Derivatives and Asymptotics of Whittaker functions

Nadir Matringe

To cite this version:

Nadir Matringe. Derivatives and Asymptotics of Whittaker functions. 2010. hal-00470419v1

HAL Id: hal-00470419
 https://hal.science/hal-00470419v1
 Preprint submitted on 6 Apr 2010 (v1), last revised 6 Apr 2010 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Derivatives and asymptotics of Whittaker functions

Nadir MATRINGE*

April 6, 2010

Abstract

Let F be a p-adic field, and G_{n} one of the groups $G L(n, F), G S O(2 n-1, F), G S p(2 n, F)$, or $\operatorname{GSO}(2(n-1), F)$. Using the mirabolic subgroup or analogues of it, and related "derivative" functors, we give an asymptotic expansion of functions in the Whittaker model of generic representations of G_{n}, with respect to a minimal set of characters of subgroups of the maximal torus. Denoting by Z_{n} the center of G_{n}, and by N_{n} the unipotent radical of its standard Borel subgroup, we characterize generic representations occurring in $L^{2}\left(Z_{n} N_{n} \backslash G_{n}\right)$ in terms of these characters. This is related to a conjecture of Lapid and Mao for general split groups, asserting that the generic representations occurring in $L^{2}\left(Z_{n} N_{n} \backslash G_{n}\right)$ are the generic discrete series; we prove it for the group G_{n}.

Introduction

Let G_{n} be the points of one of the groups $G L(n), G S O(2 n-1), G S p(2 n)$, or $G S O(2(n-1))$ over a p-adic field K. The main result (Theorem 2.1) of this work describes the asymptotic behaviour of the restriction of Whittaker functions to the standard maximal torus, in terms of a family of characters which is minimal in some sense. From results of (L-M, this restriction can be described for split reductive groups in terms of cuspidal exponents.
Here, after having defined analogues of the mirabolic subgroup for the groups G_{n}, and the corresponding derivative functors, following [C-P (where the case of completely reducible derivatives is treated for $G L(n)$), we choose to describe the restriction of Whittaker functions to the torus in terms of central exponents of the derivatives.
This description, inspired by $[\mathrm{B}$, is better adapted to understanding when the Whittaker model of a unitary generic representation is a subspace of $L^{2}\left(Z_{n} N_{n} \backslash G_{n}\right)$ (these representations are conjectured to be generic discrete series by Lapid and Mao).
In the first section, we review the groups in question and define their mirabolic subgroups. We also give a decomposition of the unipotent radical of the standard Borel subgroup, and a description of how nondegenerate characters of this radical behave with respect to this decomposition.
In Section 2, we give properties of the derivative functors, and use them to prove our asymptotic expansion of Whittaker functions, which is Theorem 2.1.
In section 3, we characterize generic representations with Whittaker model included in $L^{2}\left(Z_{n} N_{n} \backslash G_{n}\right)$ in terms of central exponents of the derivatives, in Corollary 3.1 We then prove in Theorem 3.2 the conjecture 3.5 of $[\mathrm{L}-\mathrm{M}$].

[^0]
1 Mirabolic subgroup and nondegenerate characters

Let F be nonarchimedean local field, we denote by \mathfrak{O}_{F} its ring of integer, and by $\mathfrak{P}_{F}=\varpi_{F} \mathfrak{O}_{F}$ the maximal ideal of this ring, where ϖ_{F} is a uniformiser of F.
We give a list of groups, and describe some of their properties which will be used in the sequel:

- Case A:

The group G_{0} is trivial, and for $n \geq 1$, the group G_{n} is $G L(n, F)$.
We consider the maximal torus of G_{n} consisting of diagonal matrices, it is isomorphic to $\left(F^{*}\right)^{n}$.
For $n \geq 2$, the simple roots of this group can be chosen to be the characters

$$
\alpha_{i}\left(\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)\right)=x_{i} x_{i+1}^{-1}
$$

for i between 1 and $n-1$.
The root subgroup $U_{\alpha_{i}}$ is given by matrices of the form $I_{n}+x E_{i, i+1}$ for x in F.

Standard Levi subgroups of G_{n} are given by matrices of the form $\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right)$ where a_{i} belongs to $G L\left(n_{i}, F\right)$, with $n_{1}+\cdots+n_{r}=n$. We denote the preceding group by $M_{\left(n_{1}, \ldots, n_{r}\right)}$, and the corresponding standard parabolic subgroup is denoted by $P_{\left(n_{1}, \ldots, n_{r}\right)}$, with unipotent radical $U_{\left(n_{1}, \ldots, n_{r}\right)}$.

For $n \geq 2$ we denote by U_{n} the group $U_{(n-1,1)}$, of matrices of the form $\left[\begin{array}{ll}I_{n-1} & V \\ & 1\end{array}\right]$.
It is isomorphic to F^{n-1}.

For $n>k \geq 1$, the group G_{k} embeds naturally in G_{n}, and is given by matrices of the form $\operatorname{diag}\left(g, I_{n-k}\right)$; we denote by Z_{k} its center.
We denote by P_{n} the mirabolic subgroup $G_{n-1} \ltimes U_{n}$.

- Case B:

The group G_{0} is trivial.
For $n \geq 2$, the group $G_{n}=G O(2 n-1, F)$ is the group of matrices g in $G L(2 n-1, F)$ such that ${ }^{t} g J g$ belongs to $F^{*} J$. We call the multiplier of an element g in G_{n} the scalar $\mu(g)$ such that ${ }^{t} g J g$ is equal to $\mu(g) J$ (one checks that for this group, the multiplier actually belongs to $\left.\left(F^{*}\right)^{2}\right)$, where J is the antidiagonal matrix of $G L(2 n-1, F)$ with ones on the second diagonal. It is the direct product of $S O(2 n-1, F)$ with F^{*}, more precisely, of $S O(2 n-1, F)$ and the group $I\left(F^{*}\right)$ of matrices $I(t)=t I_{2 n-1}$ for t in F^{*}.

The maximal torus of G_{n} is equal to the product of the torus of matrices of the form $\operatorname{diag}\left(x_{n-1}^{-1}, \ldots, x_{1}^{-1}, 1, x_{1}, \ldots, x_{n-1}\right)$ with $I\left(F^{*}\right)$ and is isomorphic to $\left(F^{*}\right)^{n}$.
For $n \geq 3$, the simple roots of this group can be chosen to be the characters

$$
\alpha_{i+1}\left(\operatorname{diag}\left(t x_{n-1}^{-1}, \ldots, t x_{1}^{-1}, t, t x_{1}, \ldots, t x_{n-1}\right)\right)=x_{i} x_{i+1}^{-1}
$$

for i between 1 and $n-2$, and $\alpha_{1}\left(\operatorname{diag}\left(t x_{n-1}^{-1}, \ldots, t x_{1}^{-1}, t, t x_{1}, \ldots, t x_{n-1}\right)\right)=x_{1}^{-1}$. The root subgroups $U_{\alpha_{i}}$ are given by matrices of the form

$$
\operatorname{diag}\left(u, \ldots, 1, u, 1, \ldots, 1, u^{-1}, 1, \ldots, 1\right)
$$

for matrices u in the unipotent radical of the Borel of $G L(2, F)$.

For $n>k \geq 1$, the group G_{k} embeds naturally in G_{n}, and is given by matrices of the form $\operatorname{diag}\left(\mu(g) I_{k}, g, I_{n-k}\right)$, where $\mu(g)$ is the multiplier of the element g of G_{k}.
Its center Z_{k} is given by matrices of the form $z_{k}(t)=\operatorname{diag}\left(t^{2} I_{n-k}, t I_{2 k-1}, I_{n-k}\right)$ for t in K^{*}.

For $n \geq 1$, the standard Levi subgroups of G_{n} are given by matrices of the form

$$
\operatorname{diag}\left(\mu(g)^{\tau} a_{r-1}^{-1}, \ldots, \mu(g)^{\tau} a_{1}^{-1}, g, a_{1}, \ldots, a_{r}\right)
$$

where a_{i} belongs to $G L\left(n_{i}, F\right),{ }^{\tau} a$ is the transpose of a with respect to the second diagonal, g belongs to G_{m}, with $2 m-1+2 n_{1}+\cdots+2 n_{r}=2 n-1$. We denote the preceding group by $M_{\left(m ; n_{1}, \ldots, n_{r}\right)}$, and the corresponding standard parabolic subgroup consisting of block upper triangular matrices is denoted by $P_{\left(m ; n_{1}, \ldots, n_{r}\right)}$, with unipotent radical $U_{\left(m ; n_{1}, \ldots, n_{r}\right)}$.

For $n \geq 2$ we denote by U_{n} the group $U_{(n-1 ; 1)}$, of matrices of the form $\left[\begin{array}{ccc}1 & -\tau V & -\tau V V / 2 \\ & I_{2 n-3} & V \\ & & 1\end{array}\right]$.
It is isomorphic to $F^{2 n-3}$.

For $n \geq 2$, we denote by P_{n} the "mirabolic" subgroup $G_{n-1} \ltimes U_{n}$.

- Case C:

The group G_{0} is trivial, the group G_{1} is F^{*}.
For $n \geq 2$, the group $G_{n}=G S p(2(n-1), F)$, where $G S p(2(n-1), F)$ is the group of matrices g in $G L(2(n-1), F)$ such that ${ }^{t} g J g$ belongs to $F^{*} J$, where $J=\left[\begin{array}{cc}0 & W \\ -W & 0\end{array}\right]$ and W is the antidiagonal matrix of $G L(n-1, F)$ with ones on the second diagonal. It is the semi-direct product of $S p(2(n-1), F)$ with F^{*}, more precisely, of $S p(2 n, F)$ and the group $I\left(F^{*}\right)$ of matrices $I(t)=\operatorname{diag}\left(t I_{n-1}, I_{n-1}\right)$ for t in F^{*}.

The maximal torus of G_{n} is equal to the product of the torus of matrices of the form $\operatorname{diag}\left(x_{n-1}^{-1}, \ldots, x_{1}^{-1}, x_{1}, \ldots, x_{n-1}\right)$ with $I\left(F^{*}\right)$ and is isomorphic to $\left(F^{*}\right)^{n}$.
The simple roots of this group are the characters $\alpha_{i+1}\left(\operatorname{diag}\left(t x_{n-1}^{-1}, \ldots, t x_{1}^{-1}, x_{1}, \ldots, x_{n-1}\right)\right)=$ $x_{i} x_{i+1}^{-1}$ for i between 1 and $n-2$, and $\alpha_{1}\left(\operatorname{diag}\left(t x_{n-1}^{-1}, \ldots, t x_{1}^{-1}, x_{1}, \ldots, x_{n-1}\right)\right)=t x_{1}^{-2}$.
For i less than n, the root subgroup $U_{\alpha_{i}}$ is given by matrices of the form

$$
\operatorname{diag}\left(1, \ldots, 1, u, 1, \ldots, 1, u^{-1}, 1, \ldots, 1\right)
$$

for matrices u in the unipotent radical of the Borel of $G L(2, F)$, whereas $U_{\alpha_{n}}$ is given by matrices $\operatorname{diag}(1, \ldots, 1, u, 1, \ldots, 1)$, for matrices u in the unipotent radical of the Borel of $G L(2, F)$.

For $n>k \geq 2$, the group G_{k} embeds naturally in G_{n}, and is given by matrices of the form $\operatorname{diag}\left(\mu(g) I_{n-k}, g, I_{n-k}\right)$, where $\mu(g)$ is the multiplier of the element g of G_{k}. Its center Z_{k} is given by matrices of the form $z_{k}(t)=\operatorname{diag}\left(t^{2} I_{n-k}, t I_{2(k-1)}, I_{n-k}\right)$ for t in F^{*}. The group G_{1}, which is equal to its center Z_{1}, embeds as $I\left(F^{*}\right)$.

For $n \geq 1$, the standard Levi subgroups of G_{n} are:

- either matrices

$$
\operatorname{diag}\left(\mu(g)^{\tau} a_{r-1}^{-1}, \ldots, \mu(g)^{\tau} a_{1}^{-1}, g, a_{1}, \ldots, a_{r}\right)
$$

where a_{i} belongs to $G L\left(n_{i}, F\right), g$ belongs to G_{m} with $m \geq 2$, with $2(m-1)+2 n_{1}+$ $\cdots+2 n_{r}=2(n-1)$. We denote the preceding group by $M_{\left(m ; n_{1}, \ldots, n_{r}\right)}$, and the corresponding standard parabolic subgroup consisting of block upper triangular matrices is
denoted by $P_{\left(m ; n_{1}, \ldots, n_{r}\right)}$, with unipotent radical $U_{\left(m ; n_{1}, \ldots, n_{r}\right)}$.

