
HAL Id: hal-00470280
https://hal.science/hal-00470280

Submitted on 5 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal and Tool-Equipped Approach for the
Integration of State Diagrams and Formal Datatypes

Christian Attiogbe, Pascal Poizat, Gwen Salaün

To cite this version:
Christian Attiogbe, Pascal Poizat, Gwen Salaün. A Formal and Tool-Equipped Approach for the
Integration of State Diagrams and Formal Datatypes. IEEE Transactions on Software Engineering,
2007, 33 (3), pp.157-170. �10.1109/TSE.2007.21�. �hal-00470280�

https://hal.science/hal-00470280
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Formal and Tool-Equipped Approach for the
Integration of State Diagrams and Formal Datatypes

Christian Attiogbé, Pascal Poizat, and Gwen Salaün

Abstract— Separation of concerns or aspects is a way to deal
with the increasing complexity of systems. The separate design
of models for different aspects also promotes a better reusability
level. However, an important issue is then to define means to
integrate them into a global model. We present a formal and
tool-equipped approach for the integration of dynamic models
(behaviours expressed using state diagrams) and static models
(formal data types) with the benefit to share advantages of both:
graphical user-friendly models for behaviours, formal and ab-
stract models for data types. Integration is achieved in a generic
way so that it can deal with both different static specification
languages (algebraic specifications, Z, B) and different dynamic
specification semantics.

Index Terms— Formal methods, languages, integrated envi-
ronments, state diagrams, specification techniques, operational
semantics, tools.

I. I NTRODUCTION

T HE increasing complexity of systems (size, distribution
and communication, number of interacting entities) has

led in the last years to numerous proposals of expressive struc-
turing mechanisms such as modules, viewpoints, components,
software architectures or models. The corresponding entities
are designed separately which increase their reusability while
making their integration more complicated.

In this article we tacklehorizontal integrationwhich means
the integration of models representing different concernsand
possibly written in different languages. Rather than relying on
a separate integration description which would make it nec-
essary for the system designer to know yet another language,
we propose to define a semantic framework for the integration
within one of the languages of features from the other ones,
yielding an integrated, or mixed language. Such a semantic
framework is a mandatory preliminary step to be able to build
tools dedicated to model integration.

The concerns we are interested in are the main ones in
systems,i.e., on one hand theirstatic aspects(data types
and related operations) and on the other hand theirdynamic
aspects(behaviours, concurrency and communication). In our
approach, integration iscontrol-driven: dynamics is the main
aspect and drives the way data types (static aspects) are used.
In this way, our proposal enforces the consistency of the static
and dynamic parts.

We advocate the specification of static aspects using formal
data description languages (e.g., algebraic specifications [1]–
[3], state-oriented languages such as Z [4] or B [5]). They

C. Attiogbé is with LINA FRE 2729 CNRS, Université de Nantes, France.
P. Poizat is with IBISC FRE 2873 CNRS, Université d’Evry Vald’Essonne

and ARLES project, INRIA Rocquencourt, France.
G. Salaün is with VASY project, INRIA Rhône-Alpes, France.

allow the description of data types at a high abstraction level
and the verification of their specification. Regarding dynamic
aspects, we propose the use of state diagrams since such
semi-formal notations (e.g., UML [6] or Statecharts [7]) have
now made a breakthrough in software engineering, mainly
because of their user-friendliness through graphical notations
and adaptability.
Semi-formal graphical languages lack a widely accepted for-
mal semantics, and formal description languages are often said
to be hard to learn and put into practice. Their joint use is
a pragmatic approach which takes advantage of both: user-
friendliness and readability from graphical approaches, high
abstraction level, expressiveness, consistency and verification
means from formal approaches.

Our integration approach is generic with respect to the
static and the dynamic aspects. The language flexibility we
propose for the static aspect specification enables the specifier
to choose the formal languages that are the more suited to this
task: either the ones (s)he is used to, the ones equipped with
tools, or the ones that make the reuse of earlier specifications
possible. Our approach makes the joint use of several static
specification languages possible. This is an important feature
as there is no universal modelling language and therefore
different parts of the data used in systems may be more
adequately written in different languages. Different dynamic
semantics may be taken into account. Our approach may be
used for Statecharts [7], [8], for different UML state diagram
semantics, [9]–[12] for instance, and more generally for other
state / transition based languages.
An early version of this work has been presented in [13].
The syntax part has been improved thanks to a motivating
example, a formal grammar of transition extensions and more
explanations. More details on the semantic framework and
rules have also been added. Consistency and completeness
of the dynamic semantic rules have been proven. Finally a
section presents xCLAP, an animation prototype for extended
state diagrams.

The article is structured as follows. Section II presents the
syntactic extensions used to integrate formal data types within
state diagrams. In Section III, the semantic foundations ofour
approach are formalised. Section IV demonstrates how the
semantic framework can be instantiated. Section V overviews
the xCLAP prototype tool. In Section VI, we present related
works and compare our approach to them. Finally, Section VII
concludes the article.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

II. SYNTACTIC ASPECTS

In this section we present the extensions needed in state
diagrams to enable their integration with data types, yielding
Extended State Diagrams(ESDs). We advocate for a control-
driven approach of integration. This means that dynamic
behaviours, namely state diagrams, describe the main part
of the specification whereas data types are handled by this
behavioural specification.

State diagramsare used to graphically represent finite state
machines. They can be used to specify the behaviour of various
entities, from computer programs to business processes. Initial
states are represented using filled circles. Final states are
represented using hollow circles. Rectangles with round angles
are used to represent states, which can be named. Transitions
between states are represented with arrows. In addition to its
source states (at least one) and its target states (any number),
a transition may optionally support an event, a condition
or guard, and an action list. Transition labels correspond to
these three elements: EVENT[GUARD] / ACTIONS. The
intuitive semantics of transitions is as follows: when the event
is produced while the source states are active and the guard
is true, then actions are executed and the target states are
activated. Additional notations can be used to write dynamic
models in a more concise way,e.g., hierarchical states (also
called OR-states) represented as states which contain a state
diagram, or concurrent states (also called AND-states) to de-
note concurrent execution zones in state diagrams, represented
using dashed lines between the zones. We refer to [6], [7] for
a comprehensive description of state diagrams notations.

Let us start with a simple ESD specification (Fig. 1) to
introduce what an integrated ESD specification would look
like. It is a producer/consumer system where diagramsD1 and
D2 are consumers which receive resources (x) and consume
them.D1 consumes all resources at once, whileD2 consumes
them one by one. DiagramD3 is the producer which sends
resources toD1 andD2, either sending one to each or two to
D2. It also counts the number of provided resources (n).

The data part of the specification is described in our example
using Larch algebraic specifications [1] (seeSTOREin Fig. 2
which keeps track of given resources). Analgebraic data type
specificationis made up of a set ofsorts (types) definitions
together withoperatorson these sorts. Constants correspond to
0-ary operators. Operators with a result sort that corresponds
to the sort being defined are calledconstructors. Operators and
variables enable one to buildterms, e.g., if 1 and plus are
natural numbers constructors (1 being a 0-ary constructor and
plus being a binary one), and ifx is a natural number vari-
able, then a possible term isplus(x,1) . The constructors
that can generate all the terms corresponding to the values of a
given sort are calledgenerators. It could be for example0, 1
and plus for natural numbers. In our example, generators
are new and append . The profiles of operators are first
given and then their semantics are provided thanks to axioms,
e.g., an axiom such asplus(x,y) = plus(y,x) states
the commutative property of addition. Note that variables in
algebraic specifications are just placeholders in axioms and do
not correspond to a state space for the sort they are defined

declare sort STORE
declare operators

(* creates an empty store *)
new : -> STORE
(* adds a client record *)
append : STORE, NAT, NAT -> STORE
(* updates a client record *)
update : STORE, NAT, NAT -> STORE

..
(* generators *)
assert sort STORE generated by new, append;
declare variables store: STORE,

client,client2: NAT,
amount,amount2: NAT

assert
update(new,client,amount) = append(new,client,amount) ;
(client==client2)
=> update(append(store,client,amount),client2,amount 2)

= append(new,client,amount+amount2);
˜(client==client2)
=> update(append(store,client,amount),client2,amount 2)

= append(update(store,client2,amount2),client,amount);
..

Fig. 2. Producer/consumer static model

in; hence they are not initialised. Axioms can be used in
a functional fashion,i.e., op(args) = term . In such a
case, theargs (arguments) part of axioms is usually defined
inductively on the generators of the argument types. This can
be observed in Fig. 2 where theupdate operator is defined
using the twoSTOREgenerators, namelynew (first axiom)
andappend (two last axioms). Algebraic specifications given
as such are executable and can be transformed into code [14].
More details on algebraic specifications can be found in [2].

