za) = δ
1/2
Un

(a)tM(a)Ẽ(x, z).

Hence there is an element z0 in Zn−1 with |z0|F = q−M
′′

F , such that for every (z1, . . . , zn−2)

in Z1 × · · · × Zn−2, the vector Ẽ(z1, . . . , zn−1) is equal to

δ
1/2
Un

(zn−1)
tM(zn−1)(zn−1)[δ

−1/2
Un

(z0)
tM(z−1

0 )]Ẽ(z1, . . . , zn−2, z0)

for any zn−1 with |zn−1|F ≤ 1.
Hence the function 1{|zn−1|≤1}S(z1, . . . , zn−1) is equal to

(x1, . . . , xq)
tM(zn−1)(zn−1)[δ

−1/2
Un

(z0)
tM(z−1

0 )]Ẽ(z1, . . . , zn−2, z0)δ
1/2
Un

(zn−1)1{|zn−1|≤1}.

One proves as for the function D, that function 1{|zn−1|>1}(zn−1)S(z1, . . . , zn−1) is of the form

∑

β ∈ B

S(z1, . . . , zn−2, zβ)δ
1/2
Un

(zn−1)Sβ(zn−1)

with Sβ in C∞
c (F ) for some finite set B.

By induction hypothesis again, applied to the function (δ
−1/2
Un

Ẽi)(z1, . . . , zn−2, z0) and the func-

tion (δ
−1/2
Un

S)(z1, . . . , zn−2, zβ), we deduce that the function S = 1{|zn−1|≤1}S + 1{|zn−1|>1}S is a

sum of functions of the form
∏n−1
k=1 cik,n−k(zk)δ

1/2
Uk+1

. . . δ
1/2
Un

(zk)vF (zk)
m′′

j φ′′
k(zk) for ik between 1

and rk, null or positive integers or integer vectors m′′
k , and functions φ′′

k in C∞
c (F ).

The statement follows as the function W equals D + S.

3 L2(ZnNn\Gn) and discrete series

First we characterise the Whittaker functions which belong to
∫

Nn\Pn
|W (p)|2dp in terms of

exponents of the “shifted derivatives” (see [B], 7.2.). This result has been used in [M].
We say that a character of a F ∗ is positive if its (complex) absolute value, is of the form | |rF for
some positive real r.
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Theorem 3.1. Let θ be a nondegenerate character of the group Nn, and π be a θ-generic rep-
resentation of Gn, let the c1,n−k, . . . , crk,n−k be the characters of Zk appearing in a composition
series of τ = π(n−k). Then the integral

∫

Nn\Pn

|W (p)|2dp

converges for any W in π if and only if all the characters cik,kδ
1/2
Uk+1

are positive for k between 1
and n− 1.

Proof. Again we prove the stronger statement:

. Let (π, V ) be a Pn-submodule of C∞(Nn\Pn, θ), such that for every k between 1 and n− 1, the
Gk-module τ = π(n−k) = Ψ−(Φ−)n−k−1(π) has a composition series such that, on each respective
quotient, the central subgroup Zk acts by the characters c1,n−k, . . . , crk,n−k. Then the integral

∫

Nn\Pn

|W (p)|2dp

converges for any W in π if and only if all the characters cik,kδ
1/2
Uk+1

are positive for k between 1
and n− 1.

Suppose first that all the characters cik,kδ
1/2
Uk+1

are positive. Let W belong to the space of π,
first we notice the equality

∫

Nn\Pn

|W (p)|2dp =

∫

Nn−1\Gn−1

|W (g)|2dg.

Now the Iwasawa decomposition reduces the convergence of this integral to that of
∫

An−1

|W (a)|2δ−1
Nn−1

(a)d∗a

Using coordinates (z1, . . . , zn−1) (see Lemma 1.1) of An−1, the function δ−1
Nn−1

(z1, . . . , zn−1) is

equal to
∏n−2
k=1 (δUk+1

. . . δUn−1
)−1(zk).

According to Theorem 2.1 the function |W (z1, . . . , zn−1)|
2 is bounded by a sum of functions of

the form
n−1
∏

k=1

|cik,k|(zk)|clk,k|(zj)(δUk+1 . . . δUn
)(zk)vF (zk)

mkφk(zk).

Hence our integral will converge if the same is true of the integrals

∫

An−1

n−1
∏

k=1

|cik,k|(zk)|clk,k|δUn
(zk)vF (tk)

mkφk(zk)dz1 . . . dzn,

i.e. if the integrals
∫

Zk
|cik,k|(zk)|clk,k|(zk)δUn

(zk)vF (tk)
mkφk(tk)dzk converge for any k between

1 and n− 1.
But the restriction of δUn

to Zk is equal to δUk+1
, so the convergence follows from our assertion

on the characters cik,kδ
1/2
Un

.