- or the matrices

$$
z_{1} \cdot \operatorname{diag}\left(a_{r-1}^{-1}, \ldots, a_{1}^{-1}, a_{1}, \ldots, a_{r}\right),
$$

with a_{i} in $G L\left(n_{i}, F\right), 2 n_{1}+\cdots+2 n_{r}=2(n-1)$, and z_{1} in G_{1}.
For $n \geq 2$, we denote by U_{n} the group $U_{(n-1 ; 1)}$, of matrices of the form $\left[\begin{array}{cccc}1 & -V_{2} & V_{1} & x \\ & I_{n-2} & & V_{1} \\ & & I_{n-2} & V_{2} \\ & & & 1\end{array}\right]$.
For $n \geq 3$, it is an extension of $F^{2(n-2)}$ by F, which is the Heisenberg group corresponding to the alternating bilinear form on $F^{2(n-2)}$, given by $\left(W_{1}, W_{2}\right) \times\left(V_{1}, V_{2}\right) \mapsto-{ }^{\tau} W_{2} \cdot V_{1}+{ }^{\tau} W_{1} \cdot V_{2}$. It is a two steps nilpotent subgroup, with center equal to its derived subgroup, given by matrices with $V_{1}=V_{2}=0$, and the maximal abelian quotient $U_{n}^{a b}$ of U_{n} is $F^{2(n-2)}$. The group U_{2} is the unipotent radical of the standard Borel of $G_{2}=G S p(2, F)=G L(2, F)$, and is isomorphic to $(F,+)$.

For $n \geq 2$, we denote by P_{n} the "mirabolic" subgroup $G_{n-1} \ltimes U_{n}$.

- Case D:

We denote by G_{0} the trivial group. The group G_{1} is F^{*}.

For $n \geq 2$, the group $G_{n}=G S O(2(n-1), F)$ is the group of matrices g in $G L(2 n, F)$ satisfying that ${ }^{t} g J g$ belongs to $F^{*} J$, where J is the antidiagonal matrix of $G L(2 n, F)$ with ones an the second diagonal. It is the semi-direct product of $S O(2(n-1), F)$ with the group $I\left(F^{*}\right)$, of the matrices $I(t)=\operatorname{diag}\left(t I_{n}, I_{n}\right)$ for t in F^{*}.

The maximal torus of G_{n} is equal to the product of the torus of matrices of the form $\operatorname{diag}\left(x_{n-1}^{-1}, \ldots, x_{1}^{-1}, x_{1}, \ldots, x_{n-1}\right)$ with $I\left(F^{*}\right)$ and is isomorphic to $\left(F^{*}\right)^{n}$.
If n is 2 , then G_{2} is the diagonal torus of $G L(2, F)$.
For $n \geq 3$, the simple roots of this group can be chosen to be the characters

$$
\alpha_{i+1}\left(\operatorname{diag}\left(t x_{n-1}^{-1}, \ldots, t x_{1}^{-1}, x_{1}, \ldots, x_{n-1}\right)\right)=x_{i} x_{i+1}^{-1}
$$

for i between 1 and $n-2$, and $\alpha_{1}\left(\operatorname{diag}\left(t x_{n}^{-1}, \ldots, t x_{1}^{-1}, x_{1}, \ldots, x_{n}\right)\right)=t x_{1}^{-1} x_{2}^{-1}$.
For $i \geq 1$, the root subgroup $U_{\alpha_{i+1}}$ is given by matrices of the form

$$
\operatorname{diag}\left(1, \ldots, 1, u, 1, \ldots, 1, u^{-1}, 1, \ldots, 1\right)
$$

for matrices u in the unipotent radical of the Borel of $G L(2, F)$, whereas $U_{\alpha_{1}}$ is given by matrices $\operatorname{diag}(1, \ldots, 1, u, 1, \ldots, 1)$ for matrices u of the form $\left[\begin{array}{cccc}1 & & y & \\ & 1 & & -y \\ & & 1 & \\ & & & 1\end{array}\right]$, with y in F.

For $n>k \geq 2$, the group G_{k} embeds naturally in G_{n}, and is given by matrices of the form $\operatorname{diag}\left(\mu(g) I_{n-k}, g, I_{n-k}\right)$, where $\mu(g)$ is the multiplier of the element g of G_{k}. For $k \geq 3$, its center Z_{k} is given by matrices of the form $z_{k}(t)=\operatorname{diag}\left(t^{2} I_{n-k}, t I_{2(k-1)}, I_{n-k}\right)$ for t in F^{*}.
We denote by Z_{2} the subgroup of the torus G_{2}, given by matrices of the form $\mathbf{z}_{\mathbf{2}}(\mathbf{t})=\operatorname{diag}\left(\mathbf{t I}_{\mathbf{n - 2}}, \mathbf{1}, \mathbf{t}, \mathbf{I}_{\mathbf{n}-\mathbf{2}}\right)$ for t in F^{*}.
The group G_{1} which is equal to its center Z_{1}, embeds as $I\left(F^{*}\right)$.

The standard Levi subgroups of G_{n} are the following:

- The groups given by matrices of the form

$$
\operatorname{diag}\left(\mu(g)^{\tau} a_{r}^{-1}, \ldots, \mu(g)^{\tau} a_{1}^{-1}, g, a_{1}, \ldots, a_{r}\right)
$$

where a_{i} belongs to $G L\left(n_{i}, F\right), g$ belongs to G_{m} with $m \geq 3$, with $2(m-1)+2 n_{1}+$ $\cdots+2 n_{r}=2(n-1)$. We denote the preceding group by $M_{\left(m ; n_{1}, \ldots, n_{r}\right)}$, and the corresponding standard parabolic subgroup is denoted by $P_{\left(m ; n_{1}, \ldots, n_{r}\right)}$, with unipotent radical $U_{\left(m ; n_{1}, \ldots, n_{r}\right)}$.

- The groups given by matrices of the form

$$
g_{2} \cdot \operatorname{diag}\left({ }^{\tau} a_{r}^{-1}, \ldots,,^{\tau} a_{1}^{-1}, 1,1, a_{1}, \ldots, a_{r}\right)
$$

with a_{i} in $G L\left(n_{i}, F\right), 2 n_{1}+\cdots+2 n_{r}=2(n-2)$, and g_{2} in G_{2}.

- The groups given by matrices of the form

$$
z_{1} \cdot \operatorname{diag}\left({ }^{\tau} a_{r}^{-1}, \ldots,{ }^{\tau} a_{1}^{-1}, a_{1}, \ldots, a_{r}\right),
$$

with a_{i} in $G L\left(n_{i}, F\right), 2 n_{1}+\cdots+2 n_{r}=2(n-1)$, and z_{1} in G_{1}.

- The groups given by matrices of the form

$$
z_{2} \cdot \operatorname{diag}\left({ }^{\tau} a_{r}^{-1}, \ldots,{ }^{\tau} a_{1}^{-1}, g, a_{1}, \ldots, a_{r}\right),
$$

where a_{i} belongs to $G L\left(n_{i}, F\right)$, and g in $G L(2(m-1), F)$ is of the form

$$
\left[\begin{array}{cccc}
A & & V & \\
& t^{\prime} & & L^{\prime} \\
L & & t & \\
& V^{\prime} & & A^{\prime}
\end{array}\right]
$$

with

$$
\left[\begin{array}{cc}
A & V \\
L & t
\end{array}\right] \in G L(m-1, F)
$$

A a $(m-2 \times m-2)$-matrix,

$$
\left[\begin{array}{ll}
{ }^{\tau} A^{\prime} & { }^{\tau} L^{\prime} \\
{ }^{\tau} V^{\prime} & t^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A & V \\
L & t
\end{array}\right]^{-1}
$$

with $2 m+2 n_{1}+\cdots+2 n_{r}=2 n$ and z_{2} in Z_{2}.
For $n \geq 3$ we denote by U_{n} the subgroup $U_{(n-1 ; 1)}$ of G_{n}, of matrices of the form

$$
\left[\begin{array}{ccc}
1 & -\tau V & -\tau_{V} V / 2 \\
& I_{2(n-2)} & V \\
& & 1
\end{array}\right]
$$

It is isomorphic to $F^{2 n-2}$.

For $n \geq 3$ denote by P_{n} the "mirabolic" subgroup $G_{n-1} \ltimes U_{n}$.
We denote by U_{2} the group $U_{\alpha_{1}}$, and by P_{2} the group $G_{1} \ltimes U_{2}$.
Lemma 1.1. We denote by Z_{i} the center of G_{i}, except in case D when $n=2$, where we denote by Z_{2} the subgroup diag $(1, t)$ with t in F^{*} of G_{2}. In all cases, one checks that the maximal torus A_{n} of G_{n} is the direct product $Z_{1} . Z_{2} \ldots Z_{n-1} . Z_{n}$, and each Z_{i} is isomorphic to F^{*}. Moreover, the i-th root has the property that $\alpha_{i}\left(z_{1} \ldots z_{n}\right)=z_{i}$, in other words these coordinates parametrize the torus A_{n} such that simple roots become canonical projections.

The unipotent radical N_{n+1} of the standard Borel subgroup of G_{n+1} is equal to $U_{2} \ldots U_{n+1}$. Let θ be a nondegenerate character of N_{n+1} (i.e. that restricts non trivially to any of the simple root subgroups). We denote by θ_{i+1} the character $\theta_{\mid U_{i+1}}$, except in the case D, for $i=2$. In this case $U_{3}=U_{\alpha_{1}} \times U_{\alpha_{2}}$, and we denote by θ_{3} the character $\theta_{3}\left(u_{\alpha_{1}} u_{\alpha_{2}}\right)=\theta\left(u_{\alpha_{2}}\right)$.
Because θ is trivial on $U_{\text {der }}$, and according to the description of $U_{\text {der }}$ in Theorem 4.1 of $[\mathrm{B}-\mathrm{H}]$, the character θ_{i+1} must be trivial on every root subgroup U_{α} contained in U_{i+1} such that α is not simple, moreover for case $\mathrm{D}, n=2$, the character θ_{3} is trivial on $U_{\alpha_{1}}$.
Conversely, if a non trivial character θ_{i+1} of U_{i+1} is trivial on every $U_{\alpha} \subset U_{i+1}$ which is not simple, and if, in case $\mathrm{D}, n=2$, we impose in addition that θ_{3} is trivial on $U_{\alpha_{1}}$, then one checks that the normalizer of θ_{i+1} in the mirabolic subgroup P_{i+1} is $P_{i} U_{i+1}$. As the group $U_{2} \ldots U_{i}$ is a subgroup of P_{i}, a family of non trivial characters θ_{i+1} of U_{i+1}, trivial on every $U_{\alpha} \subset U_{i+1}$ except $U_{\alpha_{i}}$, defines a nondegenerate character of $N_{n+1}=U_{2} \ldots U_{n+1}$ by $\theta\left(u_{2} \ldots u_{n+1}\right)=\prod_{i=1}^{n} \theta_{i+1}\left(u_{i+1}\right)$.

Now we fix such a nondegenerate character θ, and write θ^{k} for the character $\theta_{2} \ldots \theta_{k}$ of N_{k}.

2 Derivatives and Whittaker functions

If G is an l-group, we denote by $\operatorname{Alg}(G)$ the category of smooth complex G-modules. If (π, V) belongs to $\operatorname{Alg}(G), H$ is a closed subgroup of G, and χ is a character of H, we denote by $V(H, \chi)$ the subspace of V generated by vectors of the form $\pi(h) v-\chi(h) v$ for h in H and v in V. This space is actually stable under the action of the subgroup $N_{G}(\chi)$ of the normalizer $N_{G}(H)$ of H in G, which fixes χ.
We denote by δ_{H} the positive character of $N_{G}(H)$ such that if μ is a right Haar measure on G, and λ is the left translation of smooth functions with compact support on G, then $\mu \circ \lambda\left(n^{-1}\right)=\delta_{H}(n) \mu$ for n in N.
This gives the spaces $V(H, \chi)$ and $V_{H, \chi}=V / V(H, \chi)$ (that we simply denote by V_{H} when χ is trivial) a structure of smooth $N_{G}(\chi)$-modules.

Notations being as in the first section, and for k be an integer between 2 and n we define the following functors:

- First we recall the definition of the Jacquet functors:

Let P be a parabolic subgroup of G_{n}, with Levi subgroup M, and unipotent radical U.
We denote by J_{P} the functor from $\operatorname{Alg}\left(G_{n}\right)$ to $\operatorname{Alg}(M)$ such that, if (π, V) is a smooth G_{n}-module, we have $J_{P}(V)=V_{U}$, and M acts on $J_{P}(V)$ by $J_{P} \pi(m)(v+V(U, 1))=$ $\delta_{U}(m)^{-1 / 2} \pi(m) v+V(U, 1)$.

