N
N

N

HAL

open science

A Formal and Tool-Equipped Approach for the
Integration of State Diagrams and Formal Datatypes

Christian Attiogbe, Pascal Poizat, Gwen Salaiin

» To cite this version:

Christian Attiogbe, Pascal Poizat, Gwen Salaiin. A Formal and Tool-Equipped Approach for the
Integration of State Diagrams and Formal Datatypes. IEEE Transactions on Software Engineering,

2007, 33 (3), pp.157-170. 10.1109/TSE.2007.21 . hal-00470280

HAL Id: hal-00470280
https://hal.science/hal-00470280
Submitted on 5 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00470280
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Formal and Tool-Equipped Approach for the
Integration of State Diagrams and Formal Datatypes

Christian Attiogbé, Pascal Poizat, and Gwen Salalin

_Abstract— Separation of concerns or aspects is a way to deal allow the description of data types at a high abstractioellev
with the increasing complexity of systems. The separate dgm and the verification of their specification. Regarding dyitam
of models for different aspects also promotes a better reugdity aspects, we propose the use of state diagrams since such

level. However, an important issue is then to define means to . .
integrate them into a global model. We present a formal and S€Mi-formal notationse(g, UML [6] or Statecharts [7]) have

tool-equipped approach for the integration of dynamic modés NOwW made a breakthrough in software engineering, mainly
(behaviours expressed using state diagrams) and static mels because of their user-friendliness through graphicaltiosta
(formal data types) with the benefit to share advantages of tb: gnd adaptability.

graphical user-friendly models for behaviours, formal and ab- Semi-formal graphical languages lack a widely accepted for

stract models for data types. Integration is achieved in a geeric | ti df ld intion | .
way so that it can deal with both different static specificaton mal semantics, and formal description languages are odiein s

languages (algebraic specifications, Z, B) and different dyamic 10 be hard to learn and put into practice. Their joint use is
specification semantics. a pragmatic approach which takes advantage of both: user-

Index Terms— Formal methods, languages, integrated envi- fiéndliness and readability from graphical approachégh h
ronments, state diagrams, specification techniques, opeianal ~abstraction level, expressiveness, consistency and oagiifn
semantics, tools. means from formal approaches.

|. INTRODUCTION Our integration approach is generic with respect to the
T HE increasing complexity of systems (size, distributioBtatic and the dynamic aspects. The language flexibility we
and communication, number of interacting entities) hasopose for the static aspect specification enables théfispec
led in the last years to numerous proposals of expressive-strtg choose the formal languages that are the more suitedsto thi
turing mechanisms such as modules, viewpoints, componegigk: either the ones (s)he is used to, the ones equipped with
software architectures or models. The correspondingi@titiaols, or the ones that make the reuse of earlier specifieatio
are designed separately which increase their reusabililew possible. Our approach makes the joint use of several static
making their integration more complicated. specification languages possible. This is an importantifeat
In this article we tacklénorizontal integrationvhich means g5 there is no universal modelling language and therefore
the integration of models representing different concems ifferent parts of the data used in systems may be more
possibly written in different languages. Rather than reydn qequately written in different languages. Different dyia
a separate integration description which would make it ne§amantics may be taken into account. Our approach may be
essary for the system designer to know yet another languagged for Statecharts [7], [8], for different UML state diagr
we propose to define a semantic framework for the integratigBmantics, [9]-[12] for instance, and more generally ftveot
within one of the languages of features from the other onegate / transition based languages.
yielding anintegrated or mixed language. Such a semantican early version of this work has been presented in [13].
framework is a mandatory preliminary step to be able to buitthe syntax part has been improved thanks to a motivating
tools dedicated to model integration. _ example, a formal grammar of transition extensions and more
The concerns we are interested in are the main onesgfpjanations. More details on the semantic framework and
systems,i.e, on one hand theistatic aspects(data types yyles have also been added. Consistency and completeness
and related operations) and on the other hand tglamic of the dynamic semantic rules have been proven. Finally a

aspectgbehaviours, concurrency and communication). In OWection presents xCLAP, an animation prototype for extdnde
approach, integration isontrol-driven dynamics is the main gtate diagrams.

aspect and drives the way data types (static aspects) aile use

In this way, our proposal enforces the consistency of thicsta o)

and dynamic parts. The article is structured as follows. Section Il presents th
We advocate the specification of static aspects using fornf¥tactic extensions used to integrate formal data typgsiwi

[3], state-oriented languages such as Z [4] or B [5]). TheyPproach are formalised. Section IV demonstrates how the
semantic framework can be instantiated. Section V overview

P. Poizat is with IBISC FRE 2873 CNRS, Université d'Evry \#Essonne . .
and ARLES project, INRIA Rocquencourt, France. works and compare our approach to them. Finally, Section VII

G. Salauin is with VASY project, INRIA Rhdne-Alpes, France concludes the article.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

declare sort STORE

Il. SYNTACTIC ASPECTS declare operators
(* creates an empty store *)
In this section we present the extensions needed in statgleV : -> STORE
. (* adds a client record *)
diagrams to enable their integration with data types, yigld append : STORE, NAT, NAT -> STORE
Extended State Diagran{&SDs). We advocate for a control- (* updates a client record *)

. update : STORE, NAT, NAT -> STORE
driven approach of integration. This means that dynamic

behaviours, namely state diagrams, describe the main gargensraors +) _
. A Ssert sort STORE generated by new, append;
of the specification whereas data types are handled by tEHSare variables store: STORE,
: i t client,client2: NAT,
behawour-al specification. . N amount amount2: NAT
State diagramsre used to graphically represent finite stat@sert

: ; : : update(new,client,amount) = append(new,client,amount)
machines. They can be used to specify the behaviour of \ariou (lient==client2)

entities, from computer programs to business processéial In => update(append(store client,amount), client2,amount 2)
f ; ; R = append(new,client,amount+amount2);
states are represented using filled circles. Final states ar - e cienw)

represented using hollow circles. Rectangles with rourylie®n => update(append(store,client,amount),client2,amount 2)
are used to represent states, which can be named. Trassition = append(update(store clientz.amount2).client,amount)
between states are represented with arrows. In additiots to i
source states (at least one) and its target states (any mpml;gg. 2
a transition may optionally support an event, a condition

or guard, and an action list. Transition labels correspand t
these three elements: EVENTGUARD] / ACTIONS. The in; hence they are not initialised. Axioms can be used in
intuitive semantics of transitions is as follows: when there 3 functional fashionj.e., op(args) = term . In such a

is produced while the source states are active and the gugéde, theargs (arguments) part of axioms is usually defined

is true, then actions are executed and the target states jatRictively on the generators of the argument types. This ca
activated. Additional notations can be used to write dymambe observed in Fig. 2 where thgpdate operator is defined
models in a more concise wag,g, hierarchical states (alsousing the twoSTOREgenerators, namelgew (first axiom)
called OR-states) represented as states which contairtea siddappend (two last axioms). Algebraic specifications given
diagram, or concurrent states (also called AND-states)eto ths such are executable and can be transformed into code [14].
note concurrent execution zones in state diagrams, refiegbe More details on algebraic specifications can be found in [2].
using dashed lines between the zones. We refer to [6], [7] forData types are used in state diagrams to enable data en-
a comprehensive description of state diagrams notations. capsulation if in D3), communication and value passing (