Conversely, suppose that every W in π(0) belongs to the space L2(Nn\Pn) corresponding to a
right invariant measure on Nn\Pn.
By Iwasawa decomposition, one gets that

∫

Nn\Pn
|W (p)|2dp =

∫

Nn−1\Gn−1
|W (g)|2dg is equal

to
∫

An−1×Fn
|W (ak)|2δ−1

Nn−1
(a)d∗adk which is greater than dk(U)

∫

An−1
|W (a)|2δ−1

Nn−1
(a)d∗a for

some compact open subgroup U fixing W . In particular the integral
∫

An−1
|W (a)|2δ−1

Nn−1
(a)d∗a

converges for any W in π.
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This by Fubini’s theorem and smoothness of W , implies that
∫

An−2
|W (a)|2δ−1

Nn−1
(a)d∗a is finite

for any W in π. But the restriction of δNn−1
to An−1 is equal to δNn−2

δUn−1
, so that the integral

∫

An−2
|W (a)|2δ−1

Un−1
δ−1
Nn−2

(a)d∗a is finite for W in π, which by Iwasawa decomposition again,

implies that
∫

Nn−1\Pn−1
|δ

−1/2
Un−1

W (p)|2dp is finite.

The functions δ
−1/2
Un−1

W belong to the space of φ−(π), hence by induction, all the characters

cik,kδ
1/2
Uk+1

are positive for k ≤ n− 2. So we only need to check that the characters cin−1,n−1δ
1/2
Un

are positive. Suppose that one of them, c1,n−1δ
1/2
Un

for instance, wasn’t.
Then, taking v nonzero in Ψ−(π) such that Zn−1 multiplies v by c1,n−1, according to Proposition

2.3 and takingW a preimage of v in π, there is a positive integerNa, such that δ
−1/2
Un

(a)π(a)W (g)−

c1,n−1(a)W (g) is zero whenever for any g in Gn−1 with |z(g)|F ≤ q−Na

F . As in Claim 2, this implies

that there is a positive integer N , such that W (ag) is equal to δ
1/2
Un

(a)c1,n−1(a)W (g) whenever

|z(g)|F ≤ q−NF and |a|F ≤ 1. We recall that W doesn’t belong to V (Un, 1) (otherwise v would
be zero), hence according to Proposition 2.3, there is g0 in Gn−1 with |z(g0)|F ≤ q−NF , such that
W (g0) is nonzero. We denote by W0 the function π(g0)W , and we recall that the integral

∫

An−1

|W0(a)|
2δ−1
Nn−1

(a)d∗a =

∫

Z1×···×Zn−1

|W0(z1 . . . zn−1)|
2δ−1
Nn−1

(z1 . . . zn−1)dz1 . . . dzn−1,

is finite. Hence the smoothness of W0 and Fubini’s theorem imply that the integral

∫

Zn−1

|W0(zn−1)|
2δ−1
Nn−1

(zn−1)dzn−1 =

∫

Zn−1

|W0(zn−1)|
2dzn−1

is finite. But for |zn−1|F ≤ 1, the function W0(zn−1) is equal to δ
1/2
Un

(zn−1)c1,n−1(zn−1)W (g0)

with W (g0) nonzero, hence it is square integrable at zero if and only if δUn
c21,n−1, thus δ

1/2
Un

c1,n−1

is positive.

Remark 3.1. The last proof more or less contains the following fact (which is more precisely a
consequence of an induction, and the last step of the proof):
For every character cik,n−k appearing in a factor series of π(n−k), there is W in V , such that

W (zk) is equal to [cik,n−kδ
1/2
Uk+1

. . . δ
1/2
Un

](zk) near zero. Hence this family of characters is minimal
in the sense that each of them must occur in the expansion given in Proposition 2.1 of some W
in V .

From this we deduce a characterization of the Whittaker functions in L2(ZnNn\Gn).

Corollary 3.1. Let θ be a nondegenerate character of the group Nn, and π be a θ-generic repre-
sentation of Gn with unitary central character, let the c1,n−k, . . . , crk,n−k be the central characters
appearing in the factor series of τ = π(n−k). Then the integral

∫

ZnNn\Gn

|W (g)|2dg

converges for any W in π if and only if all the characters cik,k are positive for k between 1 and
n− 1.

Proof. By the Iwasawa decomposition, the integral
∫

ZnNn\Gn
|W (g)|2dg converges for every W

in W (π, θ) if and only if the
∫

An−1
|W (a)|2δ−1

Nn
(a)dg converges for every W in W (π, θ).