- With the same notations, we denote by i_{P}^{G} the functor from $\operatorname{Alg}(M)$ to $\operatorname{Alg}\left(G_{n}\right)$ such that, if ρ is a smooth M-module, and $\bar{\rho}$ is the corresponding P-module obtained by inflation of ρ to P, then $i_{P}^{G}(\rho)$ is the G_{n}-module $i n d_{P}^{G_{n}}(\bar{\rho})$ where $i n d$ is the usual compact induction.
- The functor $\Phi_{\theta_{k}}^{-}$(denoted $r_{U_{k}, \theta_{k}}$ in section 1 of [B-Z.2]) from $\operatorname{Alg}\left(P_{k}\right)$ to $\operatorname{Alg}\left(P_{k-1}\right)$ such that, if (π, V) is a smooth P_{k}-module, $\Phi_{\theta_{k}}^{-} V=V_{U_{k}, \theta_{k}}$, and P_{k-1} acts on $\Phi_{\theta_{k}}^{-}(V)$ by $\Phi_{\theta_{k}}^{-} \pi(p)\left(v+V\left(U_{k}, \theta_{k}\right)=\delta_{U_{k}}(p)^{-1 / 2} \pi(p)\left(v+V\left(U_{k}, \theta_{k}\right)\right.\right.$.
- The functor $\Phi_{\theta_{k}}^{+}$(denoted $i_{U_{k}, \theta_{k}}$ in section 1 of [B-Z.2]) from $\operatorname{Alg}\left(P_{k-1}\right)$ to $\operatorname{Alg}\left(P_{k}\right)$ such that, for π in $\operatorname{Alg}\left(P_{k-1}\right)$, one has $\Phi_{\theta_{k}}^{+} \pi=\operatorname{ind} d_{P_{k-1} U_{k}}^{P_{k}}\left(\delta_{U_{k}}^{1 / 2} \pi \otimes \theta_{k}\right)$, where ind is the usual compact induction.
- The functor $\hat{\Phi}_{\theta_{k}}^{+}\left(I_{U_{k}, \theta_{k}}\right.$ in section 1 of $\left.\overline{\mathrm{B}-\mathrm{Z.2}}\right)$ from $\operatorname{Alg}\left(P_{k-1}\right)$ to $\operatorname{Alg}\left(P_{k}\right)$ such that, for π in $\operatorname{Alg}\left(P_{k-1}\right)$, one has $\Phi_{\theta_{k}}^{+} \pi=\operatorname{Ind}_{P_{k-1} U_{k}}^{P_{k}}\left(\delta_{U_{k}}^{1 / 2} \pi \otimes \theta_{k}\right)$, where $I n d$ is the usual induction.
- The functor Ψ^{-}is the Jacquet functor $J_{U_{k}}$, (denoted $r_{U_{k}, 1}$ in section 1 of [B-Z.2]) from $\operatorname{Alg}\left(P_{k}\right)$ to $\operatorname{Alg}\left(G_{k-1}\right)$, such that if (π, V) is a smooth P_{k}-module, $\Psi^{-} V=V_{U_{k}, 1}$, and G_{k-1} acts on $\Psi^{-}(V)$ by $\Psi^{-} \pi(g)(v)+V\left(U_{k}, \theta_{k}\right)=\delta_{U_{k}}(g)^{-1 / 2} \pi(p)\left(v+V\left(U_{k}, 1\right)\right)$.
- The functor Ψ^{+}(denoted $i_{U_{k}, 1}$ in section 1 of [B-Z.2]) from $\operatorname{Alg}\left(G_{k-1}\right)$ to $\operatorname{Alg}\left(P_{k}\right)$, such that for π in $\operatorname{Alg}\left(G_{k-1}\right)$, one has $\Psi^{+} \pi=i n d_{G_{k-1} U_{k}}^{P_{k}}\left(\delta_{U_{k}}^{1 / 2} \pi \otimes 1\right)=\delta_{U_{k}}^{1 / 2} \pi \otimes 1$.

As we already fixed the character θ of N_{n}, we will most of the time forget the dependence in θ_{k} of $\Phi_{\theta_{k}}^{-}$and $\Phi_{\theta_{k}}^{+}$, and we will write these functors Φ^{-}and Φ^{+}. These functors have the following properties which follow (except for c) an d) which are trivial) from Proposition 1.9 of B-Z.2:

Proposition 2.1. a) The functors $\Phi^{-}, \Phi^{+}, \Psi^{-}$, and Ψ^{+}are exact.
b) Ψ^{-}is left adjoint to Ψ^{+}.
b') Φ^{-}is left adjoint to $\hat{\Phi}^{+}$.
c) $\Phi^{-} \Psi^{+}=0$
d) $\Psi^{-} \Psi^{+}=I d$.

Now we want to know how these functors restrict to smooth P_{k}-modules which are submodules of the space $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)=\operatorname{Ind} d_{N_{k}}^{P_{k}}\left(\theta^{k}\right)$ of functions on P_{k}, fixed by some open subgroup of P_{k} under right translation, and which transform by θ^{k} under left translation by elements of N_{k}. The next proposition shows the stability of this type of modules under Φ^{-}and Φ^{+}.

Proposition 2.2. For any submodule τ of $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)$, the $P_{k-1}-m o d u l e \Phi^{-} \tau$ is a submodule of $C^{\infty}\left(N_{k-1} \backslash P_{k-1}, \theta^{k-1}\right)$, with model given by restriction of functions $\delta_{U_{k}}^{-1 / 2} W$ in τ to P_{k-1}, and such that we have $\Psi^{-} \tau(p) W=\rho(p) W$ for p in P_{k-1}, where ρ is the action by right translation. Conversely, the $P_{k+1}-$ module $\Phi^{+} \tau$ can be identified with a submodule of $C^{\infty}\left(N_{k+1} \backslash P_{k+1}, \theta^{k+1}\right)$, with the natural action of P_{k+1} by right translation.
Proof. The first property will hold if we show that $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)\left(U_{k}, \theta_{k}\right)$ is the kernel of the restriction map to $C^{\infty}\left(N_{k-1} \backslash P_{k-1}, \theta^{k-1}\right)$, this is a straightforward adaptation of the proof of Proposition 2.1 of $[\mathrm{C}-\mathrm{P}$.
The second property is a consequence of the following equalities and inclusions:

$$
\begin{aligned}
\Phi^{+}\left(C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)\right) & =\operatorname{ind} d_{P_{k} U_{k+1}}^{P_{k+1}}\left(\delta_{U_{k+1}}^{1 / 2} \cdot \operatorname{Ind} d_{N_{k}}^{P_{k}}\left(\theta^{k}\right) \otimes \theta_{k+1}\right) \\
& \subset \operatorname{Ind} d_{P_{k} U_{k+1}}^{P_{k+1}}\left(\delta_{U_{k+1}}^{1 / 2} \cdot \operatorname{Ind} d_{N_{k}}^{P_{k}}\left(\theta^{k}\right) \otimes \theta_{k+1}\right)
\end{aligned}
$$

Then

$$
\delta_{U_{k+1}}^{1 / 2} \cdot \operatorname{Ind}_{N_{k}}^{P_{k}}\left(\theta^{k}\right) \simeq \operatorname{Ind}_{N_{k}}^{P_{k}}\left(\theta^{k}\right)
$$

because the character $\delta_{U_{k+1}}^{1 / 2}$ of P_{k} is trivial on N_{k}.
Finally

$$
\operatorname{Ind} d_{P_{k} U_{k+1}}^{P_{k+1}}\left(\operatorname{Ind} d_{N_{k}}^{P_{k}}\left(\theta^{k}\right) \otimes \theta_{k+1}\right) \simeq \operatorname{Ind} d_{N_{k+1}}^{P_{k+1}}\left(\theta^{k+1}\right)
$$

More can be said about smooth P_{k}-submodules of the space $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)=\operatorname{Ind} d_{N_{k}}^{P_{k}}\left(\theta^{k}\right)$. If τ is a P_{k}-submodule of $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)$, then the derived subgroup of U_{k} (which is trivial except in case D) acts trivially.
To see this, take W in $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)$, we claim that if u belongs to the derived subgroup $U_{k}^{d e r}$ of U_{k}, then $\tau(u) W$ and W are equal. So let p belong to P_{k}; one has $\tau(u) W(p)=W(p u)=$ $W\left(\right.$ pup $\left.^{-1} p\right)=\theta^{k}\left(\right.$ pup $\left.^{-1}\right) W(p)$. But P_{k} normalizes $U_{k}\left(\right.$ so $\left.\theta^{k}\left(p u p^{-1}\right)=\theta_{k}\left(p u p^{-1}\right)\right)$, so that it normalizes its derived subgroup as well; as θ_{k} is trivial on this subgroup, this proves our claim.

For such modules P_{k}-modules, there is a nice interpretation of $V\left(U_{k}, 1\right)$ in terms of the analytic behaviour of Whittaker functions. First, we make the following observation.

Remark 2.1. For $k \geq 3$, as a consequence of the Iwasawa decomposition, any element g of G_{k-1} can be written in the form $p z c$ with p in P_{k-1}, z in Z_{k-1}, and k in $K=G_{k-1}\left(\mathfrak{D}_{F}\right)$, and the absolute value of z depends only on g, so we can write it $|z(g)|_{F}$.
If a function W is in the space of $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)$, then for g in G_{k-1}, we show that $W(g)$ vanishes whenever $|z(g)|_{F}$ is large enough.
Indeed if we take the "natural" group isomorphism u from $\left(F^{m},+\right)$ to $U_{k}^{a b}$, for some positive integer m, and recalling that it is in fact $U_{k}^{a b}$ that acts on V, then $u(x)$ will fix W for x near zero in F^{m}.
But then, for g in G_{k-1} of the form $p z k$, one has $W(g)=W(g u(x))=\theta_{k}\left(g u(x) g^{-1}\right) W(g)$, which is equal $\theta_{k}\left(z k u(x)(c z)^{-1}\right) W(g)$ because P_{k-1} normalizes θ_{k}. This implies the equality $\left[\theta_{k}\left(z k u(x)(k z)^{-1}\right)-1\right] W(g)=\left[\theta_{k}(u(z k x))-1\right] W(g)=0$ for any x in a neighbourhood of zero depending only on W. The assertion follows easily.

Proposition 2.3. Let (τ, V) be a P_{k}-submodule of $C^{\infty}\left(N_{k} \backslash P_{k}, \theta^{k}\right)$. Then the space $V\left(U_{k}, 1\right)$ is the subspace of V, of functions W such that there exists an integer N_{W} with $W(g)=0$, for any g satisfying $|z(g)|_{F} \leq q_{F}^{-N_{W}}$.

Proof. Suppose first that a function W is in $V\left(U_{k}, 1\right)$, so we can write it $\pi(u) W^{\prime}-W^{\prime}$ for some u in $U_{k}^{a b}$ and some W^{\prime} in V. Then, writing g as $p z k$, and u as $u(x)$ for x in F^{m}, we have $\left[\pi(u) W^{\prime}-W^{\prime}\right](g)=\left[\theta_{k}(u(z k x))-1\right] W^{\prime}(g)$, which will be zero to 0 when $|z|_{F}$ is close to zero. Conversely, we use the characterization of Jacquet and Langlands asserting that the elements W of $V\left(U_{k}, 1\right)=V\left(U_{k}^{a b}, 1\right)$ are those such that $\int_{U} \tau(u) W d u$ is zero as soon as the open compact subgroup U of $U_{k}^{a b}$ contains some compact open subgroup U_{W}. So suppose W is in V and that it vanishes on elements g of $G_{n-1}(F)$ satisfying $|z(g)|_{F} \leq q_{F}^{-N_{W}}$.
Let U be any open compact subgroup of $U_{k}^{a b}$, that we identify with a subgroup of F^{m}. The integral $\int_{U} \tau(u) W d u$ evaluated at $g=p z k$, is equal to $\int_{x \in U} \theta_{k}(z k x) W(g) d x$. Hence this integral is always zero for $|z|_{F} \leq q_{F}^{-N_{W}}$ because $W(g)$ is.
We now recall that as θ_{k} is a non trivial character of $U_{k}^{a b}$, there exists a compact open ball U_{0} of $U_{k}^{a b} \simeq F^{n}$ such that, the integral $\int_{x \in U} \theta_{k}(x) d x$ is zero whenever the compact open subgroup U of $U_{k}^{a b}$ contains U_{0}. But then for $|z|_{F} \geq q_{F}^{-N_{W}}$, if t_{W} is an element of F^{*} of absolute value $q_{F}^{N_{W}}$, the integral $\int_{x \in U} \theta_{k}(z k x) W(g) d x$ is also zero as soon as U contains $t_{W} U_{0}$. Hence $\int_{U} \tau(u) W d u$ is zero when U is a compact open subgroup of $U_{k}^{a b}$ containing $U_{W}=t_{W} U_{0}$, and W belongs to $V\left(U_{k}, 1\right)$.