Let us start with a simple ESD specification (Fig. 1) t@eceived inD1 andD2). A more realistic example of such an
introduce what an integrated ESD specification would lodktegration of static and dynamic models is presented if [15
like. It is a producer/consumer system where diagrixhand where more complex data types and ESDs are used.

D2 are consumers which receive resourcesdnd consume As shown in the example, the state diagrams notation has
them.D1 consumes all resources at once, wiidi2 consumes to be extended in two ways to take into account formal data
them one by one. Diagram3 is the producer which sendstypes: (i) data boxes are associated to state diagrams iand (i
resources td1 and D2, either sending one to each or two talata expressions appear in transitions.

D2. It also counts the number of provided resourags (Data boxeshave two goals: they are used to import modules

The data part of the specification is described in our examgke module being a collection of one or several data type
using Larch algebraic specifications [1] (S8€OREN Fig. 2 definitions), and to declare variables locally to a state dia
which keeps track of given resources). Algebraic data type gram. Note that the initialisation of variables is perfothie
specificationis made up of a set oforts (types) definitions transitions. Data boxes are inspired from UML notes which
together withoperatorson these sorts. Constants correspond e usually used to give additional information to a diagram
0-ary operators. Operators with a result sort that cornredpo in a textual form. A data box is made up of a list of module
to the sort being defined are callednstructorsOperators and importations and variable declarations. TIMPORT notation
variables enable one to buitdrms e.g, if 1 andplus are indicates which data modules are imported as well as the
natural numbers constructork being a 0-ary constructor andlanguage used to write them owt.q, the Larch algebraic
plus being a binary one), and ¥ is a natural number vari- specification language as in our example, but also Z schemas
able, then a possible term @us(x,1) . The constructors or B machines). This language is calledrameworkin our
that can generate all the terms corresponding to the vafiees @pproach and determines which function has to be used to
given sort are calledenerators It could be for exampl®, 1 evaluate the data embedded into the state diagram. Vasiable
and plus for natural numbers. In our example, generatore also declared and typed in data boxes. Since modules
are new and append . The profiles of operators are firstoften contain several type definitions, and since types with
given and then their semantics are provided thanks to axiortiee same name may be defined in different modules, the type
e.g, an axiom such aglus(x,y) = plus(y,x) states of a variable may be prefixed with the name of the module it
the commutative property of addition. Note that variables is defined in to avoid conflicts.
algebraic specifications are just placeholders in axiondsdan Data expressionsappear in transitions which are ex-
not correspond to a state space for the sort they are definedded to (i) receive values in the EVENT part and

Producer/consumer static model

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

D1 D2 D3
/ n:=update(n,2,2)

consume < > comm(x:NAT) [x<=1] > comm(x:NAT) / n::update(n,l,l);< > / D2"comm(2)

consume n:=update(n,2,1)

/ D1*comm(1);
[x>1] D2~comm(1)
consume
/ x:=x-1
IMPORT LarchSpec NAT, STORE
| IMPORT LarchSpec NAT B| | IMPORT LarchSpec NAT B| n:STORE

Fig. 1. Producer/consumer system

TABLE |
GRAMMAR OF TRANSITIONS WITH DATA EXPRESSIONS

TRANSITION = |[EVENT][[GUARD]][/ ACTION [; ACTION J*]
EVENT = event-name [PARAM [, PARAM J*)]

PARAM = var type

GUARD = DATA-TERM

ACTION = EMISSION| ASSIGNMENT

EMISSION = receivef event-name [DATA-TERM [, DATA-TERM]*)]
ASSIGNMENT = var= DATA-TERM

DATA-TERM = var | operation [(DATA-TERM [, DATA-TERM]*)]

then to store these values into local variablegy, event- level transitions) can be used at the specification leveligea
name(x:Ty,... %:Tn), (i) guard transitions with data expres-that this construction is taken into account and formalised
sions, e.g, predicate(t,....t), (iii) send events containing the semantics considered for the non-extended notatian (se
data expression®.g, receiver'event-name(t...t,), and (iv) configurations in Section IlI-C, page 6).

make assignments of data expressions to local variablgs,

x:=t. Points (iii) and (iv) take place in the ACTIONS part I1l. SEMANTIC ASPECTS

of transitions. Table | gives a formal grammar of transiion

handling data terms, In this section, our goal is to give a formal semantics to

state diagrams extended with formal data types as presented

Data expressions may be either variables, terms for algg-the syntactic part.

braic specifications or operation applications for staterted We do not aim at formalising some specific kind of (non-
specifications. We recall that constants correspond toyo'%rxtended) state diagram, which has already successfudly be
operations. As far as the formal languages for the statiecsp done, see [8]-[12] for example. We rather aim at being able
are con_cerned, the_only constraint is_to have some yvelletdzfiqq reuse different existing state diagram semantics. Toere
evaluation mechanism. The reason is that we are interesteq)j,, semantics is presented in a way such that generic cancept
providing a generic specification framework formally definerepresented in our semantics using a boxed notation, may be
using an operational semantics. Hence, the design andimpigtantiated for a specific kind of state diagram seman#cs.
mentation of dedicated tools, such as the one we presentyitheric property such as “the event pertains to the inpuiteve
Section V, can be tackled. Our approach makes the joint Us§jiection of the state diagram” is for example represented
of several static formal languages possible. Howeyer, a mix event O, without assuming any specific additional
of constructs from several languages (such as the impamtatyonstraint (such as an ordering of events in collectiorts). |
of a Z module within an algebraic specification, or usingyay however thereafter be instantiated into “the eventés th
algebraic specification variables in a B operation apgbeat first element of the input queuedyente O, thus taking into
is not allowed to avoid possible semantic inconsisten@ss. 5ccount ordering.
a simple way to detect them, we develomata-typeconcept sing this generic approach, several kinds of non-extended
using meta-typing rules (see Section Ill-A). Terms which akiate diagrams and their underlying semantics can be con-
not meta-typed, and therefore inconsistent, cannot be nsedjgered. The only constraint is that this semantics has to be
the dynamic rules. given in terms of a Labelled Transition System (LTS,

To sum up, arESD specificatioris given as a set of statica tuple (NIT, STATE TRANS with initial states, states and
models (data type modules) together with a set of dynantransitions which are tuples (source state, label, targee)s
models (ESD). Each ESD possibly includes data definitiohsbels correspond to TRANSITION in Table I.