Data types are used in state diagrams to enable data en-
capsulation (n in D3), communication and value passing (x
received inD1 andD2). A more realistic example of such an
integration of static and dynamic models is presented in [15]
where more complex data types and ESDs are used.

As shown in the example, the state diagrams notation has
to be extended in two ways to take into account formal data
types: (i) data boxes are associated to state diagrams and (ii)
data expressions appear in transitions.

Data boxeshave two goals: they are used to import modules
(a module being a collection of one or several data type
definitions), and to declare variables locally to a state dia-
gram. Note that the initialisation of variables is performed in
transitions. Data boxes are inspired from UML notes which
are usually used to give additional information to a diagram
in a textual form. A data box is made up of a list of module
importations and variable declarations. TheIMPORTnotation
indicates which data modules are imported as well as the
language used to write them out (e.g., the Larch algebraic
specification language as in our example, but also Z schemas
or B machines). This language is called aframeworkin our
approach and determines which function has to be used to
evaluate the data embedded into the state diagram. Variables
are also declared and typed in data boxes. Since modules
often contain several type definitions, and since types with
the same name may be defined in different modules, the type
of a variable may be prefixed with the name of the module it
is defined in to avoid conflicts.

Data expressionsappear in transitions which are ex-
tended to (i) receive values in the EVENT part and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

s1

s2

 comm(x:NAT)consume

IMPORT LarchSpec NAT

 D1

s1

s2

[x<=1]
consume

 comm(x:NAT)

IMPORT LarchSpec NAT

[x>1]
consume
/ x:=x-1

 D2

s1

s2

/ n:=update(n,1,1);
 n:=update(n,2,1)

IMPORT LarchSpec NAT, STORE

n:STORE

 / D1^comm(1);
 D2^comm(1)

s3

/ D2^comm(2)

/ n:=update(n,2,2)
 D3

Fig. 1. Producer/consumer system

TABLE I

GRAMMAR OF TRANSITIONS WITH DATA EXPRESSIONS

TRANSITION ::= [EVENT] [[GUARD]] [/ ACTION [; ACTION]*]
EVENT ::= event-name [(PARAM [, PARAM]*)]
PARAM ::= var: type
GUARD ::= DATA-TERM
ACTION ::= EMISSION | ASSIGNMENT
EMISSION ::= receiver̂ event-name [(DATA-TERM [, DATA-TERM]*)]
ASSIGNMENT ::= var:= DATA-TERM
DATA-TERM ::= var | operation [(DATA-TERM [, DATA-TERM]*)]

then to store these values into local variables,e.g., event-
name(x1:T1,. . . ,xn:Tn), (ii) guard transitions with data expres-
sions, e.g., predicate(t1,. . . ,tn), (iii) send events containing
data expressions,e.g., receiverˆevent-name(t1,. . . ,tn), and (iv)
make assignments of data expressions to local variables,e.g.,
x:=t . Points (iii) and (iv) take place in the ACTIONS part
of transitions. Table I gives a formal grammar of transitions
handling data terms.

Data expressions may be either variables, terms for alge-
braic specifications or operation applications for state-oriented
specifications. We recall that constants correspond to 0-ary
operations. As far as the formal languages for the static aspects
are concerned, the only constraint is to have some well-defined
evaluation mechanism. The reason is that we are interested in
providing a generic specification framework formally defined
using an operational semantics. Hence, the design and imple-
mentation of dedicated tools, such as the one we present in
Section V, can be tackled. Our approach makes the joint use
of several static formal languages possible. However, a mix
of constructs from several languages (such as the importation
of a Z module within an algebraic specification, or using
algebraic specification variables in a B operation application)
is not allowed to avoid possible semantic inconsistencies.As
a simple way to detect them, we develop ameta-typeconcept
using meta-typing rules (see Section III-A). Terms which are
not meta-typed, and therefore inconsistent, cannot be usedin
the dynamic rules.

To sum up, anESD specificationis given as a set of static
models (data type modules) together with a set of dynamic
models (ESD). Each ESD possibly includes data definitions
(module importations and variable declarations). Any syntactic
construction of state diagrams (e.g., hierarchy, histories, inter-

level transitions) can be used at the specification level provided
that this construction is taken into account and formalisedin
the semantics considered for the non-extended notation (see
configurations in Section III-C, page 6).

III. SEMANTIC ASPECTS

In this section, our goal is to give a formal semantics to
state diagrams extended with formal data types as presented
in the syntactic part.

We do not aim at formalising some specific kind of (non-
extended) state diagram, which has already successfully been
done, see [8]–[12] for example. We rather aim at being able
to reuse different existing state diagram semantics. Therefore,
our semantics is presented in a way such that generic concepts,
represented in our semantics using a boxed notation, may be
instantiated for a specific kind of state diagram semantics.A
generic property such as “the event pertains to the input event
collection of the state diagram” is for example represented
as event ∈ Qin, without assuming any specific additional
constraint (such as an ordering of events in collections). It
may however thereafter be instantiated into “the event is the
first element of the input queue”,event∈ Qin, thus taking into
account ordering.

Using this generic approach, several kinds of non-extended
state diagrams and their underlying semantics can be con-
sidered. The only constraint is that this semantics has to be
given in terms of a Labelled Transition System (LTS),i.e.,
a tuple (INIT, STATE, TRANS) with initial states, states and
transitions which are tuples (source state, label, target state).
Labels correspond to TRANSITION in Table I.

We define anoperational semanticsfor ESD specifications
since such a semantics is well suited for the definition of tools.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

This semantics is based on LTSs. Getting such a semantics in
one step is a complex task as different elements have to be
taken into account: action semantics usingevaluation functions
and their effect on theextended state spaceof individual
ESDs, storing of events, individual behavioural semanticsof
ESDs, relations between ESDs and their (open) environment,
and finally communications between several ESDs at the
system level. Therefore, we propose to achieve a semantics
incrementally, i.e., in several steps, taking into account at each
step new elements presented above. This semantic “separation
of concerns”, yielding a separation of (groups of) semantic
rules, as a side-effect enables one to reuse specific rules and
replace or specialise other ones to deal with specific needs.

It is important to notice that in our approach both the syn-
tactic pieces (state diagrams) and the semantic ones (semantic
execution models) we incrementally build are LTSs. However,
the incremental semantics process will bring at each step more
information and semantics to enrich these LTS states and
transitions. The semantics steps and the corresponding LTSs
are summarised in Fig. 3, with syntactic pieces on the left and
the incrementally built semantic ones on the right. Different
notations are used to denote the different kinds of LTSs:

• simple notation,(INIT, STATE, TRANS), for syntactic
pieces;

• boxed (generic) notation, (INIT , STATE, TRANS),
for the semantics of non-extended state diagrams we build
on;

• underlined notation,(INIT, STATE, TRANS), for the
behavioural models of individual ESDs, taking into
account data encapsulation and event collections for
communication. These LTSs are generated by the
dynamic rules (Fig. 3(1), Section III-C) which rely
on meta-typing (Section III-A) and action evaluation
rules (Section III-B). Moreover, the dynamic rules use,
Fig. 3(c), a given (chosen) semantics for non-extended
diagrams (denoted by|| . || in the figure) obtained in
Fig. 3(a) and (b). To be able to reuse this semantics
in our approach, we have the need for specific (i.e.,
dependent on the non-extended diagrams semantics
we take into account) “forget” functions (they forget
the extensions in ESDs), which are denoted by⇂ .
These functions distribute over LTS triples (both syntax
and semantics ones),e.g., ⇂ (INIT, STATE, TRANS) =

(⇂ INIT, ⇂ STATE, ⇂ TRANS). Moreover, as we
only extend transitions (see Section II), we have
⇂ INIT = INIT and ⇂ STATE = STATE, and hence

⇂ (INIT, STATE, TRANS) = (INIT, STATE, ⇂ TRANS).
When dealing with a given non-extended diagram
semantics (such as for example the [12] one, used in
Section IV for illustration purposes), we will use a
specific ⇂ forget function (this means that the⇂
function has to be instantiated for specific non-extended
semantics);

• open exponent notation, (INITopen, STATEopen,
TRANSopen), for (open) models of individual ESDs,
taking into account their relation with the environment.
These LTSs are generated by theopen system rule

(IMPORT XSpec M) ∈ DeclImp(D)
def(T, M)

x : T ∈ DeclVar(D)

x ::D X
(a)

(IMPORT XSpec M) ∈ DeclImp(D)
def(op, M)

∀ i ∈ 1..n . ti ::D X

op t1 . . . tn ::D X
(b)

Fig. 4. Meta-typing rules

(Fig. 3(2), Section III-D);
• and finally over-lined notation,(INIT, STATE, TRANS),

for the complete semantics of an ESD specification,
i.e., a set of communicating ESDs. These LTSs are
generated by theglobal system and communication rules
(Fig. 3(3), Section III-E) which, putting these ESDs
(quantified byi) individual open models altogether, yield
a global model for the whole ESD specification. The use
of forget functions (a) and non-extended semantics (b),
and the application of dynamic rules (1), (c), and open
systems rules (2) is performed independently for each
diagram within the system. It is the global system and
communication rules (3) which yield a semantics for the
whole system.