For any smooth P_{n}-module τ, and any integer $k \geq 1$, we denote by $\tau_{(k)}$ the representation of P_{n-k+1} equal to $\Phi^{k-1} \tau$, and by $\tau^{(k)}$ the representation of G_{n-k} equal to $\Psi^{-} \Phi^{k-1} \tau=\Psi^{-} \tau_{(k)}$. We say that a smooth irreducible representation π of G_{n} is θ^{n}-generic if it is isomorphic to a submodule of the induced representation $\operatorname{Ind} d_{N_{n}}^{G_{n}}(\pi)$. If it is the case, the submodule of $\operatorname{Ind} d_{N_{n}}^{G_{n}}(\pi)$ isomorphic to π is unique, it is called the Whittaker model of π and denoted by $W\left(\pi, \theta^{n}\right)$.
Now we let (π, V) be a θ^{n}-generic representation of G_{n} (hence a smooth P_{n}-module as well), we denote by $\left(\pi^{\prime}, V^{\prime}\right)$ the representation of P_{n} obtained on the space of restrictions of functions in $W(\pi, \theta)$ to P_{n}, it is a quotient of π as a P_{n}-module, and restriction to P_{n} is known to be an isomorphism in case A.

The following proposition follows from applying repeatedly Proposition 2.2, and from Proposition 2.3

Proposition 2.4. Let τ be a smooth P_{n}-submodule of $C^{\infty}\left(N_{n} \backslash P_{n}, \theta^{n}\right)$, and $k \geq 0$ be an integer, then the $P_{k+1}-$ module $\tau_{(n-k-1)}$ is a submodule of $C^{\infty}\left(N_{k+1} \backslash P_{k+1}, \theta^{k+1}\right)$, with model given by restriction of functions $\left[\delta_{U_{k+2}} \ldots \delta_{U_{n}}\right]^{-1 / 2} W$ in τ to P_{k+1}. In this realisation, one has $\tau_{(n-k-1)}(p) W=$ $\rho(p) W$ for p in P_{k+1}, where ρ is the action by right translation.

The next proposition asserts amongst other things that for every $k \geq 1$, the G_{n-k}-module $\pi^{(k)}$ has finite length.

Proposition 2.5. If (π, V) is a smooth representation of G_{n} of finite length, then for k between 1 and $n-1$, the G_{k}-module $\pi^{(n-k)}$ (hence its quotient $\pi^{\prime(n-k)}$) has finite length.

Proof. For $k \geq 1$, except in case $\mathrm{D}, k=2$, we denote by $U_{k, n-k}$ the unique standard unipotent radical (denoted by $U_{(k ; n-k)}$ in the previous section) containing $U_{\alpha_{k}}$ as only simple root subgroup. In case D, for $k=2$, we be denote $U_{2, n-2}$ the unique standard unipotent radical containing $U_{\alpha_{1}}$ and $U_{\alpha_{2}}$ as only simple root subgroups.
In all cases, the corresponding Levi $M_{k, n-k}$ is the direct product of G_{k} with $G L(n-k, F)$.
Now the module G_{k}-module $\pi^{(n-k)}$ is a quotient of the Jacquet $G_{k} \times G L(n-k)$-module

$$
\left(\pi_{U_{k, n-k}}, V / V\left(U_{k, n-k}, 1\right)\right),
$$

as the kernel of the surjective map $\pi \rightarrow \pi^{(n-k)}$ contains $V\left(U_{k, n-k}, 1\right)$. More precisely, let $N_{n-k, A}$ be the unipotent radical of the standard Borel subgroup of $G L(n-k, F)$, the group $U_{k+1} \ldots U_{n}$ is the semidirect product $N_{n-k, A} \ltimes U_{k, n-k}$, so that the space $V^{(n-k)}$ of $\pi^{(n-k)}$ is equal to the quotient

$$
V / V\left(N_{n-k, A} \ltimes U_{k, n-k}, \theta_{\mid N_{n-k, A}}^{n} \otimes 1_{U_{k, n-k}}\right)
$$

where V is the space of π.
We denote by I_{k} the surjection obtained by facorisation from $V_{U_{k, n-k}}$ onto $V^{(n-k)}$. From Lemma 2.32 of [B-Z], the map I_{k} identifies with the projection

$$
V_{U_{k, n-k}} \rightarrow\left(V_{U_{k, n-k}}\right)_{N_{n-k, A}, \theta_{\mid N_{n-k}, A}^{n}}=V_{U_{k, n-k}} / V_{U_{k, n-k}}\left(N_{n-k, A}, \theta_{\mid N_{n-k}, A}^{n}\right) .
$$

The map I_{k} is in fact a G_{k}-modules morphism, because of the equality of modulus characters

$$
\left(\delta_{U_{k, n-k}}\right)_{\mid G_{k}}=\left(\delta_{U_{k+1}} \ldots \delta_{U_{n}}\right)_{\mid G_{k}}
$$

which is itself a consequence of the decomposition

$$
U_{k, n-k}=\prod_{i=k+1}^{n}\left(U_{k, n-k} \cap U_{i}\right)
$$

The group $N_{A, n-k}$ being a union of compact subgroups, the map I_{k} preserves exact sequences. As the Jacquet module functor preserves finite length, the $G_{k} \times G L(n-k, F)$-module $\pi_{U_{k, n-k}}$ has a finite composition series $0 \subset\left(\pi_{U_{k, n-k}}\right)_{1} \subset \cdots \subset\left(\pi_{U_{k, n-k}}\right)_{r_{k}}=\pi_{U_{k, n-k}}$. We put $\pi_{i}^{(n-k)}=$ $I_{k}\left[\left(\pi_{U_{k, n-k}}\right)_{i}\right]$.
Hence $\pi_{i}^{(n-k)} / \pi_{i-1}^{(n-k)}$ is equal to $\left[\left(\pi_{U_{k, n-k}}\right)_{i} /\left(\pi_{U_{k, n-k}}\right)_{i-1}\right]_{N_{n-k}, A}, \theta_{\mid N_{n-k}, A}$, but as a $G_{k} \times G L(n-$ $k, F)$-module, the quotient $\left(\pi_{U_{k, n-k}}\right)_{i} /\left(\pi_{U_{k, n-k}}\right)_{i-1}$ isomorphic to $\rho_{1} \otimes \rho_{2}$ for irreducible representations ρ_{1} and ρ_{2} of G_{k} and $G L(n-k, F)$ respectively. Because the character θ^{n} restricts to $N_{n-k, A}$ as a nondegenerate character, the quotient $\pi_{i}^{(n-k)} / \pi_{i-1}^{(n-k)}$ is equal to $\rho_{1} \otimes\left(\rho_{2}\right)_{N_{n-k, A}, \theta_{N_{n-k, A}}^{n}}$, thus it is zero unless ρ_{2} is generic, in which case it is equal to the irreducible representation ρ_{1}.
So we proved that $\pi^{(n-k)}$ has finite length as G_{k}-module, smaller than the length of the Jacquet module $\pi_{U_{k, n-k}}$ as a $G_{k} \times G L(n-k, F)$-module.

There is another property of the maps I_{k} defined in the proof of the preceding proposition that is worth mentioning, which is that their restriction to generalised characteristic subspaces is nonzero. More formally, let G be an l-group, and T be a closed abelian subgroup of G. If V is a smooth G-module, following [C], we define for each character χ of T, the T-submodule

$$
V_{\chi, \infty}=\left\{v \in V \mid \exists n \in \mathbb{N}, \forall t \in T,(\tau(t)-\chi(t) I d)^{n}(v)=0\right\}
$$

If V is T-finite (i.e. every vector in V generates a finite dimensional T-module), then it is the finite direct sum of its (nonzero by definition) generalised characteristic subspaces, and every such (nonzero) $V_{\chi, \infty}$ contains the nonzero generalised eigenspace

$$
V_{\chi}=\{v \in V \mid \exists n \in \mathbb{N}, \forall t \in T,(\tau(t)-\chi(t) I d)(v)=0\}
$$

First recall that smooth $\left(F^{*}\right)^{r}$-modules E, with a filtration $0=E_{0} \subset E_{1} \subset \cdots \subset E_{r-1} \subset$ $E_{r}=E$ such that $\left(F^{*}\right)^{r}$ acts by a character on each quotient are $\left(F^{*}\right)^{r}$-finite.

Lemma 2.1. Let E be a smooth $\left(F^{*}\right)^{r}$-module E, with a filtration $0=E_{0} \subset E_{1} \subset \cdots \subset E_{r-1} \subset$ $E_{r}=E$ such that $\left(F^{*}\right)^{r}$ acts by a character c_{i+1} on each quotient E_{i+1} / E_{i}, then any vector of E lies in a finite dimensional $\left(F^{*}\right)^{r}$-submodule.

Proof. One proves this by induction on the smallest i such that E_{i} contains v. If this i is 1 , the group $\left(F^{*}\right)^{r}$ only multiplies v by a scalar, and we are done.
Suppose that the result is known for E_{i}, and take v in E_{i+1} but not in E_{i}. Then for every t in $(F)^{*}$, the vector $\tau(t) v-c_{i+1}(t) v$ belongs to E_{i}. By smoothness, the set $\left\{\tau(u) v \mid t \in\left(U_{F}\right)^{r}\right\}$ is actually equal to $\{\tau(u) v \mid u \in P\}$ for P a finite set of $\left(U_{F}\right)^{r}$. The vector space generated by this set is stabilized by $\left(U_{F}\right)^{r}$, and has a finite basis v_{1}, \ldots, v_{m}. Now the vectors

$$
\tau\left(1, \ldots, 1, \varpi_{F}, 1, \ldots, 1\right) v_{l}-c_{i+1}\left(1, \ldots, 1, \varpi_{F}, 1, \ldots, 1\right) v_{l}
$$

belong to E_{i}, hence by induction hypothesis, to a finite dimensional $\left(F^{*}\right)^{r}$-submodule V_{l} of E_{i}. Finally the finite dimensional space $\operatorname{Vect}\left(v_{1}, \ldots, v_{m}\right)+V_{1}+\cdots+V_{m}$ is stable under $\left(U_{F}\right)^{r}$ and the elements $\left(1, \ldots, 1, \varpi_{F}, 1, \ldots, 1\right)$, hence $\left(F^{*}\right)^{r}$, and contains v.

This in particular applies to the $Z_{k} Z_{n}$-module $V_{U_{k, n-k}}$ and the Z_{k}-module V described in the proof of Proposition 2.5, as both are respectively $G_{k} \times G L(n-k, F)$ and G_{k}-modules of finite length.

Now we can prove the following property of the maps I_{k} :
Proposition 2.6. Let (π, V) be a θ^{n}-generic representation of G_{n}, and for $k \geq 1$, let $U_{k, n-k}$ and $M_{k, n-k} \simeq G_{k} \times G L(n-k, F)$ the subgroups of G_{n} defined in the proof of Proposition 2.5, Let χ be a character of the central subgroup $Z_{k} Z_{n}$ of $M_{k, n-k}$, and denote by the same letter its restriction to the central subgroup Z_{k} of G_{k}. If the generalised characteristic subspace $\left(V_{U_{k, n-k}}\right)_{\chi, \infty}$ is nonzero, then the map I_{k} restricts non trivially to $\left(V_{U_{k, n-k}}\right)_{\chi}$. In particular the space $V_{\chi}^{(n-k)}$ is nonzero.

Proof. Suppose that the subspace $\left(V_{U_{k, n-k}}\right)_{\chi, \infty}$ of $V_{U_{k, n-k}}$ is nonzero, hence $\left(V_{U_{k, n-k}}\right)_{\chi}$ is nonzero. The space $\left(V_{U_{k, n-k}}\right)_{\chi}$ is $M_{k, n-k}$-submodule of $V_{U_{k, n-k}}$, so it has finite length, hence it contains some irreducible representation $\rho_{1} \otimes \rho_{2}$ of $M_{k, n-k}$. Hence $\operatorname{Hom}_{M_{k, n-k}}\left(\rho_{1} \otimes \rho_{2}, V_{U_{k, n-k}}\right)$ is nonzero, but then from Bernstein's second adjointness theorem (see $\overline{B u}$, Theorem 3), we deduce that V is a quotient of the representation $\rho_{1} \times \rho_{2}$ parabolically induced from $\rho_{1} \otimes \rho_{2}$. As V admits a nonzero Whittaker form, so does $\rho_{1} \times \rho_{2}$, and from a classical result of Rodier (Theorem 7 of $[\mathrm{R}]$, this implies that ρ_{1} and ρ_{2} are generic with respect to some nondegenrate character. As generiticity doesn't depend on the character for $G L(n-k, F)$, we deuce that $I_{k}\left(\rho_{1} \otimes \rho_{2}\right)=\rho_{1}$. Hence I_{k} restricts non trivially to $\left(V_{U_{k, n-k}}\right)_{\chi}$, and the image $I_{k}\left[\left(V_{U_{k, n-k}}\right)_{\chi}\right]$ contains ρ_{1} which is a nonzero submodule of $V_{\chi}^{(n-k)}$.