As the character δNn
restricts to Gn−1 as δNn−1

δUn
, this integral is equal to

∫

An−1

|δ
−1/2
Un

W (a)|2δ−1
Nn−1

(a)dg.
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But this integral converges for any W in W (π, θ) if and only if so does the integral

∫

Nn\Pn

|δ
−1/2
Un

W (p)|2dp

for any W in W (π, θ).

By the statement in the proof of theorem 3.1, applied to δ
−1/2
Un

⊗ π′, this is the case if and only
all the characters cik,k are positive for k between 1 and n− 1.

Let P be a standard proper parabolic subgroup of Gn, U its unipotent radical, and M its
standard Levi subgroup. If (π, V ) is a smooth irreducible representation of Gn, one calls cuspidal
exponent of π with respect to P , a character χ of the center ofM such that the characteristic space
of the Jacquet module (VU )χ,∞ is nonzero. Denoting by ∆ the set of simple roots {α1, . . . , αn} of
Gn, We denote by P {i1,...,it} the standard parabolic subgroup associated with the set of positive
roots ∆ − {αi1 , . . . , αit}, by U{i1,...,it} its unipotent radical, by M{i1,...,it} its standard Levi
subgroup, which admits as a central subgroup the product Zi1 . . . Zit .
Notice that except for case D, for {i1, . . . , it} = {2}, where we used the notation U2,n−2 for U

{1,2},
the group U{k} is what we already denoted by Uk,n−k before.
We denote by A−

i1,...,it
the set

{zi1 . . . zit ∈ Zi1 . . . Zit , |zik |F ≤ 1, and |zi1 . . . zit |F < 1}.

Theorem 4.4.6 of [C] then asserts that π with unitary central character is a discrete series
representation if and only if, for every standard parabolic subgroup P {i1,...,it}, if χ is a cuspidal
exponent of π with respect to P {i1,...,it}, the restriction of χ to A−

i1,...,it
is less than 1, or equiva-

lently if χ restricted to Zi1 . . . Zit is positive.
We also notice that for any k, the Jacquet module VU{ik} surjects onto VU{i1,...,it} , and that the
character δU{i1,...,it} restricts to Zik as δU{ik} , hence if χ is a cuspidal exponent of π with respect
to P {i1,...,it}, then χ|Zik

is the restriction to Zik of a cuspidal exponent of π with respect to P {ik}.
This implies that π irreducible with unitary central character is a discrete series representation if
and only if the cuspidal exponents of π with respect to maximal parabolic subgroups P {ik} have
positive restriction to Zik .

We call a character χ of Zk such that (V (n−k))χ (or equivalently (V (n−k))χ,∞) is nonzero an
exponent of the derivative (π(n−k), V (n−k)). Now we recall that we showed in Proposition 2.7,
that the Zk modules VUk,n−k

and V (n−k) have the same nonzero weight subspaces. This allows
to prove in our four cases the following conjecture of Lapid and Mao ([L-M], conjecture 3.5).

Theorem 3.2. Let π be a generic representation of Gn with unitary central character and with
Whittaker model W (π, θ), then the following statements are equivalent:

i) The integral
∫

NnZn\Gn

|W (g)|2dg

converges for any W in W (π, θ).

ii) All the exponents of the derivatives of π are positive.

iii) the representation π is square-integrable.

Proof. By assumption, the exponents of the derivatives of π are the characters cik,k of corollary
3.1, hence i) ⇔ ii) is corollary 3.1.
ii) ⇔ iii): we treat the case D separately, so assume first that Gn is not GSO(2(n− 1), F ).
By Proposition 2.6, every cuspidal exponent of π corresponding to VU{k} is positive if and only
if every exponent of the derivative π(n−k) is positive. But we have already seen that this implies
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that π is a discrete series representation.
For the case D, we could have reversed the roles of the roots α1 and α2 (which correspond to
the two symmetric roots at the end of the Dynkin diagram). The only effect it would have is
to change the definition of the derivative functors π(n−2) and π(n−1). Indeed U2 would become
Uα2

, Z1 and Z2 would be exchanged. The character θ3 would have to be trivial on Uα2
instead

of being trivial on Uα1
. But i) and ii) would still be equivalent in this case, and i) is independent

of these choices.
In both cases, the maps Ik from VUk,n−k

to V (n−k) take nonzero weight subspaces to nonzero
weight subspaces. For n ≥ 3, the space VUk,n−k

is equal to VU{k} . In the first case, VU1,n−1
is

equal to VU{1} = VUα1
, and it is equal to VU{2} = VUα2

in the second case. This implies that all
the exponents of the derivatives of π are positive if and only if all cuspidal exponents of π with
respect to maximal parabolic subgroups are positive. Again this proves ii) ⇔ iii).
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