In the sequel we present more formally each group of rules.
We will also discuss the evaluation functions associated with
the different static specification languages one may use. We
will end with a proof of consistency and completeness for
dynamic rules.

A. Meta-Typing Rules

The meta-typing rules are needed in order to detect mul-
tiple language inconsistencies and to be able to perform the
evaluation of a term using the adequate evaluation function,
that is the one dedicated to the framework corresponding
to the meta-type of this term (e.g., Larch, Z, B). In the
following, D is the set of ESDs. Rules apply to a diagram
D belonging toD. The states ofD are denoted bySTATE(D),
its initial states byINIT(D), and its transitions byTRANS(D).
DeclImp(D) and DeclVar!(D) denote respectively the data
modules importations and the variable declarations which
appear in the diagramD data box.DeclVar?(D) is the set
of (typed) variables received in events.DeclVar(D) is the
union ofDeclVar?(D) andDeclVar!(D). A diagramD may be
given syntactically by a tuple (INIT, STATE, TRANS, DeclImp,
DeclVar!). def(x, M) is true if x is defined within the module
M. We useT for usual types andX for meta-types. The
notation t ::D X means thatt hasX as meta-type within the
diagramD. Throughout the semantic part, operators suffixed
with meta-types (e.g., �X) will denote their interpretation
within the context of the corresponding framework (e.g., �Z

denotes the Z evaluation function). Semantic rules have the
general formH

C namewhereH is a set of premises andC, the
consequent of the rule, is a conjunction of predicates.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

{ (INIT, STATE, ⇂ TRANS)i }

{ Di = (INIT, STATE, TRANS)i } { (INIT , STATE, ⇂ TRANS)i }

{ (INIT, STATE, TRANS)i }

{ (INITopen, STATEopen, TRANSopen)i }

(INIT, STATE, TRANS)

syntactic world (diagrams) semantic world (models)

⇂ (∀ i) (a)
|| . || (∀ i) (b)

dynamic rules (∀ i) (1) used in (∀ i) (c)

open systems rules (∀ i) (2)

global system rules (3)

Fig. 3. Obtaining of ESDs semantics

The rule in Fig. 4(a) is used to give a meta-type to variables
using local declarations and variable receptions. The rulein
Fig. 4(b) gives the meta-type of a construction from the meta-
types of elements which compose it.op t1 . . . tn is an abstract
notation to denote the application of an operation to a list
of terms, since there are some syntactic differences between
algebraic and state-oriented formal specification languages.

B. Action Evaluation Rules

This set of rules deals with the effect of actions on the
extended states used to give semantics to ESDs. Let us first
give a definition of these states.EVENT? is the set of allinput
events, whose general form isevent−name(value1, ..., valuen),
that is a concrete instantiation with values of an abstract event
parameterised by variables (e.g., e(0) is an instantiation of
e(x : NAT)). EVENT! is the set of alloutput events, whose
general form isreceiverˆ event− name(value1, ..., valuen).
EVENT is the set of all events, that is:EVENT= EVENT? ∪
EVENT!. The set of extended states for an ESD is defined as:

S ⊆ STATE(D) ×E× Q [EVENT?]× Q [EVENT!]

where
• STATE(D) is the set of states used to give a semantics

to the non-extended state diagramD;
• E is the set of environments, which are finite sets of

pairs (x, v) denoting that the variablex is bound to the
valuev;

• Q is the set of collections,Q [EVENT?] the set

of input event collections, andQ [EVENT!] the set of

output event collections.

Collections are introduced to memorise events exchanged
between diagrams. In the sequel,QinD ∈ Q [EVENT?] (re-

spectivelyQoutD ∈ Q [EVENT!]) is used to denote a collec-
tion associated to a diagramD to store input (respectively
output) events. Contrary to existing models storing eventsin
collections (such as SDL using queues), we use two collections
rather than a single one. Input and output collections will be
used separately until the semantics of communication between
several diagrams is taken into account linking up the output
collections of some diagrams with the input collections of
other ones. This enables one to adapt more easily parts of
the semantics, for example to take different communication
semantics into account (e.g., there is no need to have explicit
external buffers to model asynchronous communication). The
E ⊢ t �X v notation means that using the evaluation defined
in the X framework,v is a possible evaluation oft using the
environmentE for substituting the free variables int. More
details concerning the semantics of�X will be given in Section
III-F. Furthermore, ifE and E′ are environments thenEE′ is
the environment in which variables ofE and E′ are defined
and the bindings ofE′ overload those ofE. We recall that
symbols in boxes depict abstract structures and operations
to be instantiated for a given type of state diagram.S will
thereafter be used to denote an element ofS, andΓD to denote
an element ofSTATE(D). When there is no ambiguity onD,
we useΓ for ΓD, Qin for QinD , andQout for QoutD . The rules
describing the evaluation of actions are given in Fig. 5.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

act−eval(a1, S, D) = S′

act−eval(a2; . . . ; an, S′, D) = S′′

act−eval(a1; . . . ; an, S, D) = S′′
EVAL−SEQ

act−eval(εact, S, D) = S
EVAL−NIL

∀ i ∈ 1..n
ti ::D Xi

E ⊢ ti �Xi vi

act−eval(reĉ e(t1, . . . , tn),
< Γ, E, Qin, Qout >, D)

=< Γ, E, Qin, Qout ⊎ {reĉ e(v1, . . . , vn)} >

EVAL−SEND

t ::D X
E ⊢ t �X v

act−eval(x := t, < Γ, E, Qin, Qout >, D)
=< Γ, E{x 7→ v}, Qin, Qout >

EVAL−ASSIGN

Fig. 5. Action evaluation rules

The EVAL−SEQ rule is used to evaluate the actions in
sequence. TheEVAL−NIL rule states that doing no action
does not change the global state. The event emissions are
dealt with by theEVAL−SEND rule, which expresses that
the effect of sending an event is to evaluate its arguments and
then put it into the state diagram output event collection.⊎
denotes an abstract union operation which may be instantiated
differently depending on the type of state diagram semantics
one wants: union of sets, adding in front of a queue, etc. The
EVAL−ASSIGNrule updates the local environment replacing
the previous value of variablex by the new one (v, evaluation
of t).

C. Dynamic Rules

This set of rules deals with the dynamic evolution of a
single state diagram. We introduce a special event,ε denoting
a stuttering step:EVENT?+ = EVENT? ∪ {ε}.

State diagram evolutions are given in terms of an LTS
(INIT, STATE, TRANS) where states are extended states, with:

STATE⊆ S
INIT ⊆ STATE

TRANS⊆ STATE× EVENT?+ × STATE

We recall that ESDs may be given syntactically as a
tuple (INIT, STATE, TRANS, DeclImp, DeclVar!) and that the
semantics of non-extended state diagrams are given in termsof
an LTS (INIT (D), STATE(D), TRANS(D)). For some state
diagram semantics, there is a direct correspondence between
the syntactic and semantic notions of states (i.e., INIT, STATE,
INIT and STATE have the same type). However, for others

(such as the UML state diagrams due to their hierarchical
constructs), the semantics of non-extended state diagramsare
given in terms of the more general concept ofconfigurations
[9]–[11] which are sets ofactivestates. Hence, we define the
active function which is used to know if a state is active

γ0 ∈ INIT(D)

Γ0 ∈ INIT (D)
active(γ0, Γ0)

DeclVar!(D) = ∪i∈1..n{xi : Ti}
∀ i ∈ 1..n . xi ::D Xi . vi :Xi Ti

< Γ0,∪i∈1..n{xi 7→ vi}, ∅ , ∅ > ∈ INIT(D)
DYN−INIT

Fig. 6. Initialisation rule

S∈ STATE(D)

S
ε

−→ S∈ TRANS(D)
DYN−ε

Fig. 7. Stuttering step rule

in a configuration (or more generally in some element of
STATE): active(γ, Γ) is true if the γ state is active in the

Γ configuration.
A first rule (Fig. 6) is used to obtain the initial extended

states which correspond to the initial states of the non-
extended state diagram underlying semantics (INIT (D)) ex-
tended with initial values for the variables and empty inputand
output collections (∅). The meta-type of variables is used to
define the notion of type in terms of a specific framework. The
notationv :X T denotes the fact that, within theX framework,
v is a value of typeT.