(module importations and variable declarations). Any agtit We define aroperational semantickor ESD specifications
construction of state diagrame.g, hierarchy, histories, inter- since such a semantics is well suited for the definition olstoo

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

This semantics is based on LTSs. Getting such a semantics in
one step is a complex task as different elements have to be
taken into account: action semantics usévgluation functions

and their effect on theextended state spacef individual
ESDs, storing of events, individual behavioural semanics
ESDs, relations between ESDs and their (open) environment,
and finally communications between several ESDs at the
system level. Therefore, we propose to achieve a semantics
incrementallyi.e., in several steps, taking into account at each
step new elements presented above. This semantic “separati

(IMPORT XSpec M € DeclimpD)
def(T, M)
x: T € DeclvarD)
X:p X

(IMPORT XSpec M € DeclimpD)
def(op, M)
Viel.n.t:pX
opt ... th:pX

of concerns”, yielding a separation of (groups of) semantigy. 4. Meta-typing rules

rules, as a side-effect enables one to reuse specific rutes an
replace or specialise other ones to deal with specific needs.
It is important to notice that in our approach both the syn-
tactic pieces (state diagrams) and the semantic ones (§eman *
execution models) we incrementally build are LTSs. Howgver
the incremental semantics process will bring at each stap mo
information and semantics to enrich these LTS states and
transitions. The semantics steps and the corresponding LTS
are summarised in Fig. 3, with syntactic pieces on the laft an
the incrementally built semantic ones on the right. Différe
notations are used to denote the different kinds of LTSs:
« simple notation, (INIT, STATETRANS, for syntactic
pieces;
« boxed (generic) notation|INIT], | STATE, [TRANS),
for the semantics of non-extended state diagrams we build
on;

(Fig. 3(2), Section llI-D);

and finally over-lined notation(INIT, STATE TRANS,

for the complete semantics of an ESD specification,
i.e, a set of communicating ESDs. These LTSs are
generated by thglobal system and communication rules
(Fig. 3(3), Section IlI-E) which, putting these ESDs
(quantified byi) individual open models altogether, yield
a global model for the whole ESD specification. The use
of forget functions (a) and non-extended semantics (b),
and the application of dynamic rules (1), (c), and open
systems rules (2) is performed independently for each
diagram within the system. It is the global system and
communication rules (3) which yield a semantics for the
whole system.

« underlined notation,(INIT, STATE TRANS, for the Inthe sequel we present more formally each group of rules.
behavioural models of individual ESDs, taking into/Ve Will also discuss the evaluation functions associatetti wi

account data encapsulation and event collections fé¢ different static specification languages one may use. We
communication. These LTSs are generated by tHéll end with a proof of consistency and completeness for

dynamic rules (Fig. 3(1), Section 11-C) which rely dynamic rules.

on meta-typing (Section 1ll1-A) and action evaluation

rules (Section 111-B). Moreover, the dynamic rules use -

Fig. 3(c), a given (chosen) semantics for non—extend@d Meta-Typing Rules
diagrams (denoted by . || in the figure) obtained in The meta-typing rules are needed in order to detect mul-
Fig. 3(a) and (b). To be able to reuse this semantiéifle language inconsistencies and to be able to perform the
in our approach, we have the need for specifie.,(€valuation of a term using the adequate evaluation fungtion
dependent on the non-extended diagrams semanti@at is the one dedicated to the framework corresponding
we take into account) “forget” functions (they forgeto the meta-type of this terme(g, Larch, Z, B). In the
the extensions in ESDs), which are denoted |hy following, D is the set of ESDs. Rules apply to a diagram
These functions distribute over LTS triples (both syntak belonging toD. The states ob are denoted bsTATED),

and semantics ones.g, (INIT,STATETRANS) _ itsinitial states byINIT (D), and its transitions bf RANSD).
DecllmgD) and DeclVar(D) denote respectively the data

(INlT’STATETRANS' Morgover, as W& modules importations and the variable declarations which
only extend transitions (see Section lI), we havgppear in the diagrand data box.DeclVar' (D) is the set
L|INIT = INIT andSTATE: STATE and hence ot tyned) variables received in event®eclVar(D) is the
(INIT, STATETRANS = (INIT, STATE TRANS. union of DeclVar (D) andDeclVar (D). A diagramD may be
When dealing with a given non-extended diagramiven syntactically by a tupldIT, STATE TRANS Declimp
semantics (such as for example the [12] one, used DeclVar). def(x, M) is true if x is defined within the module
Section IV for illustration purposes), we will use aM. We useT for usual types andX for meta-types. The
specific forget function (this means that th notationt ::p X means that hasX as meta-type within the
function has to be instantiated for specific non-extendeiagramD. Throughout the semantic part, operators suffixed
semantics); with meta-types €.g, >x) will denote their interpretation
open exponent notation, (INIT°P®" STATEP®" within the context of the corresponding framewoekd, >z
TRANSP®Y), for (open) models of individual ESDs,denotes the Z evaluation function). Semantic rules have the
taking into account their relation with the environmengeneral form%namewhereH is a set of premises ard, the
These LTSs are generated by tlapen system rule consequent of the rule, is a conjunction of predicates.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

'S) S N
{ (INIT TAT:ERANS)} \
Al vi) T (o
(Vi)i(a) I II(I):()
\]
|
{ Di = (INIT, STATETRANS; } { (INIT][STATE, |[| TRANS); }
dynamic rules (Vi) | (1) used in (Vi) i (c)
V

{ (INIT, STATETRANS; }

open systems rules (Vi) | (2)

{ (INIT®Pe" STATEP®" TRANSP®); }

global system rules | (3)

(INIT, STATETRANS

syntactic world (diagrams) semantic world (models)

Fig. 3. Obtaining of ESDs semantics

The rule in Fig. 4a) is used to give a meta-type to variables output event collections.
using local declarations and variable receptions. The irule