We will also need to know that, if k is an integer between 1 and $n-1$ and χ is a character of Z_{k}, then the Z_{k}-modules $\left(V^{(n-k)}\right)_{\chi}$ and $\left(V^{\prime(n-k)}\right)_{\chi}$ are nonzero at the same time. We already know from the previous proposition that this is equivalent to the fact that the Z_{k}-modules $\left(V^{\prime(n-k)}\right)_{\chi}$ and $\left(V_{U_{k, n-k}}\right)_{\chi}$ are nonzero at the same time, and that $\left(V^{\prime(n-k)}\right)_{\chi}$ nonzero implies that $\left(V_{U_{k, n-k}}\right)_{\chi}$ is nonzero.

Proposition 2.7. If (π, V) is a θ^{n}-generic representation of G_{n}, and for $k \geq 1$, let $U_{k, n-k}$ and $M_{k, n-k} \simeq G_{k} \times G L(n-k, F)$ be the subgroups of G_{n} defined in the proof of Proposition 2.5. Let χ be a character of the central subgroup $Z_{k} Z_{n}$ of $M_{k, n-k}$, and denote by the same letter its restriction to the central subgroup Z_{k} of G_{k}, then the space $\left(V_{U_{k, n-k}}\right)_{\chi}$ is nonzero if and only if the space $\left(V^{\prime(n-k)}\right)_{\chi}$ is nonzero.
Proof. We only need to prove that if $\left(V_{U_{k, n-k}}\right)_{\chi}$ is nonzero, then the space $\left(V^{\prime(n-k)}\right)_{\chi}$ is nonzero. So suppose that the $M_{k, n-k}$-module $\left(V_{U_{k, n-k}}\right)_{\chi}$ is nonzero, it is of finite length, hence it contains an irreducible $M_{k, n-k}$-submodule ρ. Call $P_{k, n-k}$ the parabolic subgroup $M_{k, n-k} U_{k, n-k}$, and $P_{k, n-k}^{-}$its opposite parabolic subgroup (with unipotent radical $\left(U_{k, n-k}\right)^{-}$). We already saw that by Bernstein's second adjointness theorem, the induced representation $i_{P_{k, n-k}^{-}}^{G_{n}}(\rho)$ has π as a quotient, and therefore $i_{P_{k, n-k}}^{G_{n}}(\rho)$ is θ^{n}-generic. Then from Theorem 7 of R , the $M_{k, n-k^{-}}$ module ρ is θ-generic, where θ is the restriction of θ^{n} to the unipotent radical of the Borel of $M_{k, n-k}$. Both have the same Whittaker model $W\left(\pi, \theta^{n}\right)$, i.e. the (unique up to scalar) Whittaker form on the space of $i_{P_{k, n-k}}^{G_{n}}(\rho)$ facorises through the projection from $i_{P_{k, n-k}}^{G_{n}}(\rho)$ to π. Let L^{-}be a nonzero θ-Whittaker form on the space of ρ, by Theorems 1.4 and 1.6 of $[\mathbf{C - S}$, there is a nonzero Whittaker form L on the space of $i_{P_{k, n-k}}^{G_{n}}(\rho)$ whose restriction to the subspace $C_{c}^{\infty}\left(P_{k, n-k}^{-} \backslash P_{k, n-k}^{-} U_{k, n-k},\left(\delta_{U_{k}^{-}}\right)^{1 / 2} \rho\right)$ of functions with support in $P_{k, n-k}^{-} U_{k, n-k}$ is given by

$$
f \mapsto \int_{U_{k, n-k}} L^{-}(f(u)) \theta^{-1}(u) d u
$$

We denote by \bar{L} the Whittaker form on the space of π which lifts to L. In particular, for any \bar{f} in the space of π, which is the image of f in $C_{c}^{\infty}\left(P_{k, n-k}^{-} \backslash P_{k, n-k}^{-} U_{k, n-k}\right)$, one has

$$
\bar{L}(\bar{f})=\int_{U_{k, n-k}} L^{-}(f(u)) \theta^{-1}(u) d u
$$

Let v be a vector in the space of ρ, such that $L^{-}(v)$ is nonzero. Let K^{\prime} be a compact subgroup of G_{n}, with Iwahori decomposition with respect to $P_{k, n-k}$, and such that $K^{\prime} \cap M_{k, n-k}$ fixes v, then the function α equal to $u^{-} m u \mapsto \rho(m) v$ on $\left(U_{k, n-k}\right)^{-} M_{k, n-k}\left(U_{k, n-k} \cap K^{\prime}\right)$, and zero outside, is well defined and belongs to the space $C_{c}^{\infty}\left(P_{k, n-k}^{-} \backslash P_{k, n-k}^{-} U_{k, n-k}, \rho\right)$. We denote by W_{α} the corresponding Whittaker function $g \mapsto \bar{L}(\pi(g) \bar{\alpha})$. If a belongs to the group Z_{k}, one has

$$
\begin{aligned}
W_{\alpha}(a) & =\int_{U_{k, n-k}} L^{-}(\alpha(u a)) \theta^{-1}(u) d u \\
& =\chi(a) \delta_{U_{k, n-k}}^{-1 / 2}(a) \int_{U_{k, n-k}} L^{-}\left(\alpha\left(a^{-1} u a\right)\right) \theta^{-1}(u) d u \\
& =\chi(a) \delta_{U_{k, n-k}}^{1 / 2}(a) \int_{U_{k, n-k}} L^{-}(\alpha(u)) \theta^{-1}\left(a u a^{-1}\right) d u \\
& =\chi(a) \delta_{U_{k, n-k}}^{1 / 2}(a) L^{-}(v) \int_{U_{k, n-k}} \theta^{-1}\left(a u a^{-1}\right) d u
\end{aligned}
$$

In this last integral, u stays in the compact set $U_{k, n-k} \cap K^{\prime}$, hence there is a (punctured) neighbourhood of zero in $\operatorname{Lie}\left(Z_{k}\right)=F$, such that $a\left(U_{k, n-k} \cap K^{\prime}\right) a^{-1}$ is a subset of $\operatorname{Ker}(\theta)$ when a belongs to this neighbourhood. Finally, up to multiplication of the function α by a scalar, one has

$$
W_{\alpha}(a)=\chi(a) \delta_{U_{k, n-k}}^{1 / 2}(a) L^{-}(v)
$$

whenever a is this neighbourhood of zero.
A similar computation gives the equality

$$
W_{\alpha}(z g)=\chi(z) \delta_{U_{k, n-k}}(z)^{1 / 2} c_{g}
$$

for z in Z_{k} in a neighbourhood of zero and g in G_{k}, where c_{g} is the constant $\int_{U_{k, n-k}} L^{-}(\alpha(u g)) d u$. Hence from Propositions 2.3, 2.4, and the equality $\left(\delta_{U_{k, n-k}}\right)_{\mid G_{k}}=\left(\delta_{U_{k+1}} \ldots \delta_{U_{n}}\right)_{\mid G_{k}}$, we deduce that the vector $\left(\delta_{U_{k+2}} \ldots \delta_{U_{n}}\right)^{-1 / 2} W_{\alpha}$ in the space of $\pi_{(n-k+1)}^{\prime}$ is such that its image in $\pi^{\prime(n-k)}$ is nonzero and belongs to the space $\left(\pi^{\prime(n-k)}\right)_{\chi}$. This proves the proposition.

A straightforward generalisation of the proof of the preceding proposition gives the following corollary.

Corollary 2.1. Let G be the F-points of a quasi-split reductive group defined over F. Let P be a parabolic subgroup of G with a Levi subgroup M, and P^{-}its opposite subgroup with $P \cap P^{-}=M$. Let (π, V) be a smooth θ-generic representation of G, for some nondegenerate character θ of the unipotent radical U of a Borel subgroup of G contained in P. We denote by $j_{P^{-}}$be the map defined in Theorem 3.4 of [D] from $\left(V^{*}\right)^{U_{\theta}}$ to $\left(J_{P}(V)^{*}\right)^{M \cap U_{\theta}}$. If L is a nonzero vector of the line $\left(V^{*}\right)^{U_{\theta}}$, then the linear form $j_{P-}(L)$ restricts non trivially to any irreducible M-submodule of $J_{P}(V)$ whenever the Jacquet module $J_{P}(V)$ is nonzero.

We now come back to the study of F^{*}-modules E with finite factor series such that F^{*} acts by a character on each quotient. From Lemma 2.1] any vector of E will belong to a finite dimensional F^{*}-submodule E^{\prime} as in:

Proposition 2.8. If E^{\prime} is a non zero finite dimensional F^{*}-submodule of E, then E^{\prime} has a basis B in which the action of $F^{*} r$ is given by a block diagonal matrix $M a t_{B}(\tau(t))$ with each block of the form:

$$
\left(\begin{array}{ccccc}
c(t) & c(t) P_{1,2}\left(v_{F}(t)\right) & c(t) P_{1,3}\left(v_{F}(t)\right) & \ldots & c(t) P_{1, q}\left(v_{F}(t)\right) \\
& c(t) & c(t) P_{2,3}\left(v_{F}(t)\right) & \ldots & c(t) P_{2, q}\left(v_{F}(t)\right) \\
& & \ddots & & \vdots \\
& & & c(t) & c(t) P_{q-1, q}\left(v_{F}(t)\right) \\
& & & & c(t)
\end{array}\right)
$$

for c one of the c_{i} 's, q a positive integer depending on the block, and the $P_{i, j}$'s being polynomials with no constant term of degree at most $j-i$.

Proof. First we decompose E^{\prime} as a direct sum under the action of the compact abelian group U_{F}. Because E^{\prime} has a filtration by the spaces $E^{\prime} \cap E_{i}$, and that F^{*} acts on each sub factor as one of the c_{i} 's, the group U_{F} acts on each weight space as the restriction of one of the c_{i} 's. Now each weight space is stable under F^{*} by commutativity, and so we can restrict ourselves to the case where E^{\prime} is a weight-space of U_{F}.
Again E^{\prime} has a filtration, such that F^{*} acts on each sub factor as one of the c_{i} 's (with all these characters having the same restriction to U_{F}), say $c_{i_{1}}, \ldots, c_{i_{k}}$, in particular, we deduce that the endomorphism $\tau\left(\varpi_{F}\right)$ has a triangular matrix in a basis adapted to this filtration, with eigenvalues $c_{i_{1}}\left(\varpi_{F}\right), \ldots, c_{i_{k}}\left(\varpi_{F}\right)$. As $\tau\left(\varpi_{F}\right)$ is trigonalisable, the space E^{\prime} is the direct sum its characteristic subspaces, and again these characteristic subspaces are stable under F^{*}.
So finally one can assume that E^{\prime} is a characteristic subspace for some eigenvalue $c(\pi)$ of $\tau\left(\varpi_{F}\right)$, on which U_{F} acts as the character c, where c is one of the c_{i} 's.

Hence there is a basis B of E^{\prime} such that

$$
\left.\operatorname{Mat}_{B}\left(c^{-1}(t) \tau(t)\right)=\left(\begin{array}{ccccc}
1 & A_{1,2}(t) & A_{1,3}(t) & \ldots & A_{1, q}(t) \\
& 1 & A_{2,3}(t) & \ldots & A_{2, q}(t) \\
& & \ddots & & \vdots \\
& & & & 1
\end{array}\right) A_{q-1, q}(t)\right)
$$

for any t in F^{*}, where the $A_{i, j}$'s are smooth functions on F^{*}. So we only have to prove that the $A_{i, j}$'s are polynomials of the valuation of F with no constant term.