A second rule (Fig. 7) is used to express stuttering steps.
These steps denote an ESD which does not evolve and will
be used when putting state diagrams in an open system envi-
ronment. This rule should be taken with care when verifying
liveness properties (such as inevitability of events) as itmay
cause livelocks (infinite sequences of stuttering steps). In such
a case, verification tools should enable the assertion of fairness
or progress hypotheses before verification takes place, in such
a way that traces with infinite sequences of stuttering stepsare
not taken into consideration.
The next dynamic rule (Fig. 8) expresses the general evolution

S∈ STATE(D) S=< Γ, E, Qin, Qout >
γ ∈ STATE(D) γ′ ∈ STATE(D)

l = e(x1 : T1, . . . , xn : Tn) g / a1; . . . ; am

γ
l
−→ γ′ ∈ TRANS(D) active(γ, Γ)

e(v1, . . . , vn) ∈ Qin

Q′

in = Qin \ {e(v1, . . . , vn)}

Γ
⇂ l

−−→ Γ′ ∈ ⇂ TRANS(D)

∀ i ∈ 1..n . xi ::D Xi . vi :Xi Ti

E′ = E∪i∈1..n {xi 7→ vi}
g ::D X E′ ⊢ g �X TRUEX

act−eval(a1; . . . ; am, < Γ, E′, Q′

in, Qout >, D)
=< Γ, E′′, Q′

in, Q′

out >
S′ =< Γ′, E′′, Q′

in, Q′

out >

S′ ∈ STATE(D) ∧ S
e(v1,...,vn)
−−−−−−→ S′ ∈ TRANS(D)

DYN−E

Fig. 8. Basic dynamic rule (with event reception)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

triggered when an event is read from the state diagram input
event collection. This event may carry data values that are put
into the variable environment of the state diagram.TRUEX

denotes the truth value within theX framework. Once again,
boxed elements are abstract concepts to be instantiated fora
given type of state diagram semantics.e ∈ Q denotes that the
evente is in the collectionQ. Possible instantiations are:e is
in Q (e∈ Q), e is the first/top element inQ (e = car(Q)), e is
the element inQ with the highest priority, and so on.Q \ e
denotes, in the same way, the (abstract) removal ofe from
Q. As explained in the Section III introduction, to be able to
reuse the semantic information yield by the set of transitions
of the non-extended state diagram semantics,TRANS(D), we
rely on a ⇂ function.
This big-step semantic rule corresponds to the Run To Com-
pletion (RTC) step found in different state diagram semantics.
Its meaning is the following:

if (premises)
– S is in the set of (semantic) states of the dynamic

model,
– with Γ being the configuration part of this state, and

(syntactic) stateγ being active inΓ,
– there is a transition with labell = e(x1 : T1, . . . , xn :

Tn) g / a1; . . . ; am originating fromγ and going to
a (syntactic) stateγ′, and a corresponding transition
(in the basic semantic model) fromΓ to Γ′,

and (conditions for the transition to be triggered and
completion)

– if event e, corresponding to the transition label, is
present in the diagram input event collection, then
reception variables are bound to the received values,
and the guardg is evaluated,

– if g is true, then actions are performed, yielding a
new (semantic) target state,S′

then (conclusion)
– S′ is in the set of states of the dynamic model,
– and the transition fromS to S′, labelled by concrete

values, is in its set of transitions.
However, sometimes events are not needed to trigger tran-

sitions. Such a case is dealt with by the rule in Fig. 9, where
the corresponding transition ofTRANS(D) is labelled by the
stuttering step label (ε). The only difference with the previous
rule is that the premises concerning the received event are not
needed.

TheDYN−E andDYN−E∅ rules deal with the more general
forms of state diagram transitions (i.e., with the EVENT
[GUARD] / ACTIONS and[GUARD] / ACTIONS forms).
Rules for restricted forms of transitions (e.g., without guard)
may be obtained in an easy way from these general rules (e.g.,
consider the guard to be true). An operational semantics is
obtained from this model associating toD its LTS (INIT(D),
STATE(D), TRANS(D)), and then using for example an usual
trace semantics denoted by:

|| D ||oper= TR(INIT(D), STATE(D), TRANS(D)).

TR denotes the set of traces computed from the LTS, see
[16] for comprehensive definitions on trace semantics. These

S∈ STATE(D) S=< Γ, E, Qin, Qout >
γ ∈ STATE(D) γ′ ∈ STATE(D)

l = g / a1; . . . ; am

γ
l
−→ γ′ ∈ TRANS(D) active(γ, Γ)

Γ
⇂ l

−−→ Γ′ ∈ ⇂ TRANS(D)

g ::D X E ⊢ g �X TRUEX

act−eval(a1; . . . ; am, < Γ, E, Qin, Qout >, D)
=< Γ, E′, Q′

in, Q′

out >
S′ =< Γ′, E′, Q′

in, Q′

out >

S′ ∈ STATE(D) ∧ S
ε

−→ S′ ∈ TRANS(D)
DYN−E∅

Fig. 9. Basic dynamic rule (without event reception)

traces can be used, for example, to check LTL temporal
formulas over the models.

D. Open System Rule

This rule is used to express what happens when a state
diagram is put into an open system environment. Basically,
some events may be received from the environment and some
others may be sent to it. As far as the input and output
event collections of a given state diagram are concerned,
this means that input events are put into its input event
collection and output events are taken out of its output event
collection. Note that these modifications of the extended states
may appear while the state diagram does a transition (i.e.,
following the DYN−E and DYN−E∅ rules) but also if it
does nothing. To be able to represent this, we may useε
transitions (ruleDYN− ε). More formally, the semantics of
a state diagram in an open system is defined as the traces of
the LTS (INITopen(D), STATEopen(D), TRANSopen(D)), that is
denoted by:

|| D ||open
oper= TR(INITopen(D), STATEopen(D), TRANSopen(D)).

For a given diagramD, we define:

INITopen(D) = INIT(D)

TRANSopen(D) ⊆ TRANS(D)× Q [EVENT?]× Q [EVENT!]
STATEopen(D) = INITopen(D) ∪ TARGET(TRANSopen(D))

STATEopen is obtained from initial states (INITopen) and
reachable states (target states of theTRANSopen transitions).
TheDYN−OPENrule (Fig. 10) defines the modifications in the
collections that may take place in an open system semantics.
In this rule, the labell matches the two possible things the state
diagram may do during the collection modification: a classical
transition (rulesDYN−E and DYN−E∅) or no internal state
modification at all (which is the reason for ruleDYN−ε).

P (ES) denotes the collection obtained from the powerset
of ES. ESin (respectivelyESout) in open transitions (members
of TRANSopen(D)) is used to keep track of what has been
put into the input event collection (respectively taken outof
the output event collection) of the state diagram.S

l
−→ESin,ESout

S′ ∈ TRANSopen(D) is used as a shorthand notation for
(S, l, S′, ESin, ESout) ∈ TRANSopen(D).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

< Γ, E, Qin, Qout >
l
−→< Γ′, E′, Q′

in, Q′

out > ∈ TRANS(D)

ESout ⊆ Qout

ESin ⊆ P (EVENT?)

< Γ, E, Qin, Qout >
l
−→ESin,ESout< Γ′, E′, Q′

in ⊎ ESin, Q′

out \ ESout >∈ TRANSopen(D)
DYN−OPEN

Fig. 10. Open system rule

E. Global System and Communication Rules

The last set of rules puts things altogether. The idea is that
a global system made up of several ESDs (denoted∪i∈1..nDi)
evolves as its components evolve. Once again we define the
operational semantics of the system to be the traces of an
LTS (INIT(∪i∈1..nDi), STATE(∪i∈1..nDi), TRANS(∪i∈1..nDi)),
that is denoted by:

|| ∪i∈1..nDi ||open
oper=

TR(INIT(∪i∈1..nDi), STATE(∪i∈1..nDi), TRANS(∪i∈1..nDi)).

INIT, STATEandTRANSare defined as:

INIT(∪i∈1..nDi) = Πi INITopen(Di)
TRANS(∪i∈1..nDi) = {t ∈ ΠiTRANSopen(Di) | CC(t)}

STATE(∪i∈1..nDi) =
INIT(∪i∈1..nDi) ∪ TARGET(TRANS(∪i∈1..nDi))

TRANSis obtained from the product of theTRANSopen sets
of each state diagram of the system, restricting this product
with a communication constraint (CC) which expresses that
whenever an emission event is taken out of a given diagram
(Dk) output event collection (i.e., present inESoutk), and if
the receiver of this emission is a member (Dj) of the system,
then this receiver has the event being put into its input event
collection (ESinj).

CC(S1
l1−→ESin1 ,ESout1

S′

1, . . . , Sn
ln−→ESinn,ESoutn

S′

n) ⇔

∀ k ∈ 1..n . ∀Djˆe ∈ ESoutk . Dj ∈ ∪i∈1..nDi =⇒ e ∈ ESinj

Other specific communication constraints may be defined in
order to take different communication semantics into account.
Broadcast communication can be defined using a syntax for
multiple receivers (e.g., {D1, . . . , Dn} ê) and refining theCC
constraint to express the delivery of the event in all the
concerned diagrams input collections at once. Synchronous
communication can be expressed restricting the size of col-
lections to one. (A)synchronous, binary and broadcast com-
munication have been implemented in the xCLAP tool (see
Section V). Events with expiry dates can be modelled tagging
events with time-stamps.CC may then take these time-stamps
into account. Systems with (message) transit durations canbe
designed in the same way or adding intermediate components
whose role is to simulate the time duration of the transit.