Fig. 4(b) gives the meta-type of a construction from the meta- ¢ jections are introduced to memorise events exchanged
types of elements which composedp t ... tyis anabstract p ..o diagrams. In the sequen, e[EVENT?] (re-

notation to denote the application of an operation to a list . | EVENTD i d o d I
of terms, since there are some syntactic differences betwe@ECtVely Qoup elQ]) is used to denote a collec-

algebraic and state-oriented formal specification langsag tion associated to a diagrai _to. store Input (re_spectl_/ely
output) events. Contrary to existing models storing evamts

collections (such as SDL using queues), we use two collestio
) i) rather than a single one. Input and output collections véll b
This set of rules deals with the effect of actions on thgseq separately until the semantics of communication ketwe
extended states used to give semantics to ESDs. Let us fi§{era| diagrams is taken into account linking up the output
give a definition of these stateBVENT is the set of alinput ¢ jjections of some diagrams with the input collections of
eventswhose general form isvent-namevalus,, ..., valu&), gther ones. This enables one to adapt more easily parts of
that is a concrete instantiation with values of an abstreete o semantics, for example to take different communication
parameterised by variablee.g, &(0) is an instantiation of gemantics into accoune(g, there is no need to have explicit
e(x : NAT)). EVENT is the set of alloutput eventswhose gyternal buffers to model asynchronous communicationg Th

general form isreceiver " event— na_l”r?e{valueh -, Valug). gt~y v notation means that using the evaluation defined
EVENTis the set of all events, that i€VENT=EVENT U the X framework,v is a possible evaluation dfusing the

EVENT. The set of extended states for an ESD is defined a8yironmentE for substituting the free variables in More
S C [STATH(D) xEx [EVENT-'] x [EVEN'I*-] details concerning the semanticsef will be given in Section

[lI-F. Furthermore, ifE andE’ are environments theBE' is
where the environment in which variables & andE’ are defined
- [STATE(D) is the set of states used to give a semantighd the bindings o’ overload those of. We recall that
to the non-extended state diagram N symbols in boxes depict abstract structures and operations
. 8_ is the set of_enV|ronments, _/vhlch_ are finite sets qf pe instantiated for a given type of state diagra&nwill
pairs (x,v) denoting that the variable is bound to the thereafter be used to denote an elemers,cindI'p to denote
valuev; an element o(D). When there is no ambiguity db,

. is the set of collections| Q[EVENT] the set e usel for I'p, Qn for Qing, and Qout for Qoug. The rules
of input event collections, an[EVEN'F] the set of describing the evaluation of actions are given in Fig. 5.

B. Action Evaluation Rules

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

act—evala;,SD) =S v € INIT(D)
act—evalay; ...; S,.D)=¢

(& ...; &, S,D) EVAL_SEQ Ly € [INIT (D)

act—evala;; ...; @, SD) =9’ active(o, I'o)

DeclVar (D) = Uier.n{X : Ti}
Viel.n.x :p X .V X T

EVAL—NIL DYN—INIT
act—evalca, S D) = S < To,Uier.a{x — viL,[0][0] > € INIT(D)
Viel.n Fig. 6. Initialisation rule
b0 % Se STATED)
EFt>x Vi € STATE
L A R EVAL-SEND - DYN-¢
act—evalrec’e(ty, ..., tn), S— Se TRANSD)
< F7 E7 Qina QOUI >7 D)) .
=<T,E, Qn, Quu{ ¥ {rec’e(vy, ..., vn)} > Fig. 7. Stuttering step rule
t:p X in_a configuration (or more generally in some element of
EFt>xv =R i i i i ive i
X EVAL_ASSIGN STAT_): ac_tlve('y,F) is true if the~ state is active in the
act—evalx:=t, < I', E, Qin, Qout >, D) T" configuration.
=< T, E{x+ V}, Qin, Qout > A first rule (Fig. 6) is used to obtain the initial extended
states which correspond to the initial states of the non-
Fig. 5. Action evaluation rules extended state diagram underlying seman{it§IT (D)) ex-

tended with initial values for the variables and empty ingd

The EVAL— SEQrule is used to evaluate the actions irPutput coIIections). The meta-type of variables is used to
sequence. Th&VAL— NIL rule states that doing no actiondefine the notion of type in terms of a specific framework. The
does not change the global state. The event emissions @@éationv :x T denotes the fact that, within thé framework,
dealt with by theEVAL— SEND rule, which expresses thatV is a value of typeT.
the effect of sending an event is to evaluate its arguments anA second rule (Fig. 7) is used to express stuttering steps.
then put it into the state diagram output event coIIect. These steps denote an ESD which does not evolve and will
denotes an abstract union operation which may be instadtiape used when putting state diagrams in an open system envi-
differently depending on the type of state diagram semanti@nment. This rule should be taken with care when verifying
one wants: union of sets, adding in front of a queue, etc. THéeness properties (such as inevitability of events) amaly
EVAL—ASSIGNrule updates the local environment replacing§ause livelocks (infinite sequences of stuttering stepsyuth
the previous value of variableby the new one\(evaluation & case, verification tools should enable the assertion wfefas

of t). or progress hypotheses before verification takes placeidh s
a way that traces with infinite sequences of stuttering steps
C. Dynamic Rules not taken into consideration.

This set of rules deals with the dynamic evolution of él'he nextdynamic rule (Fig. 8) expresses the general eooluti

single state diagram. We introduce a special evedgnoting
a stuttering stepEVENT'* = EVENT U {¢}.

State diagram evolutions are given in terms of an LTS Se STATED) S=<T'E, Qn, Qout >

(INIT, STATETRANS where states are extended states, with: 7 € STATED) o' € STATED)
STATEC S l=eX :Ti,....%:Th) g/ as; ...; am
| .
TRANSC STATEx EVENT+ x STATE eV, va) €[
. . i/n = Qin{e(vla cee 7Vn)}
We recall that ESDs may be given syntactically as a |
tuple (NIT, STATE TRANS Declimp DeclVar) and that the , q
semantics of non-extended state diagrams are given in t#rms F=1e TRAN“(D)
an LTS (INIT (D), | STATE(D), | TRANS(D)). For some state Viel.n.x:pX.VixT
diagram semantics, there is a direct correspondence betwee E' = EUic1.n {X — Vi}
the syntactic and semantic notions of states, (NIT, STATE g:p X FEFgp>x TRUE
[INIT] and[STATH have the same type). However, for others act—evalai; ...; am, < I',E’, Qj, Qout >, D)
(such as the UML state diagrams due to their hierarchical =<T,E", Q Qou >
constructs), the semantics of non-extended state diagaaens S =<I",E", Qi Qout >

DYN—-E

given in terms of the more general conceptcohfigurations
[9]-[11] which are sets o&ctive states. Hence, we define the
active function which is used to know if a state is activg, g