We do this by induction on q.
It is obvious when $q=1$. Suppose the statement holds for $q-1$, and suppose that E^{\prime} is of dimension q, with basis $B=\left(v_{1}, \ldots, v_{q}\right)$. Considering the two $c^{-1} \tau\left(F^{*}\right)$-modules $\operatorname{Vect}\left(v_{1}, \ldots, v_{q-1}\right)$ and $\operatorname{Vect}\left(v_{1}, \ldots, v_{q}\right) / \operatorname{Vect}\left(v_{1}\right)$ of dimension $q-1$, we deduce that for every couple (i, j) different from $(1, q)$, there is a polynomial with no constant term $P_{i, j}$ of degree at most $j-i$, such that $A_{i, j}=P_{i, j} \circ v_{F}$. Now because $c^{-1} \tau$ is a representation of F^{*}, and because the $P_{i, j} \circ v_{F}$'s vanish on U_{F} for $(i, j) \neq(1, q)$, we deduce that $A_{1, q}$ is a smooth morphism from $\left(U_{F}, \times\right)$ to $(\mathbb{C},+)$, which must be zero because $(\mathbb{C},+)$ has no nontrivial compact subgroups. From this we deduce that $A_{1, q}$ is invariant under translation by elements of U_{F} (i.e. $A_{1, q}\left(\varpi_{F}^{k} u\right)=A_{1, q}\left(\varpi_{F}^{k}\right)$ for every U in U_{F}).
Denote by $M(k)$ the matrix $\operatorname{Mat}_{B}\left(c^{-1} \tau\left(\varpi_{F}^{k}\right)\right)$ for k in \mathbb{Z}. One has $M(k)=M(1) M(k-1)$ for $k \geq 1$, which in implies $A_{1, q}\left(\varpi_{F}^{k}\right)=\sum_{j=2}^{q-1} P_{1, j}(1) P_{j, q}(k-1)+A_{1, q}\left(\varpi_{F}^{k-1}\right)+A_{1, q}\left(\varpi_{F}\right)=$ $Q(k)+A_{1, q}\left(\varpi_{F}^{k-1}\right)+A_{1, q}\left(\varpi_{F}\right)$ for Q a polynomial of degree at most $q-2$. This in turn implies that $A_{1, q}\left(\varpi_{F}^{k}\right)=\sum_{l=1}^{k-1} Q(l)+k A_{1, q}\left(\varpi_{F}\right)=R(k)$ for R a polynomial of degree at most $q-1$, according to the theory of Bernoulli polynomials, for any $k \geq 0$. The same reasoning for $k \leq 0$, implies $A_{1, q}\left(\varpi_{F}^{k}\right)=R^{\prime}(k)$ for R^{\prime} a polynomial of degree at most $q-1$, for any $k \leq 0$. We need to show that $R=R^{\prime}$ to conclude.
We know that $M(k)$ is a matrix whose coefficients are polynomials in k for $k>0$ of degree at most $q-1$, we denote it by $P(k)$. The matrix $M(k)$ has the same property for $k<0$, we denote it by $P^{\prime}(k)$. Moreover for any $k \geq 0$ and $k^{\prime} \leq 0$, with $k+k^{\prime} \geq 0$, one has $P\left(k+k^{\prime}\right)=P(k) P^{\prime}\left(k^{\prime}\right)$. Fix $k>q-1$, then the matrices $P\left(k+k^{\prime}\right)$ and $P(k) P^{\prime}\left(k^{\prime}\right)$ are equal for k^{\prime} in $[1-q, 0]$, as their coefficients are polynomials in k^{\prime} with degree at most $q-1$, the equality $P\left(k+z^{\prime}\right)=P(k) P^{\prime}\left(z^{\prime}\right)$ holds for any complex number z^{\prime}. Now fix such a complex number z^{\prime}, the equality $P\left(k+z^{\prime}\right)$ and $P(k) P^{\prime}\left(z^{\prime}\right)$ holds for any integer $k>q-1$, and as both matrices have coefficients which are polynomials in k, this equality actually holds for any complex number z, so that $P\left(z+z^{\prime}\right)$ equals $P(z) P^{\prime}\left(z^{\prime}\right)$ for any complex numbers z and z^{\prime}.
As $P(0)=I_{q}$, we deduce that P and P^{\prime} are equal on \mathbb{C}, and this implies that R is equal to R^{\prime}.
From this we deduce the following theorem, giving an expansion at infinity of Whittaker functions of generic representations of G_{n}, for $G L(n)$, the statement holds for ant smooth $P_{n^{-}}$ submodule of finite length of $C^{\infty}\left(N_{n} \backslash P_{n}\right)$:

Theorem 2.1. Let θ be a nondegenerate character of the group N_{n}, let π be a θ-generic representation of G_{n}, and let $c_{1, n-k}, \ldots, c_{r_{k}, n-k}$ be the characters of Z_{k} appearing in a composition series of $\tau=\pi^{(n-k)}$. Then, for any function W in the space of π, the function

$$
W\left(z_{1}, z_{2}, \ldots, z_{n-1}\right)=W\left(z_{1} z_{2}, \ldots z_{n-1}\right)
$$

is a linear combination of functions of the form

$$
\prod_{k=1}^{n-1}\left[c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2} \ldots \delta_{U_{n}}^{1 / 2}\right]\left(z_{k}\right) v_{F}\left(z_{k}\right)^{m_{k}} \phi_{k}\left(z_{k}\right)
$$

for i_{k} between 1 and r_{k}, positive integers m_{k}, and functions ϕ_{k} in $C_{c}^{\infty}(F)$.
Proof. Actually we prove the following stronger statement, which is satisfied by $\pi_{(0)}$ according to Proposition 2.5
. Let π be a submodule of $C^{\infty}\left(N_{n} \backslash P_{n}, \theta\right)$, such that for every k between 1 and $n-1$, the $G_{k^{-}}$ module $\tau=\pi^{(n-k)}=\Psi^{-}\left(\Phi^{-}\right)^{n-k-1}(\pi)$ has a composition series such that on each respective quotient, the central subgroup Z_{k} acts by the characters $c_{1, n-k}, \ldots, c_{r_{k}, n-k}$.
Then, for any function W in the space of π, the function $W\left(z_{1}, z_{2}, \ldots, z_{n-1}\right)=W\left(z_{1} z_{2}, \ldots z_{n-1}\right)$ is a linear combination of functions of the form

$$
\prod_{k=1}^{n-1}\left[c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2} \ldots \delta_{U_{n}}^{1 / 2}\right]\left(z_{k}\right) v_{F}\left(z_{k}\right)^{m_{k}} \phi_{k}\left(z_{k}\right)
$$

for i_{k} between 1 and r_{k}, positive integers m_{k}, and functions ϕ_{k} in $C_{c}^{\infty}(F)$.
The proof is by induction on n.
Let W belong to the space of π. We denote by v its image in the space E of $\pi^{(1)}$. The vector v belongs to a finite dimensional Z_{n-1}-submodule E^{\prime} of E, on which Z_{n-1} acts by a matrix of the form determined in Proposition 2.8. We fix a basis $B=\left(e_{1}, \ldots, e_{q}\right)$ of E^{\prime}, and denote by $M(a)$ the matrix $M_{B}(\tau(a))$ (with a in Z_{n-1} and $\tau(a)=\pi^{(1)}(a)$), hence we have $\tau(a) e_{l}=\sum_{k=1}^{q} M(a)_{k, l} e_{k}$ for each l between 1 and q.
Taking preimages $\tilde{E}_{1}, \ldots, \tilde{E}_{q}$ of e_{1}, \ldots, e_{q} in $\pi_{(0)}$, we denote by \tilde{E} the function vector $\left(\begin{array}{c}\tilde{E}_{1} \\ \vdots \\ \tilde{E}_{q}\end{array}\right)$.
If the image v of W in $\pi^{(1)}$ is equal to $x_{1} e_{1}+\cdots+x_{q} e_{q}$, there is an integer M, such that for every $\left(z_{1}, \ldots, z_{n-2}\right)$ in $Z_{1} \times \cdots \times Z_{n-2}$, the function

$$
W\left(z_{1}, \ldots, z_{n-1}\right)-\left(x_{1}, \ldots, x_{q}\right) \tilde{E}\left(z_{1}, \ldots, z_{n-1}\right)
$$

vanishes for $\left|z_{n-1}\right|_{F} \leq q_{F}^{-M}$. We denote by S the function $\left(x_{1}, \ldots, x_{q}\right) \tilde{E}$.
Because of Remark 2.1, there is an integer M^{\prime}, such that for any (z_{1}, \ldots, z_{n-2}) in $Z_{1} \times \cdots \times$ Z_{n-2}, and any z_{n-1} in Z_{n-1} of absolute value greater than $q_{F}^{M^{\prime}}$, both $W\left(z_{1}, \ldots, z_{n-1}\right)$ and $S\left(z_{1}, \ldots, z_{n-1}\right)$ are zero, so that the difference $D\left(z_{1}, \ldots, z_{n-1}\right)$ of the two functions is a smooth function which vanishes whenever z_{n-1} has absolute value outside $\left[q_{F}^{-M}, q_{F}^{M^{\prime}}\right]$. Moreover there is a compact subgroup U of $Z_{n-1}\left(\mathfrak{O}_{F}\right)$ independent of $\left(z_{1}, \ldots, z_{n-1}\right)$ such that both functions (hence D) are invariant when z_{n-1} is multiplied by an element of U. Denoting by $\left(z_{\alpha}\right)_{\alpha \in A}$ a finite set of representatives for

$$
\left\{z\left|q_{F}^{-M} \leq\left|z_{n-1}\right|_{F} \leq q_{F}^{M^{\prime}}\right\} / U\right.
$$

this implies that $D\left(z_{1}, \ldots, z_{n-1}\right)$ is equal to $\sum_{\alpha \in A} D\left(z_{1}, \ldots, z_{n-2}, z_{\alpha}\right) \mathbf{1}_{z_{\alpha} U}\left(z_{n-1}\right)$, which we can always write as $\sum_{\alpha \in A} D\left(z_{1}, \ldots, z_{n-2}, z_{\alpha}\right) \delta_{U_{n}}^{1 / 2}\left(z_{n-1}\right) D_{\alpha}\left(z_{n-1}\right)$ with $D_{\alpha}=\delta_{U_{n}}^{-1 / 2} \mathbf{1}_{z_{\alpha} U}$ in $C_{c}^{\infty}\left(\operatorname{Lie}\left(Z_{n-1}\right)\right)$.
Each function $D\left(z_{1}, \ldots, z_{n-2}, z_{\alpha}\right)$ is equal to $W\left(z_{1}, \ldots, z_{\alpha}\right)-S\left(z_{1}, \ldots, z_{\alpha}\right)$, and the restrictions to P_{n-1} of the functions $\delta_{U_{n}}^{-1 / 2}\left[\pi\left(z_{\alpha}\right) D\right]$ belong to the smooth submodule $\Phi^{-}(\pi)$ of $C^{\infty}\left(N_{n-1} \backslash P_{n-1}, \theta\right)$, which still satisfies the hypothesis of the statement.
Hence, by induction hypothesis, the function D is a sum of functions of the form

$$
\prod_{k=1}^{n-1}\left[c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2} \ldots \delta_{U_{n}}^{1 / 2}\right]\left(z_{k}\right) v_{F}\left(z_{k}\right)^{m_{k}^{\prime}} \phi_{k}^{\prime}\left(z_{k}\right)
$$

for i_{k} between 1 and r_{k}, null or positive integers or integer vectors m_{k}^{\prime}, and functions ϕ_{k}^{\prime} in $C_{c}^{\infty}\left(\operatorname{Lie}\left(Z_{k}\right)\right)$.

Now, call p the projection $W^{\prime} \mapsto\left(\delta_{U_{n}}^{1 / 2} W^{\prime}\right)_{\mid P_{n-1}}$ from $\pi_{(0)}$ to $\pi^{(1)}$, then for any a in Z_{n-1}, one has $\rho(a) p\left(\tilde{E}_{l}\right)=\sum_{k=1}^{q} M(a)_{k, l} p\left(\tilde{E}_{k}\right)$. Hence as $\rho(a) p\left(\tilde{E}_{l}\right)$ equals $\delta_{U_{n}}^{-1 / 2}(a) \pi_{(0)}(a) \tilde{E}_{l}$, we deduce that there is a punctured neighbourhood of zero in Z_{n-1}, such that for each l, the function $\delta_{U_{n}}^{-1 / 2}(a) \pi_{(0)}(a) \tilde{E}_{l}-\sum_{k=1}^{q} M(a)_{k, l} \tilde{E}_{k}$ vanishes on elements $g=p a c$ of $G_{n-1}\left(p\right.$ in P_{n-1}, a in Z_{n-1}, c in $\left.G_{n-1}\left(\mathfrak{O}_{F}\right)\right)$ such that a is in this neighbourhood.
In particular, there exists N_{a} such that for every $\left(z_{1}, \ldots, z_{n-1}\right)$, the vector function

$$
\delta_{U_{n}}^{-1 / 2}(a) \pi_{(0)}(a) \tilde{E}\left(z_{1}, \ldots, z_{n-1}\right)-{ }^{t} M(a) \tilde{E}\left(z_{1}, \ldots, z_{n-1}\right)
$$

vanishes when we have $\left|z_{n-1}\right|_{F} \leq q_{F}^{-N_{a}}$.
This implies, as in the proof of Proposition 2.6. of [C-P], the following claim:

Claim. There is actually an $M^{\prime \prime}$, such that for every z in Z_{n-1}, with $\left|z_{n-1}\right|_{F} \leq q_{F}^{-M^{\prime \prime}}$, and every a in Z_{n-1}, with $|a|_{F} \leq 1$, the function $\tilde{E}\left(z_{1}, \ldots, z_{n-1} a\right)$ is equal to $\delta_{U_{n}}^{1 / 2}(a)^{t} M(a) \tilde{E}\left(\left(z_{1}, \ldots, z_{n-1}\right)\right.$.