F. Semantics of Evaluation Functions (�X)

Several kinds of evaluation functions may be defined de-
pending on which data specification language is used. We
discuss here how these functions may be obtained for algebraic
specifications and for state-oriented languages.

Algebraic specifications.Rewriting is chosen as the eval-
uation function for algebraic specifications. This choice is
justified since it is suitable to an operational semantics, which
accordingly enables us to remain in a pragmatic and executable
context, and to design and implement tools. Algebraic specifi-
cation languages often come with their rewriting system. Larch
is equipped with a theorem prover, LP [17], which implements
equational term rewriting. Specifications written in CASL [3]
can be partially transformed into rewrite rules. This can be
achieved executing CASL equational specifications within the
ELAN rewrite engine [18].

State-oriented language.We present here the evaluation
function for Z. Other languages such as B, VDM, Object-Z, or
Alloy, may be taken into account following a similar process.

Z is a mathematical notation based on set theory and first
order predicate calculus. Z schemas allow to structure dataand
operation specifications. A schema is made up of a declaration
part (a set of typed variables) and a predicate part built on these
variables. State schemas define state spaces. The semantics
of a state schema is a set of bindings between the schema
variables and values such that the predicate holds. A complete
Z specification also has an initialisation schema which defines
initial values for the variables.

The Z evaluation function is defined compiling Z speci-
fications into LTSs. Letz be a Z specification defined with
a state schemaSSchz, an initialisation schemaISchz, and a
set of operation schemas. The LTS(INITz, STATEz, TRANSz)
associated to the Z specification is obtained as follows. Itsset
of states (STATEz) corresponds to theSSchz semantics state
space. The set of initial states (INITz) of the LTS is the subset
of STATEz with elements that satisfy the predicate ofISchz.
Finally, each operation schema predicate, used to relate the
bindings of two states, defines a set of transitions labelled
by operation applications. The set of transitions of the LTS
(TRANSz) is the union of all these transitions. The evaluation
function �Z is then defined as:E ⊢ l �Z s′ ⇔ ∃ s⊆ E . s

l
→

s′ ∈ TRANSz. This formula states that the applicationl of an
operation yields a state schemas′ iff the schemas, on which
this operation is applied and which is present in the evaluation
environmentE, is related tos′ by l in the set of transitions
TRANSz.

G. Consistency and Completeness

In this section we prove that the set of dynamic rules is con-
sistent and complete. This dynamic rules system (DRS) forms
the core of the semantics aspects considered in Section III.As
far as the system evolution is concerned, the dynamic rules
are based on transition labels that appear in labelled transition

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

systems. We consider transition labels from a syntactic point
of view i.e., a setLabel that contains all the syntactic forms
of labels computed from TRANSITION in Table I.

In the following we use these syntactic forms of the labels
to identify the different semantic rules considered for the
evolution of state diagrams. We focus on theDYN−E and
DYN−E∅ rules (Fig. 8 and 9) to deal with the labels which
have the general forms: EVENT[GUARD] / ACTIONS
and [GUARD] / ACTIONS. These rules are representative
members of DRS since the other rules are specific forms of
them. Each one of these rules covers a pair of cases that we
would have if we omitted the GUARD (theTRUEvalue being
the default one). We recall that each dynamic rule has the
general formH

C namewhereH is a set of premises andC, the
consequent of the rule, is a conjunction of predicates.

Consistency. The DRS rule system is consistent iff its
constituent rules are not contradictory and they all lead toa
correct state of the evolving system (namely a diagramD). To
establish the consistency we have to prove that there is only
one dynamic rule that deals with a given evolution label and
that the evolution captured by each dynamic rule leads to a
correct state (a member ofSTATE(D)).
Proof. We relate the dynamic (operational semantics) rules
with the syntactic structure of the considered evolution labels.
Therefore the rules are selected according to the occurrence
of a specific evolution label, acting as a discriminant, in their
hypothesis. This is formalised as follows:

∀ i, r i = Hi
Ci

ni ∈ DRS. ∃el ∈ Label, el ∈ Hi .

∀ j, j 6= i, r j =
Hj

Cj
nj ∈ DRS. el /∈ Hj

The premises of each DRS rule contain one specific evo-
lution label of Label; hence the related rulesDYN−E and
DYN−E∅ cannot be enabled simultaneously to handle the
evolution of a diagramD. Moreover, the consequences of all
the dynamic rules in DRS are made up of a predicate with the
form s

l
−→ s′ ∈ TRANS(D); it expresses the evolution from a

states into another states′. It follows that s′ is in the range
of TRANS(D), STATE(D), thus it is a correct state ofD.

Completeness.The DRS rule system is complete iff at
least one dynamic rule deals with each evolution label of the
considered transition diagram. That is, for every labelel: either
el belongs to the premises of a rule (i.e., el ∈ H) or el does
not belong to them (i.e., el 6∈ H).
Proof. In our formalisation of the dynamic rules, there is
exactly one rule that deals with each label:e(x1 : T1, · · · , xn :
Tn)g/a1; · · · ; am is part of the premises ofDYN−E; in the
same way,g/a1; · · · ; am is part of the premises ofDYN−E∅.

We cover with the rulesDYN−E andDYN−E∅ (and their
omitted special cases), all the evolution cases including the
exchanges with the environment.
The last part of the completeness proof concerns the cases
where there is no explicit evolution. The stuttering rule (DYN−
ǫ) captures this step; that means, the system stays in the correct
current state.

IV. A PPLICATION

In this section, our semantics for ESD are illustrated on the
producer/consumer example we introduced in Section II.

We first have to choose a non-extended state diagram se-
mantics, for example the semantics of UML 1.4 state diagrams
given by Jürjens [12]. This semantics is based on Abstract
State Machines (ASM), and formalises state diagrams as a
set of active states which can evolve depending on the state
of their queues. In particular, this evolution is given using
two rules,SCInitialize(D) andSCMain(D) , where the
later one consists of selecting the event to be fired, executing
it, and then executing the rules for the internal actions. The
formal interpretation of these actions is given by ASM rulesas
well. Our semantic framework applies on top of this semantics.
Being given this non-extended state diagram semantics, we
now have to define an instantiation⇂ of the ⇂ function. It is
defined inductively on the structure of the transition labels of
the extended diagram notation (Fig. 11).

⇂ event−name(x1 : T1, . . . , xn : Tn) guard/ a1; . . . ; am

=⇂eventevent−name(x1 : T1, . . . ,
xn : Tn) / ⇂action a1; . . . ; am

⇂action a1; . . . ; an =⇂action a1; . . . ; ⇂action an

⇂action εact = εact

⇂action x := t = εact

⇂action receiver̂ event−name(t1, . . . , tn)
= receiver̂ ⇂eventevent−name(t1, . . . , tn)

⇂eventevent−name(x1 : T1, . . . , xn : Tn) = event−name
⇂eventevent−name(t1, . . . , tn) = event−name

Fig. 11. Definition of the⇂ function on labels for the [12] semantics

Event collections are instantiated by queues, together with
their usual operations. Hence, each generic concept within
our rules is instantiated by some queue-related concrete one
(Queuetype for Q , nil for ∅ , queueoperator denoting the

effect of constructors⊎ and \ , ∈ for ∈ and⊆ for ⊆).
The example imports modules written in Larch. Within

this framework, the evaluation function corresponds to term
rewriting, i.e., �Larch−spec≡ ;

∗

R with R being the set of rewrite
rules (oriented module axioms).TRUELarch−speccorresponds to
true in Larch.