Vi,.ee

S e STATED) A S *Y"), g ¢ TRANSD)

Basic dynamic rule (with event reception)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

triggered when an event is read from the state diagram input g, STATED) S=<T,E,Qn,Qou >
event collection. This event may carry data values that ate p vﬁATEﬁD) ~' € STATHD)
into the variable environment of the state diagraPRUE l=g/ay;...; am

denotes the truth value within thé framework. Once again, o, .

boxed elements are abstract concepts to be instantiateal for ¥ =7 € TRANSD) active(y,)
given type of state diagram semantiQ denotes that the '

evente is in the collectionQ. Possible instantiations are:is P=1Te RANS(D)

in Q (e € Q), eis the first/top element i (e = car(Q)), eis g:p X EFgp>x TRUE

the element inQ with the highest priority, and so orQe act—evalay; ...; am, < I',E, Qn, Qout >,D)
denotes, in the same way, the (abstract) removat éfom =<T,F, Qp Qout >
Q. As explained in the Section Il introduction, to be able to S =<T",F,Qj, Qi >

DYN—E®

reuse the semantic information yield by the set of transgio S € STATED) ASS S € TRANSD)
of the non-extended state diagram semanD), we

rely on a| | | function. Fig. 9. Basic dynamic rule (without event reception)
This big-step semantic rule corresponds to the Run To Com-

pletion (RTC) step found.in f]lifferent state diagram sen@nti {15065 can be used, for example, to check LTL temporal
Its meaning is the following: formulas over the models.
if (premises)

— Sis in the set of (semantic) states of the dynamic
D. Open System Rule

model,
— with T" being the configuration part of this state, and This rule is used to express what happens when a state
(syntactic) statey being active inl, diagram is put into an open system environment. Basically,
— there is a transition with labél=e(x; : T1,...,X,: some events may be received from the environment and some
Tn) g/ ai; ...; am originating from~ and going to others may be sent to it. As far as the input and output
a (syntactic) state’, and a corresponding transitionevent collections of a given state diagram are concerned,
(in the basic semantic model) frofmto I, this means that input events are put into its input event
and (conditions for the transition to be triggered and collection and output events are taken out of its output even
completion) collection. Note that these modifications of the extendatest

— if evente, corresponding to the transition label, ignay appear while the state diagram does a transitien (
present in the diagram input event collection, thefollowing the DYN—E and DYN—E(rules) but also if it
reception variables are bound to the received valuéipes nothing. To be able to represent this, we may aise

and the guard is evaluated, transitions (ruleDYN—¢). More formally, the semantics of
— if g is true, then actions are performed, yielding & state diagram in an open system is defined as the traces of
new (semantic) target stats, the LTS (INIT°P*(D), STATEP®(D), TRANSP®1D)), that is
then (conclusion) denoted by:
— S is in the set of states of the dynamic model, || D ||3En= TR(INIT®P*YD), STATEP®YD), TRANS®(D)).

— and the transition frons to S, labelled by concrete
values, is in its set of transitions.

However, sometimes events are not needed to trigger tran- INIT°P®(D) = INIT (D)

sitions. Such a case is dealt with by the rule in Fig. 9, whersRANSP®(D) C TRANSD) x [EVENT?]X EVENT]
the corresponding transition GiRANSD) is labelled by the STATEPSYD) = INIT°P*(D) U TARGETTRANS D))
stuttering step labekj. The only difference with the previous _] o
rule is that the premises concerning the received eventatre n STATEP®" is obtained from initial statesINIT***") and
needed. reachable states (target states of THRANSP®" transitions).
The DYN-E andDYN—E0 rules deal with the more genera|TheDYN—OPENruIe (Fig. 10) defines the modifications in the
forms of state diagram transitions.e{, with the EVENT collections that may take place in an open system semantics.
[GUARD]/ ACTIONS and GUARD]/ ACTIONS forms). In this rule, the label matches the two possible things the state
Rules for restricted forms of transitions.g, without guard) diagram may do during the collection modification: a claaisic
may be obtained in an easy way from these general relgs (transition (rulesDYN—E and DYN—E@) or no internal state
consider the guard to be true). An operational semanticsication at all (which is the reason for rul2YN—e).
obtained from this model associating Eits LTS (INIT (D), (ES) denotes the collection obtained from the powerset

STATED), TRANSD)), and then using for example an usua®f ES ESn (respectivelyES,y) in open transitions (members
trace semantics denoted by: of TRANSP®(D)) is used to keep track of what has been

put into the input event collection (respectively taken ofit
[1'D [loper= TRUNIT (D), STATED), TRANSD)). the output event collection) of the state diagré8nl.—>Esn,EsM
TR denotes the set of traces computed from the LTS, s8e € TRANSP®(D) is used as a shorthand notation for
[16] for comprehensive definitions on trace semantics. heS |, S, ES,, ESu) € TRANSP®(D).

For a given diagranD, we define:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

< T, E, Qn, Qout >—< I", E/, Qy, Qe > € TRANSD)
ES)quut
ES{ <] [P(EVENT)

| DYN—OPEN
< T, E, Qn, Qou >es, £5u< I, E's Q[E]ESh, Qhuf \ ESue >€ TRANSPYD)
Fig. 10. Open system rule
E. Global System and Communication Rules Algebraic specifications.Rewriting is chosen as the eval-

The last set of rules puts things altogether. The idea is tﬁéﬁtion function for algebraic specifications. This choise i
a global system made up of several ESDs (denoteg D) Justified since it is suitable to an operational semantidsciv
.. I . . B .
evolves as its components evolve. Once again we define ffF0rdingly enables us to remain in a pragmatic and exeleutab

operational semantics of the system to be the traces of G{it€Xt, and to design and implement tools. Algebraic $peci
LTS (NI (Uic1..nDi), STATEUic,.nDi), TRANSUic1. D)), cation languages often come with their rewriting systenicha
that is denoted“by: h b is equipped with a theorem prover, LP [17], which implements

equational term rewriting. Specifications written in CAS3] |
I| Uie1..nDi [[oher= can be partially transformed into rewrite rules. This can be
TR(INIT (Uic1..nDi), STATEUic1..nDi), TRANSUic1..nDi)). achieved executing CASL equational specifications within t

INIT, STATEand TRANSare defined as: ELAN rewrite engine [18].