Proof of the claim. We denote $\left(z_{1}, \ldots, z_{n-2}\right)$ by x, and z_{n-1} by z.
If U is an open compact subgroup of $Z_{n-1}\left(\mathfrak{O}_{F}\right)$, such that \tilde{E} and the homomorphism $a \in Z_{n-1} \mapsto$ $M(a) \in G_{q}(\mathbb{C})$ are U invariant, we denote by u_{1}, \ldots, u_{s} the representatives of $Z_{n-1}\left(\mathfrak{O}_{F}\right) / U$, and by ω, the canonical generator of $Z_{n-1} / Z_{n-1}\left(\mathfrak{O}_{F}\right)$. We put $M^{\prime \prime}=\max _{i, j}\left(N_{u_{i}}, N_{\omega}\right)$.
Then for z in $\left\{z \in Z_{n-1},|z|_{F} \leq q_{F}^{-M^{\prime \prime}}\right\}$, and $a=\omega^{r} u_{i} u$ in $\left\{z \in Z_{n-1},|z|_{F} \leq 1\right\}$ (with u in U, and $r \in \mathbb{N}$), we have

$$
\tilde{E}(x, z a)=\tilde{E}\left(x, z \omega^{r} u_{i}\right)=\delta_{U_{n}}^{1 / 2}\left(u_{i}\right)^{t} M\left(u_{i}\right) \tilde{E}\left(x, z \omega^{r}\right)
$$

because $z \omega^{r}$ belongs to $\left\{z \in Z_{n-1},|z|_{F} \leq q_{F}^{-M^{\prime \prime}}\right\} \subset\left\{z \in Z_{n-1},|z|_{F} \leq q_{F}^{-N_{u_{i}}}\right\}$. But if $r \geq 1$, again one has

$$
\tilde{E}\left(x, z \omega^{r}\right)=\delta_{U_{n}}^{1 / 2}(\omega)^{t} M(\omega)\left(\omega_{i}\right) \tilde{E}\left(x, z \omega^{r-1}\right)
$$

and $z \omega^{r-1}$ belongs to

$$
\left\{z \in Z_{n-1},|z|_{F} \leq q_{F}^{-N_{2}}\right\} \subset\left\{z \in Z_{n-1},|z|_{F} \leq q_{F}^{-N_{\omega}}\right\},
$$

and repeating this step, we deduce the equality $\tilde{E}(x, z a)=\delta_{U_{n}}^{1 / 2}(a)^{t} M(a) \tilde{E}(x, z)$.
Hence there is an element z_{0} in Z_{n-1} with $\left|z_{0}\right|_{F}=q_{F}^{-M^{\prime \prime}}$, such that for every $\left(z_{1}, \ldots, z_{n-2}\right)$ in $Z_{1} \times \cdots \times Z_{n-2}$, the vector $\tilde{E}\left(z_{1}, \ldots, z_{n-1}\right)$ is equal to

$$
\delta_{U_{n}}^{1 / 2}\left(z_{n-1}\right)^{t} M\left(z_{n-1}\right)\left(z_{n-1}\right)\left[\delta_{U_{n}}^{-1 / 2}\left(z_{0}\right)^{t} M\left(z_{0}^{-1}\right)\right] \tilde{E}\left(z_{1}, \ldots, z_{n-2}, z_{0}\right)
$$

for any z_{n-1} with $\left|z_{n-1}\right|_{F} \leq 1$.
Hence the function $\mathbf{1}_{\left\{\left|z_{n-1}\right| \leq 1\right\}} S\left(z_{1}, \ldots, z_{n-1}\right)$ is equal to

$$
\left(x_{1}, \ldots, x_{q}\right)^{t} M\left(z_{n-1}\right)\left(z_{n-1}\right)\left[\delta_{U_{n}}^{-1 / 2}\left(z_{0}\right)^{t} M\left(z_{0}^{-1}\right)\right] \tilde{E}\left(z_{1}, \ldots, z_{n-2}, z_{0}\right) \delta_{U_{n}}^{1 / 2}\left(z_{n-1}\right) \mathbf{1}_{\left\{\left|z_{n-1}\right| \leq 1\right\}}
$$

One proves as for the function D, that function $\mathbf{1}_{\left\{\left|z_{n-1}\right|>1\right\}}\left(z_{n-1}\right) S\left(z_{1}, \ldots, z_{n-1}\right)$ is of the form

$$
\sum_{\beta \in B} S\left(z_{1}, \ldots, z_{n-2}, z_{\beta}\right) \delta_{U_{n}}^{1 / 2}\left(z_{n-1}\right) S_{\beta}\left(z_{n-1}\right)
$$

with S_{β} in $C_{c}^{\infty}(F)$ for some finite set B.
By induction hypothesis again, applied to the function $\left(\delta_{U_{n}}^{-1 / 2} \tilde{E}_{i}\right)\left(z_{1}, \ldots, z_{n-2}, z_{0}\right)$ and the function $\left(\delta_{U_{n}}^{-1 / 2} S\right)\left(z_{1}, \ldots, z_{n-2}, z_{\beta}\right)$, we deduce that the function $S=\mathbf{1}_{\left\{\left|z_{n-1}\right| \leq 1\right\}} S+\mathbf{1}_{\left\{\left|z_{n-1}\right|>1\right\}} S$ is a sum of functions of the form $\prod_{k=1}^{n-1} c_{i_{k}, n-k}\left(z_{k}\right) \delta_{U_{k+1}}^{1 / 2} \ldots \delta_{U_{n}}^{1 / 2}\left(z_{k}\right) v_{F}\left(z_{k}\right)^{m_{j}^{\prime \prime}} \phi_{k}^{\prime \prime}\left(z_{k}\right)$ for i_{k} between 1 and r_{k}, null or positive integers or integer vectors $m_{k}^{\prime \prime}$, and functions $\phi_{k}^{\prime \prime}$ in $C_{c}^{\infty}(F)$.
The statement follows as the function W equals $D+S$.

$3 \quad L^{2}\left(Z_{n} N_{n} \backslash G_{n}\right)$ and discrete series

First we characterise the Whittaker functions which belong to $\int_{N_{n} \backslash P_{n}}|W(p)|^{2} d p$ in terms of exponents of the "shifted derivatives" (see [B, 7.2.). This result has been used in M.
We say that a character of a F^{*} is positive if its (complex) absolute value, is of the form $\left|\left.\right|_{F} ^{r}\right.$ for some positive real r.

Theorem 3.1. Let θ be a nondegenerate character of the group N_{n}, and π be a θ-generic representation of G_{n}, let the $c_{1, n-k}, \ldots, c_{r_{k}, n-k}$ be the characters of Z_{k} appearing in a composition series of $\tau=\pi^{(n-k)}$. Then the integral

$$
\int_{N_{n} \backslash P_{n}}|W(p)|^{2} d p
$$

converges for any W in π if and only if all the characters $c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2}$ are positive for k between 1 and $n-1$.

Proof. Again we prove the stronger statement:
. Let (π, V) be a P_{n}-submodule of $C^{\infty}\left(N_{n} \backslash P_{n}, \theta\right)$, such that for every k between 1 and $n-1$, the G_{k}-module $\tau=\pi^{(n-k)}=\Psi^{-}\left(\Phi^{-}\right)^{n-k-1}(\pi)$ has a composition series such that, on each respective quotient, the central subgroup Z_{k} acts by the characters $c_{1, n-k}, \ldots, c_{r_{k}, n-k}$. Then the integral

$$
\int_{N_{n} \backslash P_{n}}|W(p)|^{2} d p
$$

converges for any W in π if and only if all the characters $c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2}$ are positive for k between 1 and $n-1$.

Suppose first that all the characters $c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2}$ are positive. Let W belong to the space of π, first we notice the equality

$$
\int_{N_{n} \backslash P_{n}}|W(p)|^{2} d p=\int_{N_{n-1} \backslash G_{n-1}}|W(g)|^{2} d g
$$

Now the Iwasawa decomposition reduces the convergence of this integral to that of

$$
\int_{A_{n-1}}|W(a)|^{2} \delta_{N_{n-1}}^{-1}(a) d^{*} a
$$

Using coordinates $\left(z_{1}, \ldots, z_{n-1}\right)$ (see Lemma 1.1) of A_{n-1}, the function $\delta_{N_{n-1}}^{-1}\left(z_{1}, \ldots, z_{n-1}\right)$ is equal to $\prod_{k=1}^{n-2}\left(\delta_{U_{k+1}} \ldots \delta_{U_{n-1}}\right)^{-1}\left(z_{k}\right)$.
According to Theorem [2.1] the function $\left|W\left(z_{1}, \ldots, z_{n-1}\right)\right|^{2}$ is bounded by a sum of functions of the form

$$
\prod_{k=1}^{n-1}\left|c_{i_{k}, k}\right|\left(z_{k}\right)\left|c_{l_{k}, k}\right|\left(z_{j}\right)\left(\delta_{U_{k}+1} \ldots \delta_{U_{n}}\right)\left(z_{k}\right) v_{F}\left(z_{k}\right)^{m_{k}} \phi_{k}\left(z_{k}\right) .
$$

Hence our integral will converge if the same is true of the integrals

$$
\int_{A_{n-1}} \prod_{k=1}^{n-1}\left|c_{i_{k}, k}\right|\left(z_{k}\right)\left|c_{l_{k}, k}\right| \delta_{U_{n}}\left(z_{k}\right) v_{F}\left(t_{k}\right)^{m_{k}} \phi_{k}\left(z_{k}\right) d z_{1} \ldots d z_{n}
$$

i.e. if the integrals $\int_{Z_{k}}\left|c_{i_{k}, k}\right|\left(z_{k}\right)\left|c_{l_{k}, k}\right|\left(z_{k}\right) \delta_{U_{n}}\left(z_{k}\right) v_{F}\left(t_{k}\right)^{m_{k}} \phi_{k}\left(t_{k}\right) d z_{k}$ converge for any k between 1 and $n-1$.
But the restriction of $\delta_{U_{n}}$ to Z_{k} is equal to $\delta_{U_{k+1}}$, so the convergence follows from our assertion on the characters $c_{i_{k}, k} \delta_{U_{n}}^{1 / 2}$.
Conversely, suppose that every W in $\pi_{(0)}$ belongs to the space $L^{2}\left(N_{n} \backslash P_{n}\right)$ corresponding to a right invariant measure on $N_{n} \backslash P_{n}$.
By Iwasawa decomposition, one gets that $\int_{N_{n} \backslash P_{n}}|W(p)|^{2} d p=\int_{N_{n-1} \backslash G_{n-1}}|W(g)|^{2} d g$ is equal to $\int_{A_{n-1} \times F_{n}}|W(a k)|^{2} \delta_{N_{n-1}}^{-1}(a) d^{*} a d k$ which is greater than $d k(U) \int_{A_{n-1}}|W(a)|^{2} \delta_{N_{n-1}}^{-1}(a) d^{*} a$ for some compact open subgroup U fixing W. In particular the integral $\int_{A_{n-1}}|W(a)|^{2} \delta_{N_{n-1}}^{-1}(a) d^{*} a$ converges for any W in π.

This by Fubini's theorem and smoothness of W, implies that $\int_{A_{n-2}}|W(a)|^{2} \delta_{N_{n-1}}^{-1}(a) d^{*} a$ is finite for any W in π. But the restriction of $\delta_{N_{n-1}}$ to A_{n-1} is equal to $\delta_{N_{n-2}} \delta_{U_{n-1}}$, so that the integral $\int_{A_{n-2}}|W(a)|^{2} \delta_{U_{n-1}}^{-1} \delta_{N_{n-2}}^{-1}(a) d^{*} a$ is finite for W in π, which by Iwasawa decomposition again, implies that $\int_{N_{n-1} \backslash P_{n-1}}\left|\delta_{U_{n-1}}^{-1 / 2} W(p)\right|^{2} d p$ is finite.
The functions $\delta_{U_{n-1}}^{-1 / 2} W$ belong to the space of $\phi^{-}(\pi)$, hence by induction, all the characters $c_{i_{k}, k} \delta_{U_{k+1}}^{1 / 2}$ are positive for $k \leq n-2$. So we only need to check that the characters $c_{i_{n-1}, n-1} \delta_{U_{n}}^{1 / 2}$ are positive. Suppose that one of them, $c_{1, n-1} \delta_{U_{n}}^{1 / 2}$ for instance, wasn't.
Then, taking v nonzero in $\Psi^{-}(\pi)$ such that Z_{n-1} multiplies v by $c_{1, n-1}$, according to Proposition 2.3 and taking W a preimage of v in π, there is a positive integer N_{a}, such that $\delta_{U_{n}}^{-1 / 2}(a) \pi(a) W(g)-$ $c_{1, n-1}(a) W(g)$ is zero whenever for any g in G_{n-1} with $|z(g)|_{F} \leq q_{F}^{-N_{a}}$. As in Claim2 this implies that there is a positive integer N, such that $W(a g)$ is equal to $\delta_{U_{n}}^{1 / 2}(a) c_{1, n-1}(a) W(g)$ whenever $|z(g)|_{F} \leq q_{F}^{-N}$ and $|a|_{F} \leq 1$. We recall that W doesn't belong to $V\left(U_{n}, 1\right)$ (otherwise v would be zero), hence according to Proposition 2.3, there is g_{0} in G_{n-1} with $\left|z\left(g_{0}\right)\right|_{F} \leq q_{F}^{-N}$, such that $W\left(g_{0}\right)$ is nonzero. We denote by W_{0} the function $\pi\left(g_{0}\right) W$, and we recall that the integral