As a first example of rule application, Fig. 12 denotes
a simple dynamic evolution. This is an instantiation of the
DYN−E∅ rule (Fig. 9) without guard. It represents an in-
dependent evolution of diagram D3 from state s2 to state
s1. The premises of the rule denote the different conditions
to be fulfilled to compute the new extended stateS′ from
the initial one S, and as a consequence the corresponding
transition of the dynamic evolution semantic model. Thew

value bound to then variable corresponds to its normal form
after performing the twoupdate calls, supposing its value
before wasv . Rewriting is performed through theact−eval
application, using ruleEVAL− SEQ for the sequence of
actions and ruleEVAL−ASSIGN twice, first with premise
{(n, v)} ⊢ update(n, 1, 1) ;

∗

R w0 and second with premise
{(n, w0)} ⊢ update(n, 2, 1) ;

∗

R w.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

CC(S1
ε

−→queue(comm(1)),nil S′

1, S2
ε

−→queue(comm(1)),nil S′

2,

S3
ε

−→nil,queue(D1ˆcomm(1),D2ˆcomm(1)) S′

3) ⇐⇒

(D1ˆcomm(1) ∈ queue(D1ˆcomm(1), D2ˆcomm(1)) ∧
D1 ∈ ∪i∈1..3Di =⇒ comm(1) ∈ queue(comm(1))) ∧

(D2ˆcomm(1) ∈ queue(D1ˆcomm(1), D2ˆcomm(1)) ∧
D2 ∈ ∪i∈1..3Di =⇒ comm(1) ∈ queue(comm(1)))

Fig. 15. Instantiation of theCC rule

T = (S1
ε

−→queue(comm(1)),nil S′

1, S2
ε

−→queue(comm(1)),nil S′

2,

S3
ε

−→nil,queue(D1ˆcomm(1),D2ˆcomm(1)) S′

3)

T ∈ Πi∈1..3TRANSopen(Di)
CC(T)

T ∈ TRANS(∪i∈1..3Di)

Fig. 16. Example of transition in the global semantic model

Note that, as said earlier, the abstract concepts have been in-
stantiated in the rules by concrete concepts, with, for example,
queuebeing theQueueconstructor.

The rule in Fig. 10 (DYN−OPEN) may be used to denote
the effect of the external environment on D3, having both
output events taken out of its output event queue (Fig. 13).

An example of construction of a global transition is then
given in Fig. 14, 15 and 16. It describes the asynchronous
communication oncomm between D1, D2 and D3 (which
sends thecomm events). In this example, the diagrams D1
and D2 are initially in state s1 and the diagram D3 is in state
s2.

Fig. 14 describes a conjunction of evolutions for the three
diagrams where D3 has events taken out of its output queue
(obtained in Fig. 13, using the rule in Fig. 10) whereas D1 and
D2 have events put into their input queues (which could be
obtained using the rule in Fig. 10 too). The conclusion of the
rule builds a global transition which may pertain to the global
semantic model. However, the communication constraint has
not been checked yet.

Fig. 15 instantiates theCC communication constraint and
demonstrates that the Fig. 14 asynchronous communication
is possible due to the compatibility between open system
transitions of the different diagrams. Here,CC is instantiated
with k = 3. Fork = 1..2, theESoutk arenil hence the remainder
of the CC rule instantiation is empty.

Finally, Fig. 16 uses the last two results to show that a global
transition, verifying the communication constraint, is defined
in the final semantic model.

V. THE XCLAP TOOL

xCLAP (extended CLAP) [19] is a prototype animator for
ESDs. So far, it restricts to flat ESDs,i.e., ESDs where
there are no concurrent (AND) states (concurrency and com-
munication is dealt with between diagrams), no hierarchical
(OR) states, and no entry/exit actions (these can be taken
into account adding specific transitions to the diagrams in a
preprocessing step). These choices have been made to devote

more time to the interactions between behaviours and data
types.

A. Principles

xCLAP builds on CLAP [14], [20] a class library for the
description, product and reachability analysis of transition
systems. xCLAP focuses on the interactive animation of ESDs
as done for process algebras in tools such as CWB-NC [21]
for CCS or CADP [22] for LOTOS. xCLAP may be used
to perform the construction of LTSs from ESD specifications
thus making it possible afterwards to perform model-checking
or reachability analysis using CLAP features and its extension
for abstract analysis techniques [23].

An overview of the way xCLAP works (from the user point
of view) is given in Fig. 17. Class diagrams, modelled in
the UML SMW tool [24] are used to model ESDs (a state
diagram is associated to each ESD class), data modules (a
documentation note is associated to each module class) and
their relations. The SMW reification of MOF is then used to
translate SMW models1 into models which are read by xCLAP
and animated.

User interface. xCLAP can be parameterised at runtime
(see Fig. 18, left): import of ESDs, but also definition of
frameworks and configuration of the operational semantics
(synchronous or asynchronous communication, binary or n-
ary communication, specific treatment of received variables).
During the animation process (see Fig. 18, right), the user
can see the local state of all diagrams, possible transitions
and their effect, and then choose a transition to be executed.
The interactions with data evaluation tools are completely
transparent for the user.

Encoding of the semantics.xCLAP is written in the object-
oriented Python language and organised in six packages:ESD

(extension classes for CLAP related to ESD),SIGNATURE

and TYPING (related to operations on data description files
and typing/meta-typing),EVALUATION (evaluation mecha-
nisms and interface with external tools),ANIMATION (opera-
tional semantics) andUI (user interface). The implementation
of the operational semantics follows the structure of our sets
of rules encoded in these different packages. xCLAP relies
on a specific API of classes and methods which can be
used to change or extend the semantics. For more technical
information we refer to the xCLAP manual [19].

Term evaluation (�). Term evaluation is performed in
xCLAP trough specific interface modules with external evalu-
ation tools. The rewriting of algebraic terms is performed with
LP which automatically transforms equations into rewrite rules
(using thedsmpos andnoeq-dsmpos registered orderings
[17], [25]). Hence, xCLAP users do not have to give explicit
ordering commands. The Z evaluation function we presented
in Section III-F relies on ZANS [26], an animation tool for Z
specifications which allows the evaluation of expressions and
predicates. ZANS is used in xCLAP jointly with the ZTC type
checker [27] which checks for syntactic and typing errors in
Z specifications.

1A translation from XMI to xCLAP was also possible but less efficient.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

S∈ STATE(D3)
S=< ΓD3, {(n, v)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >

l = / n := update(n, 1, 1); n := update(n, 2, 1)

s2
l
−→ s1 ∈ TRANS(D3)

active(s2, ΓD3)

ΓD3
εact−−→ Γ′

D3 ∈ ⇂ TRANS(D3)

act−eval(n := update(n, 1, 1); n := update(n, 2, 1),
< ΓD3, {(n, v)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >, D3) =< ΓD3, {(n, w)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >

S′ =< Γ′

D3, {(n, w)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >

S′ ∈ STATE(D3) ∧ S
ε

−→ S′ ∈ TRANS(D3)

Fig. 12. Independent dynamic evolution, ruleDYN− E∅, for D3

S=< ΓD3, {(n, v)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >
S′ =< Γ′

D3, {(n, w)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >

S
ε

−→ S′ ∈ TRANS(D3)
queue(D1ˆcomm(1), D2ˆcomm(1)) ⊆ queue(D1ˆcomm(1), D2ˆcomm(1))nil ⊆ P(EVENT?)

S
ε

−→nil,queue(D1ˆcomm(1),D2ˆcomm(1))< Γ′

D3, {(n, w)}, nil, nil > ∈ TRANSopen(D3)

Fig. 13. Instantiation of theDYN− OPEN rule for D3

S1 =< ΓD1, ∅, nil, nil >
S′

1 =< ΓD1, ∅, queue(comm(1)), nil >

T1 = S1
ε

−→queue(comm(1)),nil S′

1 ∈ TRANSopen(D1)
S2 =< ΓD2, ∅, nil, nil >

S′

2 =< ΓD2, ∅, queue(comm(1)), nil >

T2 = S2
ε

−→queue(comm(1)),nil S′

2 ∈ TRANSopen(D2)
S3 =< ΓD3, {(n, v)}, nil, queue(D1ˆcomm(1), D2ˆcomm(1)) >

S′

3 =< Γ′

D3, {(n, w)}, nil, nil >

T3 = S3
ε

−→nil,queue(D1ˆcomm(1),D2ˆcomm(1)) S′

3 ∈ TRANSopen(D3)
T = (T1, T2, T3)

T ∈ Πi∈1..3TRANSopen(Di)

Fig. 14. Event exchange

Class AS

Class AST

Class A0

Class AT

Class ESD

:ESD

smw2xclap

Translator

Spark

SMW

State
Parsing

(textual format)

Animation

diagrams

Class hierarchy

Data tools

Automaton instances

Fig. 17. xCLAP overview

B. Genericity and Extension Mechanisms

The generic elements of our semantics have been encoded
using classes (some of them being abstract ones) with a
specific API. These elements can be instantiated using sub-
classing and by overriding methods. In the sequel we briefly

describe how different instantiations or extensions can be
achieved, following the same order in which we presented
our rules.

Data types and term evaluation (�). Changing an eval-
uation tool,e.g., using ELAN [28] instead of LP to rewrite

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Fig. 18. xCLAP windows (left: parameters, right: animation)

algebraic terms, is possible with a limited impact on the
xCLAP code (the tool call in the corresponding evaluation
interface module has to be changed). Taking into account a
new data framework,e.g., B, is done as follows. A class has
to be defined in theTYPING package to be able to scan and
parse B expressions. A class is also added to theSIGNATURE

package to define mechanisms for parsing signatures out of a
B module. The evaluation of B expressions is achieved adding
a class in theEVALUATIONpackage that serves as a front-end
to an external tool for the effective evaluation.