INIT (Uie1.nDi) = HiMOpzn(Di) function for Z. Other languages such as B, VDM, Object-Z, or
TRANSUie1.nDi) = {t € IITRANSDy) | CC(t)} Alloy, may be taken into account following a similar process
_ STATHUic1.nDi) = Z is a mathematical notation based on set theory and first
INIT (Uie1.nDi) U TARGETTRANSUie1.nDi)) order predicate calculus. Z schemas allow to structureatada
TRANSIs obtained from the product of tiERANSP®" sets Operation specifications. A schema is made up of a declaratio
of each state diagram of the system, restricting this produR@rt (@ set of typed variables) and a predicate part builbesg
with a communication constrainCC) which expresses that variables. State schemas define state spaces. The semantics

whenever an emission event is taken out of a given diagr&ha state schema is a set of bindings between the schema
(D) output event collectionig., present iNnES,,), and if variables and values such that the predicate holds. A cdenple

the receiver of this emission is a membex)(of the system, Z specification also has an initialisation schema which @sfin
then this receiver has the event being put into its input eveRitial values for the variables.

State-oriented language We present here the evaluation

collection €Sn). The Z evaluation function is defined compiling Z speci-
' fications into LTSs. Letz be a Z specification defined with
CC(S LEsn],Esmtl S, S LEsnn,Esw S) & a state schem&Sch an initialisation schemaSch, and a

Vkel.n. VD; g €JESu, . Dj € Uic1.nDi = €[ES,, ~ Set of operation schemas. The LTBIT,, STATE, TRANS)
associated to the Z specification is obtained as followssdts

Other specific communication constraints may be defined i giates STATE) corresponds to th&Sch semantics state
order to take different communication semantics into a0EOUghace. The set of initial stateN(T,) of the LTS is the subset
Broadcast communication can be defined using a syntax i STATE with elements that satisfy the predicate I6th.
multiple receivers€.g, {Di,...,Dn}€) and refining theCC gina)ly, each operation schema predicate, used to relate th

constraint to express the delivery of the event in all thgyings of two states, defines a set of transitions labelled

concerned diagrams input collections at once. Synchronqys gneration applications. The set of transitions of the LTS
communication can be expressed restricting the size of ¢

A ! ANS) is the union of all these transitions. The evaluation
lections to one. (A)synchronous, binary and broadcast COML ction > is then defined aE - | >y § <> ISC E . §
z z CE.

munication have been implemented in the xCLAP tool (se . LT
Section V). Events with expiry dates can be modelled taggisﬁe TRANS. This formula states that the applicatibof an

A : eration yields a state scheraiff the schemas, on which
events with time-stamp&C may then take these tlme—stamp%% Y %,

. A . . is operation is applied and which is present in the evdnat
into account. Systems with (message) transit durat'on‘éoeanenvironmentE is related tos' by | in the set of transitions
designed in the same way or adding intermediate compone‘n&ANS '

whose role is to simulate the time duration of the transit. i

G. Consistency and Completeness

In this section we prove that the set of dynamic rules is con-
Several kinds of evaluation functions may be defined dsistent and complete. This dynamic rules system (DRS) forms
pending on which data specification language is used. We core of the semantics aspects considered in SectiofdlIl.
discuss here how these functions may be obtained for aligebfar as the system evolution is concerned, the dynamic rules
specifications and for state-oriented languages. are based on transition labels that appear in labellediti@ams

F. Semantics of Evaluation Functions)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

systems. We consider transition labels from a syntactiatpoi IV. APPLICATION
of view i.e, a setLabel that contains all the syntactic forms |, this section, our semantics for ESD are illustrated on the
of labels computed from TRANSITION in Table I. producer/consumer example we introduced in Section II.

In the following we use these syntactic forms of the labels we first have to choose a non-extended state diagram se-
to identify the different semantic rules considered for th@antics, for example the semantics of UML 1.4 state diagrams
evolution of state diagrams. We focus on ¥ N—E and given by Jirjens [12]. This semantics is based on Abstract
DYN-E(rules (Fig. 8 and 9) to deal with the labels whiclstate Machines (ASM), and formalises state diagrams as a
have the general forms: EVENTGUARD] / ACTIONS set of active states which can evolve depending on the state
and[GUARD] / ACTIONS. These rules are representativef their queues. In particular, this evolution is given ggsin
members of DRS since the other rules are specific forms @fo rules,SClnitialize(D) andSCMain(D) , where the
them. Each one of these rules covers a pair of cases that|@er one consists of selecting the event to be fired, exeguti
would have if we omitted the GUARD (thERUEvalue being it, and then executing the rules for the internal actionse Th
the default one). We recall that each dynamic rule has thsrmal interpretation of these actions is given by ASM rides
general forminamewhereH is a set of premises ar@, the well. Our semantic framework applies on top of this semantic
consequent of the rule, is a conjunction of predicates. Being given this non-extended state diagram semantics, we

now have to define an instantiatiorof the| | | function. It is

Consistency. The DRS rule system is consistent iff itSyefined inductively on the structure of the Transition labef
constituent rules are not contradictory and they all lead toihe extended diagram notation (Fig. 11).

correct state of the evolving system (namely a diagEjmTo
establish the consistency we have to prove that there is only

one dynamic rule that deals with a given evolution label and | event-namex, : Ti,..., X%, : Tn) guard/ a; ...; am
that the evolution captured by each dynamic rule leads to a = levent€vent- namex; : Ty, ...,
correct state (a member &TATED)). Xn:Tn) / lacton@1; - - @m
Proof. We relate the dynamic (operational semantics) rules laction @15 -5 @ =laction@1; - -} laction @n
with the syntactic structure of the considered evolutidrela. laction €act = Eact
Therefore the rules are selected according to the occuwgrenc Laction X := 1= Eact

laction receiver event-namet, . . ., tp)

of a specific evolution label, acting as a discriminant, iaitth

hypothesis. This is formalised as follows: = TECEIVEr |eveni@VeNt-namety, ..., tn)
levent€vent-nameéx; : Ty, ..., X%, : Ty) = event-name
Vi, ri = %:ni € DRS. Jel e Label el € H; . levenc@Vent-namet, ..., tn) = event-name
.o . H;
Vi,j#i, 1= E;nj €DRS. el ¢ H; Fig. 11. Definition of the| function on labels for the [12] semantics

The premises of each DRS rule contain one specific evo-Event collections are instantiated by queues, togethdr wit
lution label of Labet hence the related rule®YN—E and their usual operations. Hence, each generic concept within
DYN—E(cannot be enabled simultaneously to handle tiir rules is instantiated by some queue-related concrege on
evolution of a diagranD. Moreover, the consequences of al{Queuetype for, nil for , queueoperator denoting the

the dynzls\mlc rules in DRS.. are made up of a predlf:ate with thgect of construc_tor and, c for ar_‘dg for : _
form s — s’ € TRANSD); it expresses the evolution from a The example imports modules written in Larch. Within
states into another state’. It follows thats’ is in the range this framework, the evaluation function corresponds tanter
of TRANSD), STATED), thus it is a correct state @. rewriting, i.e., >Larch spec= ~+& With R being the set of rewrite