$$
\int_{A_{n-1}}\left|W_{0}(a)\right|^{2} \delta_{N_{n-1}}^{-1}(a) d^{*} a=\int_{Z_{1} \times \cdots \times Z_{n-1}}\left|W_{0}\left(z_{1} \ldots z_{n-1}\right)\right|^{2} \delta_{N_{n-1}}^{-1}\left(z_{1} \ldots z_{n-1}\right) d z_{1} \ldots d z_{n-1}
$$

is finite. Hence the smoothness of W_{0} and Fubini's theorem imply that the integral

$$
\int_{Z_{n-1}}\left|W_{0}\left(z_{n-1}\right)\right|^{2} \delta_{N_{n-1}}^{-1}\left(z_{n-1}\right) d z_{n-1}=\int_{Z_{n-1}}\left|W_{0}\left(z_{n-1}\right)\right|^{2} d z_{n-1}
$$

is finite. But for $\left|z_{n-1}\right|_{F} \leq 1$, the function $W_{0}\left(z_{n-1}\right)$ is equal to $\delta_{U_{n}}^{1 / 2}\left(z_{n-1}\right) c_{1, n-1}\left(z_{n-1}\right) W\left(g_{0}\right)$ with $W\left(g_{0}\right)$ nonzero, hence it is square integrable at zero if and only if $\delta_{U_{n}} c_{1, n-1}^{2}$, thus $\delta_{U_{n}}^{1 / 2} c_{1, n-1}$ is positive.

Remark 3.1. The last proof more or less contains the following fact (which is more precisely a consequence of an induction, and the last step of the proof):
For every character $c_{i_{k}, n-k}$ appearing in a factor series of $\pi^{(n-k)}$, there is W in V, such that $W\left(z_{k}\right)$ is equal to $\left[c_{i_{k}, n-k} \delta_{U_{k+1}}^{1 / 2} \ldots \delta_{U_{n}}^{1 / 2}\right]\left(z_{k}\right)$ near zero. Hence this family of characters is minimal in the sense that each of them must occur in the expansion given in Proposition 2.1 of some W in V.

From this we deduce a characterization of the Whittaker functions in $L^{2}\left(Z_{n} N_{n} \backslash G_{n}\right)$.
Corollary 3.1. Let θ be a nondegenerate character of the group N_{n}, and π be a θ-generic representation of G_{n} with unitary central character, let the $c_{1, n-k}, \ldots, c_{r_{k}, n-k}$ be the central characters appearing in the factor series of $\tau=\pi^{(n-k)}$. Then the integral

$$
\int_{Z_{n} N_{n} \backslash G_{n}}|W(g)|^{2} d g
$$

converges for any W in π if and only if all the characters $c_{i_{k}, k}$ are positive for k between 1 and $n-1$.

Proof. By the Iwasawa decomposition, the integral $\int_{Z_{n} N_{n} \backslash G_{n}}|W(g)|^{2} d g$ converges for every W in $W(\pi, \theta)$ if and only if the $\int_{A_{n-1}}|W(a)|^{2} \delta_{N_{n}}^{-1}(a) d g$ converges for every W in $W(\pi, \theta)$.
As the character $\delta_{N_{n}}$ restricts to G_{n-1} as $\delta_{N_{n-1}} \delta_{U_{n}}$, this integral is equal to

$$
\int_{A_{n-1}}\left|\delta_{U_{n}}^{-1 / 2} W(a)\right|^{2} \delta_{N_{n-1}}^{-1}(a) d g
$$

But this integral converges for any W in $W(\pi, \theta)$ if and only if so does the integral

$$
\int_{N_{n} \backslash P_{n}}\left|\delta_{U_{n}}^{-1 / 2} W(p)\right|^{2} d p
$$

for any W in $W(\pi, \theta)$.
By the statement in the proof of theorem 3.1, applied to $\delta_{U_{n}}^{-1 / 2} \otimes \pi^{\prime}$, this is the case if and only all the characters $c_{i_{k}, k}$ are positive for k between 1 and $n-1$.

Let P be a standard proper parabolic subgroup of G_{n}, U its unipotent radical, and M its standard Levi subgroup. If (π, V) is a smooth irreducible representation of G_{n}, one calls cuspidal exponent of π with respect to P, a character χ of the center of M such that the characteristic space of the Jacquet module $\left(V_{U}\right)_{\chi, \infty}$ is nonzero. Denoting by Δ the set of simple roots $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of G_{n}, We denote by $P^{\left\{i_{1}, \ldots, i_{t}\right\}}$ the standard parabolic subgroup associated with the set of positive roots $\Delta-\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{t}}\right\}$, by $U^{\left\{i_{1}, \ldots, i_{t}\right\}}$ its unipotent radical, by $M^{\left\{i_{1}, \ldots, i_{t}\right\}}$ its standard Levi subgroup, which admits as a central subgroup the product $Z_{i_{1}} \ldots Z_{i_{t}}$.
Notice that except for case D, for $\left\{i_{1}, \ldots, i_{t}\right\}=\{2\}$, where we used the notation $U_{2, n-2}$ for $U^{\{1,2\}}$, the group $U^{\{k\}}$ is what we already denoted by $U_{k, n-k}$ before.
We denote by $A_{i_{1}, \ldots, i_{t}}^{-}$the set

$$
\left\{z_{i_{1}} \ldots z_{i_{t}} \in Z_{i_{1}} \ldots Z_{i_{t}},\left|z_{i_{k}}\right|_{F} \leq 1, \text { and }\left|z_{i_{1}} \ldots z_{i_{t}}\right|_{F}<1\right\}
$$

Theorem 4.4.6 of [C then asserts that π with unitary central character is a discrete series representation if and only if, for every standard parabolic subgroup $P^{\left\{i_{1}, \ldots, i_{t}\right\}}$, if χ is a cuspidal exponent of π with respect to $P^{\left\{i_{1}, \ldots, i_{t}\right\}}$, the restriction of χ to $A_{i_{1}, \ldots, i_{t}}^{-}$is less than 1 , or equivalently if χ restricted to $Z_{i_{1}} \ldots Z_{i_{t}}$ is positive.
We also notice that for any k, the Jacquet module $V_{U\left\{i_{k}\right\}}$ surjects onto $V_{U\left\{i_{1}, \ldots, i_{t}\right\}}$, and that the character $\delta_{U\left\{i_{1}, \ldots, i_{t}\right\}}$ restricts to $Z_{i_{k}}$ as $\delta_{U\left\{i_{k}\right\}}$, hence if χ is a cuspidal exponent of π with respect to $P^{\left\{i_{1}, \ldots, i_{t}\right\}}$, then $\chi_{\mid Z_{i_{k}}}$ is the restriction to $Z_{i_{k}}$ of a cuspidal exponent of π with respect to $P^{\left\{i_{k}\right\}}$. This implies that π irreducible with unitary central character is a discrete series representation if and only if the cuspidal exponents of π with respect to maximal parabolic subgroups $P^{\left\{i_{k}\right\}}$ have positive restriction to $Z_{i_{k}}$.

We call a character χ of Z_{k} such that $\left(V^{(n-k)}\right)_{\chi}$ (or equivalently $\left(V^{(n-k)}\right)_{\chi, \infty}$) is nonzero an exponent of the derivative $\left(\pi^{(n-k)}, V^{(n-k)}\right)$. Now we recall that we showed in Proposition 2.7, that the Z_{k} modules $V_{U_{k, n-k}}$ and $V^{(n-k)}$ have the same nonzero weight subspaces. This allows to prove in our four cases the following conjecture of Lapid and Mao ($\overline{\mathrm{L}-\mathrm{M}}$, conjecture 3.5).

Theorem 3.2. Let π be a generic representation of G_{n} with unitary central character and with Whittaker model $W(\pi, \theta)$, then the following statements are equivalent:
i) The integral

$$
\int_{N_{n} Z_{n} \backslash G_{n}}|W(g)|^{2} d g
$$

converges for any W in $W(\pi, \theta)$.
ii) All the exponents of the derivatives of π are positive.
iii) the representation π is square-integrable.

Proof. By assumption, the exponents of the derivatives of π are the characters $c_{i_{k}, k}$ of corollary 3.1, hence i) \Leftrightarrow ii) is corollary 3.1.
ii) \Leftrightarrow iii): we treat the case D separately, so assume first that G_{n} is not $\operatorname{GSO}(2(n-1), F)$.

By Proposition 2.6, every cuspidal exponent of π corresponding to $V_{U^{\{k\}}}$ is positive if and only if every exponent of the derivative $\pi^{(n-k)}$ is positive. But we have already seen that this implies
that π is a discrete series representation.
For the case D, we could have reversed the roles of the roots α_{1} and α_{2} (which correspond to the two symmetric roots at the end of the Dynkin diagram). The only effect it would have is to change the definition of the derivative functors $\pi^{(n-2)}$ and $\pi^{(n-1)}$. Indeed U_{2} would become $U_{\alpha_{2}}, Z_{1}$ and Z_{2} would be exchanged. The character θ_{3} would have to be trivial on $U_{\alpha_{2}}$ instead of being trivial on $U_{\alpha_{1}}$. But i) and ii) would still be equivalent in this case, and i) is independent of these choices.
In both cases, the maps I_{k} from $V_{U_{k, n-k}}$ to $V^{(n-k)}$ take nonzero weight subspaces to nonzero weight subspaces. For $n \geq 3$, the space $V_{U_{k, n-k}}$ is equal to $V_{U^{\{k\}}}$. In the first case, $V_{U_{1, n-1}}$ is equal to $V_{U\{1\}}=V_{U_{\alpha_{1}}}$, and it is equal to $V_{U\{2\}}=V_{U_{\alpha_{2}}}$ in the second case. This implies that all the exponents of the derivatives of π are positive if and only if all cuspidal exponents of π with respect to maximal parabolic subgroups are positive. Again this proves ii) \Leftrightarrow iii).

References

[B] J. N. Bernstein, P-invariant distributions on $G L(N)$ and the classification of unitary representations of $G L(N)$ (non-archimedean case), Lecture Notes in Math., vol 1041, Springer-Verlag, Berlin, (1983), 50-102.
[B-Z] J. N. Bernstein and A.V. Zelevinsky, Representations of the group $G L(n, F)$ where F is a local non-archimedean field, Russian Math. Surveys, 31:3 (1976), 1-68.
[B-Z.2] J. N. Bernstein and A.V. Zelevinsky, induced representations of reductive p-adic groups, Ann. Sc. E.N.S., 1977.
[Bu] C. Bushnell, Representations of reductive p-adic groups: localization of Hecke algebras and applications, J. London Math. Soc., 63 (2001), 364-386.
[B-H] C. Bushnell, G. Henniart, On the derived subgroups of certain unipotent subgroups of reductive groups over infinite fields, Transformation groups, (2002), vol. 7, no 3, pp. 211-230
[C] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, http://www.math.ubc.ca/~cass/research.html.
[C-S] W. Casselman and J. Shalika, The unramified principal series of p-adic groups II. the Whittaker function, Compositio Math. 41 (1980), 207-231.
[C-P] J. W. Cogdell, I.I. Piatetski-Shapiro, Derivatives and L-functions for $G L(n)$, to appear in The Heritage of B. Moishezon, IMCP.
[D] P. Delorme, Constant term of H_{ψ}-spherical functions on a reductive p-adic group, to appear in Transactions American Math. Soc., 2008.
[J] H. Jacquet, Generic representations, in Non-commutative harmonic analysis, MarseilleLuminy, 1976, Springer-Verlag, Lecture Notes No. 587, (1976), 376- 378.
[L-M] E. Lapid, Z. Mao On the asymptotics of Whittaker functions, Represent. Theory, 13 (2009), 63-81.
[M] N. Matringe, Distinction of some induced representations, Math. Res. Lett., 2010, vol. 17, no. 1, 77-97.
[R] F. Rodier, Modle de Whittaker des reprsentations admissibles des groupes rductifs p-adiques quasi-dploys, C. R. Acad. Sci. Paris Sr. A-B 275, A1045-A1048, 1972
[Z] A.V. Zelevinsky, induced representations of reductive p-adic groups II, Ann.Sc.E.N.S., 1980.

[^0]: *Nadir Matringe, University of East Anglia, School of Mathematics, Norwich, UK, NR4 7TJ. Email n.matringe@uea.ac.uk