Collection related operators.Collection policies (the in-
terpretation of creating, adding, removing, etc.) are enforced
using collection classes. The encoding of the semantics only
addresses the collections through this API. To change a
collection policy, once a new collection class has been defined,
an instance of it has to be passed to the constructor of
AnimatedDiagram , the class that represents the ESD under
animation (mainly its extended states, denotedSTATEin the
semantics).

Meta-typing and action semantics.The set of meta-typing
rules has not to be changed. The only possible open point in
action semantics (EVAL− rules) is the change in the collection
policy through a change in theAnimatedDiagram constructor
call when running xCLAP (see above).

Dynamic rules and communication semantics.Dynamic
rules are dealt with locally (DYN− E and DYN− E0 rules)
by the LocalAnimator class (it builds local transitions for
a given ESD) and globally (DYN − OPEN and CC rules)
by the OverallAnimator class (it builds global transitions
from local ones).LocalAnimator and OverallAnimator

are parameterised by instances of three subclasses of ab-
stract classes reifying (i) the communication mode (syn-
chronous/asynchronous), (ii) the binding mode (binary/n-ary),
and (iii) the treatment of reception variables. Different se-
mantics can be taken into account by defining new subclasses
for the three abstract classes. This principle has been already
used and different communication semantics can be taken into
account in xCLAP through its parameterising window (see
above, user interface). The last open point is the encoding of

theCC rule in theOverallAnimator class. Changing theCC
rule can be achieved also by sub-classing the classes which
parameteriseOverallAnimator .

VI. RELATED WORK

In this section, we compare our approach with existing
works on the combination of state diagrams with data descrip-
tion languages.

State diagrams and OCL.The frequent extension of state
diagrams with data types is the use of OCL (Object Constraint
Language) constraints. OCL is a complement to the description
of data types using class diagrams but not a real language for
the abstract description of data types. Nevertheless, several
works are interested in its formalisation [29], [30].

State diagrams and state-oriented specifications.There
are numerous works combining state diagrams with Z [31],
[32] or with B [33]–[35]. In both cases, a translation into a
static formalism (Z or B) is used which thereafter constitutes
an homogeneous framework for the subsequent steps of the
formal development. Laleau and Polack [36] addressed the
issue to have a two-way translation process. The RoZ ap-
proach [32] has been combined with state diagrams to address
the static / dynamic consistency issue. This is an approach
complementary to ours. However, our focus is more on the
dynamic part of systems (operational semantics), and we try
to be more general as far as the static part is concerned (Z
may be used but algebraic specifications as well). The main
difference between our approach and these approaches using
Z or B is that we try to use the different semantics of the
dynamic and the static parts without translating one into the
other.

State diagrams and algebraic specifications.In [37], a
conceptual framework to plug data description languages into
paradigm-specific ones is presented. The authors illustrate their
approach with the Casl-Chart formalism [38] which combines
Statecharts (following the STATEMATE semantics [8]) with
the CASL algebraic specification language. A Casl-Chart
specification is made up of data types written in CASL and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

several Statecharts that may use algebraic terms written from
these data types in events, guards and actions. The semantics
of the combined language is given in terms of the semantics
of the two basic languages. Our work is therefore close to
Casl-Chart, but our approach is more flexible at the dynamic
specification level since, more than the integration of algebraic
specification into a given semantics of state diagrams, we
propose a reusable semantic framework for the integration of
formal data types within dynamic formalisms. Casl-Chart deals
with the full expressiveness of Statecharts as in our semantics
(using configurations). xCLAP can only deal with flat ESD.
However, tools for Casl-Chart are, as far as we know, limited
to the CASL ones,i.e., parsers, type checkers and translators
into high order logic theorem provers.

All the works mentioned above enable one to use only a
single data description language. They are also less flexible
for the dynamic aspect since our approach has been defined
to take into account various state diagram semantics. We also
have better reuse possibilities for our modules which can be
imported in other application contexts.

VII. C ONCLUSION

The separate design of concern models is a way to tackle
the complexity of systems and promote the reusability of these
models. Yet, it requires the definition of formally grounded
techniques for their integration. In this article we have pro-
posed a semantic framework for the integration of static and
dynamic aspects through the extension of state diagrams with
formal data types. This joint use of a graphical notation
with formal languages enables one to take advantage of both
approaches.

The proposed framework is generic in the sense that it can
deal with various state diagrams semantics and different static
specification languages provided that the first one is given
in terms of (some form of) LTS and that the latter support
the definition of term evaluation mechanisms. Genericity is
achieved through abstract semantic rules and abstract concepts
used in their formalising. Rules can be constrained to deal with
specific semantics,e.g., communication rules may describe
different communication models between diagrams. Interac-
tion between ESDs through external descriptions (sequence
diagrams or synchronised products) has been experimented
[39] and fully integrated into the framework.

The use of an operational semantics enabled the design and
implementation of xCLAP, a prototype tool for the animation
of our integrated formalism. Its UML graphical front-end
and its back-end enable specifiers to exploit specification and
animation in a user-friendly way even if by now it presents
restrictions on the structure of ESDs taken as input (flat state
diagrams). As in [40], the use of flattening algorithms as a
preliminary step is a possible solution to this limitation.As
far as validation and verification are concerned, models canbe
animated but also verified using model checking techniques,
using xCLAP as a preprocessor to build a global state-
space LTS and verifying it afterwards with dedicated tools
such as the CADP tool-box. A main drawback of integrated
formalisms is the state explosion which may appear when

integrating data types within behaviours. Specific abstract
analysis techniques have to be developed for such integrated
models [23]. Another solution is to verify concern models
independently. ESDs can be translated into specific tools input
languages abstracting away from the data types. The data types
can be verified using theorem provers or tools dedicated to the
chosen static languages. This approach has been followed in
a more complex case study where Z data types have been
type-checked using Z/EVES [15]. A remaining issue is the
integration of verification results for the separate modelsinto
global results for the whole system.

REFERENCES

[1] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and
J. M. Wing, Larch: Languages and Tools for Formal Specification, ser.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

[2] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, Eds., Algebraic
Foundations of System Specification. Springer-Verlag, 1999.

[3] P. D. Mosses and M. Bidoit,CASL — the Common Algebraic Specifica-
tion Language: User Manual, ser. Lecture Notes in Computer Science.
Springer-Verlag, 2004, vol. 2900.

[4] J. M. Spivey,The Z Notation: A Reference Manual, 2nd ed. Prentice
Hall International Series in Computer Science, 1992.

[5] J. R. Abrial, The B-Book. Cambridge University Press, 1996.
[6] OMG, “UML Superstructure Specification, v2.0,” Aug. 2005, document

formal/05-07-04.
[7] D. Harel, “Statecharts: A Visual Formalism for Complex System,”

Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.
[8] D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts,”

ACM Transactions on Software Engineering and Methodology, vol. 5,
no. 4, pp. 293–333, 1996.

[9] J. Lilius and I. Porres, “Formalising UML State Machinesfor Model
Checking,” in Proc. of the International Conference on the Unified
Modelling Language: Beyond the Standard (UML’99), ser. Lecture
Notes in Computer Science, R. France and B. Rumpe, Eds., vol.1723.
Springer-Verlag, 1999, pp. 430–445.

[10] D. Latella, I. Majzik, and M. Massink, “Towards a FormalOpera-
tional Semantics of UML Statechart Diagrams,” inProc. of the IFIP
TC6/WG6.1 3rd International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’99), P. Ciancarini and
R. Gorrieri, Eds. Kluwer Academic Publishers, 1999, pp. 331–347.

[11] M. van der Beeck, “Formalization of UML-Statecharts,”in Proc. of
the 4th International Conference on the Unified Modelling Language
(UML’01), ser. Lecture Notes in Computer Science, M. Gogolla and
C. Kobryn, Eds., vol. 2185. Springer-Verlag, 2001, pp. 406–421.

[12] J. Jürjens, “A UML Statecharts Semantics with Message-Passing,” in
Proc. of the 17th ACM Symposium on Applied Computing (SAC’02).
ACM, 2002, pp. 1009–1013.

[13] C. Attiogbé, P. Poizat, and G. Salaün, “Integration of Formal Datatypes
within State Diagrams,” inProc. of the 6th International Conference
on Fundamental Approaches to Software Engineering (FASE’03), ser.
Lecture Notes in Computer Science, M. Pezzè, Ed., vol. 2621. Springer-
Verlag, 2003, pp. 341–355.

[14] C. Choppy, P. Poizat, and J.-C. Royer, “The Korrigan Environment,”
Journal of Universal Computer Science, vol. 7, no. 1, pp. 19–36, 2001,
special issue on Tools for System Design and Verification.