)) rules (oriented module axioms)RUE ach-specCOrresponds to
Completeness.The DRS rule system is complete iff aty,e in Larch.

least one dynamic rule deals with each evolution label of thepg 3 first example of rule application, Fig. 12 denotes
considered transition diagram. That is, for every ladetither 5 simple dynamic evolution. This is an instantiation of the
el belongs to the premises of a ruliee(, el € H) or el does pyN_E(rule (Fig. 9) without guard. It represents an in-
not belong to themife., el ¢ H). dependent evolution of diagram D3 from state s2 to state
Proof. In our formalisation of the dynamic rules, there i$1. The premises of the rule denote the different conditions
exactly one rule that deals with each lab&lk; : Ti,--- ,X:: to be fulfilled to compute the new extended st&efrom
Tn)g/ai; ---; amis part of the premises dYN—E; in the the initial one S, and as a consequence the corresponding
same wayg/aj; --- ; am is part of the premises @YN-E(. transition of the dynamic evolution semantic model. The
We cover with the rule®YN—E andDYN—EQ (and their value bound to the variable corresponds to its normal form
omitted special cases), all the evolution cases includiveg tafter performing the twaipdate calls, supposing its value
exchanges with the environment. before wasv. Rewriting is performed through thact—eval
The last part of the completeness proof concerns the caaeplication, using ruleEVAL— SEQ for the sequence of
where there is no explicit evolution. The stuttering rilY(N— actions and ruleEVAL— ASSIGNtwice, first with premise
€) captures this step; that means, the system stays in thectorf(n, v)} + update(n, 1,1) ~% wo and second with premise
current state. {(n,wo)} I update(n,2,1) ~f w.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

more time to the interactions between behaviours and data

CC(SI %queuécomm(l)),nil Sla% i>queuécomm(l)).,nil %a types.

S5 —nil,queugD1 " comm(1),D2" conm(1)) S3) <=

(D1"comm(1) € queug¢D1” comm(1),D2"comm(1)) A A. Principles
Dy € Uie1.3Di = comm(1) € queugcomn(1))) A XCLAP builds on CLAP [14], [20] a class library for the
(D2 comm(1) € queugD1" comm(1), D2" comm(1)) A description, product and reachf’:\bility qnalys.is of traosit
D; € Uie1..3D; = comm(1) € queuécomn(1))) systems. XCLAP focuses on the interactive animation of ESDs
as done for process algebras in tools such as CWB-NC [21]
Fig. 15. Instantiation of th€C rule for CCS or CADP [22] for LOTOS. xCLAP may be used
to perform the construction of LTSs from ESD specifications
T=(S i’queuécomm(l)),nil S,S i)queue{comm(l)),nil S, thus making_ it possibl_e aftgrwards to perform moqlel-chaag;ki
Sy S queUgD1 " comn(1).D2" comn(1))) or reachability analysis using CLAP features and its extens
' ' for abstract analysis techniques [23].
T € Iic1. sTRANSP®YD;) An overview of the way XCLAP works (from the user point
CC(T) of view) is given in Fig. 17. Class diagrams, modelled in
T € TRANSUi¢1. 3D;) the UML SMW tool [24] are used to model ESDs (a state
diagram is associated to each ESD class), data modules (a
Fig. 16. Example of transition in the global semantic model documentation note is associated to each module class) and

their relations. The SMW reification of MOF is then used to
Note that, as said earlier, the abstract concepts have beerf@nslate SMW modetsinto models which are read by xCLAP
stantiated in the rules by concrete concepts, with, for gtam and animated.
queuebeing theQueueconstructor. User interface. XxCLAP can be parameterised at runtime
The rule in Fig. 10 DYN— OPEN) may be used to denote(see Fig. 18, left): import of ESDs, but also definition of
the effect of the external environment on D3, having botflameworks and configuration of the operational semantics
output events taken out of its output event queue (Fig. 13)(synchronous or asynchronous communication, binary or n-
An example of construction of a global transition is theary communication, specific treatment of received varigble
given in Fig. 14, 15 and 16. It describes the asynchronobsgiring the animation process (see Fig. 18, right), the user
communication oncomm between D1, D2 and D3 (which can see the local state of all diagrams, possible transition
sends thecommevents). In this example, the diagrams Dhnd their effect, and then choose a transition to be executed
and D2 are initially in state s1 and the diagram D3 is in stalhe interactions with data evaluation tools are completely
s2. transparent for the user.
. Fig. 14 describes a conjunction of evolutlor_ws for the three Encoding of the semanticsxCLAP is written in the object-
diagrams where D3 has events taken out of its output queue

(obtained in Fig. 13, using the rule in Fig. 10) whereas D1 ag)orllemed Python language and organised in Six packags.

D2 have events put into their input queues (which could gxtension classes for CLAP related to ESB)GNATURE

€ . L '
. . - . and TYPING (related to operations on data description files

obtained using the rule in Fig. 10 too). The conclusion of the . (. P >SCrp

. .) . and typing/meta-typing) EVALUATION (evaluation mecha-
rule builds a global transition which may pertain to the glbb . . .

. N >~ nisms and interface with external toolg)NIMATION (opera-
semantic model. However, the communication constraint has ! ; . i

ional semantics) andl (user interface). The implementation

not been checked yet.

: . : L . of the operational semantics follows the structure of ous se
Fig. 15 instantiates th€C communication constraint and ; . .
: . of rules encoded in these different packages. xCLAP relies
demonstrates that the Fig. 14 asynchronous communication e ;
. . o on a specific APl of classes and methods which can be
is possible due to the compatibility between open system . .
o . . g . used to change or extend the semantics. For more technical
transitions of the different diagrams. Hef@C is instantiated information we refer to the xCLAP manual [19]
with k = 3. Fork = 1..2, theES,;, arenil hence the remainder)
of the CC rule instantiation is empty. Term evaluation (>). Term evaluation is performed in
Finally, Fig. 16 uses the last two results to show that a dlobgCLAP trough specific interface modules with external evalu

transition, verifying the communication constraint, isfided ation tools. The rewriting of algebraic terms is performethw

in the final semantic model. LP which automatically transforms equations into rewritlkes
(using thedsmpos andnoeq-dsmpos registered orderings
V. THE XCLAP TooL [17], [25]). Hence, xCLAP users do not have to give explicit

ordering commands. The Z evaluation function we presented
fn Section I1I-F relies on ZANS [26], an animation tool for Z
specifications which allows the evaluation of expressiam a
there are no concurrent (AND) states (concurrency and CoH?'edicates. ZANS is used in XCLAP jointly with the ZTC type

munication is dealt with between diagrams), no hierardhic ecker [27] which checks for syntactic and typing errors in
(OR) states, and no entry/exit actions (these can be talf%pecifications

into account adding specific transitions to the diagrams in a
preprocessing step). These choices have been made to devdtetranslation from XMI to xCLAP was also possible but less aift.