[15] C. Attiogbé, P. Poizat, and G. Salaün, “Specificationof a Gas Station
using a Formalism Integrating Formal Datatypes within State Diagrams,”
in Proc. of the 8th International Workshop on Formal Methods for
Parallel Programming: Theory and Applications (FMPPTA’03), ser.
IEEE Computer Society Press, France, 2003.

[16] M. Broy and E.-R. Olderog,Trace-Oriented Models of Concurrency,
ser. Handbook of Process Algebra. Elsevier, 2001, ch. 2, pp.101–195.

[17] S. J. Garland and J. V. Guttag, “A Guide to LP, the Larch Prover,” Palo
Alto, California,” Technical Report, 1991.

[18] H. Kirchner and C. Ringeissen, “Executing CASL Equational Specifi-
cations with the ELAN Rewrite Engine,” November 2000, coFI note T-9,
http://www.daimi.au.dk/˜pdm/Common/Notes/T-9/ .

[19] A. Auverlot, C. Cailler, M. Coriton, V. Gruet, and M. No¨el, “xCLAP:
Animation of State Diagrams with Formal Data, Master’s Degree
Project, University of Nantes. Tool and documentation available on G.
Salaün’s webpage.” 2003, directed by C. Attiogbé and G. Salaün.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

[20] G. Nedéléc, M. Papillon, C. Piedsnoirs, and G. Salaün, “CLAP: a Class
Library for Automata in Python, Master’s Degree Project, University
of Nantes. Tool and documentation available on G. Salaün’swebpage.”
1999, directed by M. Allemand and P. Poizat.

[21] R. Cleaveland, T. Li, and S. Sims,The Concurrency Workbench of the
New Century (Version 1.2), Department of Computer Science, North
Carolina State University, 2000.

[22] H. Garavel, F. Lang, and R. Mateescu, “An Overview of CADP 2001,”
EASST Newsletter, vol. 4, pp. 13–24, 2001, also available as INRIA
Technical Report RT-0254.

[23] P. Poizat, J.-C. Royer, and G. Salaün, “Bounded Analysis and Decompo-
sition for Behavioural Descriptions of Components,” inProc. of the Int.
Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’06), ser. Lecture Notes in Computer Science, vol. 4037.
Springer-Verlag, 2006, pp. 33–47.

[24] R.-J. Back, D. Björklund, J. Lilius, L. Milovanov, andI. Porres, “A
Workbench to Experiment on New Model Engineering Applications,”
in Proc. of The Unified Modeling Language, Modeling Languages and
Applications Conference (UML’2003), ser. Lecture Notes in Computer
Science, vol. 2863. Springer-Verlag, 2003, pp. 96–100.

[25] N. Dershowitz, “Orderings for Term-Rewriting Systems,” Theoretical
Computer Science, vol. 17, no. 3, pp. 279–301, 1982.

[26] X. Jia, A Tutorial of ZANS, DePaul University, 1998.
[27] ——, ZTC: A Type Checker for Z Notation (User’s Guide), DePaul

University, 1998.
[28] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and

C. Ringeissen, “An Overview of ELAN,” inInternational Workshop
on Rewriting Logic and its Applications, ser. Electronic Notes
in Theoretical Computer Science, C. Kirchner and H. Kirchner,
Eds., vol. 15. Elsevier Science, 1998. [Online]. Available: http:
//www.elsevier.com/locate/entcs/volume15.html

[29] M. V. Cengarle and A. Knap, “A Formal Semantics for OCL 1.4,” in
Proc. of the 4th International Conference on the Unified Modelling Lan-
guage (UML’01), ser. Lecture Notes in Computer Science, M. Gogolla
and C. Kobryn, Eds., vol. 2185. Springer-Verlag, 2001, pp. 118–133.

[30] T. Clark and J. Warmer, Eds.,Object Modeling with the OCL, The
Rationale behind the Object Constraint Language, ser. Lecture Notes
in Computer Science, vol. 2263. Springer-Verlag, 2002.

[31] R. Büssow and M. Weber, “A Steam-Boiler Control Specification with
Statecharts and Z,” inFormal Methods for Industrial Applications:
Specifying and Programming the Steam Boiler, ser. Lecture Notes in
Computer Science, J.-R. Abrial, E. Börger, and H. Langmaack, Eds.
Springer-Verlag, 1996, vol. 1165, pp. 109–128.

[32] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud, “An Overviewof RoZ:
A Tool for Integrating UML and Z Specifications,” inProc. of the
Advanced Information Systems Engineering Conference (CAiSE’00), ser.
Lecture Notes in Computer Science, B. Wangler and L. Bergman, Eds.,
vol. 1789. Springer-Verlag, 2000, pp. 417–430.

[33] E. Sekerinski and R. Zurob, “Translating Statecharts to B,” in Proc.
of the 3rd International Conference on Integrated Formal Methods
(IFM’02), ser. Lecture Notes in Computer Science, M. Butler, L. Petre,
and K. Sere, Eds., vol. 2335. Springer-Verlag, 2002, pp. 128–144.

[34] K. Lano, K. Androutsopoulos, and P. Kan, “Structuring Reactive Sys-
tems in B AMN,” in Proc. of the 3rd IEEE International Conference on
Formal Engineering Methods (ICFEM’00). IEEE Computer Society
Press, 2000, pp. 25–34.

[35] H. Ledang and J. Souquières, “Contributions for Modelling UML State-
Charts in B,” inProc. of the 3rd International Conference on Integrated
Formal Methods (IFM’02), ser. Lecture Notes in Computer Science,
M. Butler, L. Petre, and K. Sere, Eds., vol. 2335. Springer-Verlag,
2002, pp. 109–127.

[36] R. Laleau and F. Polack, “Coming and Going from UML to B: A
Proposal to Support Traceability in Rigorous IS Development,” in Proc.
of the 2nd International Z and B Conference (ZB’02), ser. Lecture
Notes in Computer Science, D. Bert, J. P. Bowen, M. C. Henson,and
K. Robinson, Eds., vol. 2272. Springer-Verlag, 2002, pp. 517–534.

[37] E. Astesiano, M. Cerioli, and G. Reggio, “Plugging DataConstructs
into Paradigm-Specific Languages: Towards an Application to UML,”
in Proc. of the 8th International Conference on Algebraic Methodology
and Software Technology (AMAST’00), ser. Lecture Notes in Computer
Science, T. Rus, Ed., vol. 1816. Springer-Verlag, 2000, pp.273–292.

[38] G. Reggio and L. Repetto, “Casl-Chart: A Combination ofStatecharts
and of the Algebraic Specification Language CASL,” inProc. of the
8th International Conference on Algebraic Methodology andSoftware
Technology (AMAST’00), ser. Lecture Notes in Computer Science,
T. Rus, Ed., vol. 1816. Springer-Verlag, 2000, pp. 243–257.

[39] G. Salaün and P. Poizat, “Interacting Extended State Diagrams,” inProc.
of the Int. Workshop on Semantic Foundations of EngineeringDesign
Languages (SFEDL’04), ser. ENTCS, vol. 115, 2005, pp. 49–57.

[40] A. David, M. O. Möller, and W. Yi, “Formal Verification of UML State-
charts with Real-Time Extensions,” inProc. of the International Confer-
ence on Fundamental Approaches to Software Engineering (FASE’02),
ser. Lecture Notes in Computer Science, R.-D. Kutsche and H.Weber,
Eds., vol. 2306. Springer-Verlag, 2002, pp. 218–232.

Christian Attiogb é received a PhD in Computer
Science from the University of Toulouse III in 1992.
His is currently associate professor at the Univer-
sity of Nantes, France and researcher at the LINA
Laboratory were he is the leader of the Depend-
able Components and Systems team. His research
interests include formal methods for dependable
system development. He is engaged in research that
includes formal methods integration, multi-paradigm
specifications, the B Method, the combination of
theorem proving and model checking for multi-facet

analysis of concurrent, distributed and reactive systems.

Pascal Poizatis associate professor at the Univer-
sity of Evry and invited researcher in the ARLES
project at INRIA, France. He received a PhD in
Computer Science from the University of Nantes,
France, in 2000. His PhD topics were the integration
of static and dynamic aspects in formal description
languages, the use of symbolic transition systems
and the development of expressive modal logic
gluing mechanisms. His current research interests
include formal models and verification techniques
for component and service based systems, more

specifically issues related to coordination and adaptation.

Gwen Salaün is associate researcher in the VASY
project at INRIA, France. He received a PhD in
Computer Science from the University of Nantes,
France, in 2003. His PhD topic was the study of
different integration and verification techniques for
heterogeneous formal specification languages. He
spent one year at the University of Rome ”La
Sapienza”, Italy, addressing the application of formal
methods to Web Services design and verification.
At INRIA, he has been working on bridges be-
tween process calculi, and on the verification of

asynchronous circuits and architectures. His research interests include issues
related to formal methods and software engineering, specification integration,
coordination and adaptation.