XCLAP (extended CLAP) [19] is a prototype animator fo
ESDs. So far, it restricts to flat ESD$e., ESDs where

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Se STATED3)
S=<TI'ps, {(n,v)},nil,queug¢D1" comm(1), D2" comm(1)) >
| = /n:=update(n,1,1); n:=update(n,2,1)
2 1 sl e TRANS(D3)
active(s2, I'ps)

Ips =% T, € | | TRANY(D3)

act—evaln := update(n,1,1); n:=update(n,2,1),
< I'ps, {(n,v)}, nil, queug¢D1" comm(1), D2" comm(1)) >, D3) =< I'ps, {(n,w)}, nil,queugD1" comm(1), D2" comm(1)) >

S =< Ty, {(n,w)}, nil,queug¢D1" comm(1), D2" comm(1)) >
S € STATED3) A S5 S € TRANSD3)

Fig. 12. Independent dynamic evolution, rid'N — E@, for D3

S=<T'ps, {(n,v)},nil,queug¢D1" comm(1), D2" comm(1)) >
S =< T'ps, {(n,w)}, nil,queug¢D1" comm(1), D2" comm(1)) >
SZ. S € TRANSD3)
queuéD1 " comm(1),D2"comm(1)) C queuéD1"comm(1), D2"comm(1))nil C P(EVENT)

S i’nil.,(:]ueua,{DlAcomm(l).,DQAcomm(l))< F/D?,a {(nu W)}7 nilu nil > € —TRAngen(D?))

Fig. 13. Instantiation of th®YN — OPEN rule for D3

S| =< I'py, O, nil, nil >
S, =< I'pi, 0, queugcomm(1)), nil >
Ti = S| Squeudconn(1)),nil S| € TRANSP(D1)
S, =< T'pg, 0, nil, nil >
S, =< I'pe, ¥, queuécomm(1)), nil >
To = S Squevdconn())nil Sy € TRANSP(D2)
S5 =< I'ps, {(n, v)}, nil, queu¢D1" comm(1), D2 comm(1)) >
S:i =< 1—‘l|/:)3a {(Il, W)}, n”v nll >
Ts = S5 Snil,queudD1 comn(1),02" comn(1)) S € TRANSP*(D3)
T == (T17T27T3)
T € Tic1. sTRANSP®Y(D;)

Fig. 14. Event exchange

Class AD

Animation

Class hierarcy

Class AT Class AS

State) :
Translator diagrams Parsing . ‘
_—
smw2xclap (textual format Spark s AST -)
Gl N T
‘. Automaton instances
SMW
ESD I Data tools
Fig. 17. xCLAP overview
B. Genericity and Extension Mechanisms describe how different instantiations or extensions can be

The generic elements of our semantics have been enco@&ieved, following the same order in which we presented

using classes (some of them being abstract ones) withoWr rules.
specific API. These elements can be instantiated using subbata types and term evaluation ¢). Changing an eval-
classing and by overriding methods. In the sequel we briefltion tool,e.g, using ELAN [28] instead of LP to rewrite

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

e ———— |
Avimation 7 | . —
— o o
il Diagram: D1 ¥| Global Variables
) - System State | Lx:nat: Larchspec : s(s(s))
p Global Variable | current State: ez
& (%', ‘Nat!, 'LarchSpec, 's(s(s(0)})")
™ Current State: e2 e
P eta- types Imported Diagrams ¥ | Global variabiles
Iz s [a2z] | Ly:nat:Larcnspec : 0
aag | Larchspec g |0 ¥/ current State: g1
— =
] | ¥|pz
Delete | Delete | e A ¥ Glonal variavies
—_ — 6z - > el {'event, ‘guand':, action =S (x)}. L
— I | ez - > e3 {'event:, guand({s(s(0))) « x),'action’:{D2,D3} tick(x)}. | uslinE TR EE 8
[opery | [popersy | ¥ curane. stato:
T s] G
— Communication Treatment ~ Variables Treatment ——— - Sending Treatment -
Communication Treatment Variables Treatment Sending Treatment
[sunchranous ¥ [Firstsemantizs x| |inary ¥ =
| System after Simulation
Add ‘ ‘ Delete ‘ | mpmy{ | A | ‘ Delete \ | Property | ‘ Add \ | Detete | ‘ Pmpeny‘ |Global Variable
(%', 'Mat', ‘LarchSpec', 's(s(s(0)))")
Current. State: e3
Transitions
3 - > 83 {levent tack(x), guar's, action's).
Run i = T
‘ Exit
| S — =

Fig. 18. xCLAP windows (left: parameters, right: animajion

algebraic terms, is possible with a limited impact on théhe CC rule in theOverallAnimator class. Changing theC
XCLAP code (the tool call in the corresponding evaluatiorule can be achieved also by sub-classing the classes which
interface module has to be changed). Taking into accounparameteris®verallAnimator

new data frameworkg.g, B, is done as follows. A class has

to be defined in th&@YPING package to be able to scan and VI. RELATED WORK

parse B expressions. A class is also added toStB&NATURE , . . .
package to define mechanisms for parsing signatures out of i this section, we compare our approac_h with eX|st|n_g
B module. The evaluation of B expressions is achieved addiff rks on the combination of state diagrams with data descrip

a class in th&eVALUATIONpackage that serves as a front-enfion languages.
to an external tool for the effective evaluation. State diagrams and OCL.The frequent extension of state

Collection related operators. Collection policies (the in- diagrams with data types is the use of OCL (Object Constraint
terpretation of creating, adding, removing, etc.) are gd Language) constraints. OCIT is a complement to the desonipti
using collection classes. The encoding of the semanticg off data types using class diagrams but not a real language for
addresses the collections through this API. To changethg abstract description of data types. Nevertheless raleve
collection policy, once a new collection class has been defin WOrks are interested in its formalisation [29], [30].

an instance of it has to be passed to the constructor ofgiate diagrams and state-oriented specificationsThere
AnimatedDiagram , the class that represents the ESD undgte nymerous works combining state diagrams with Z [31],
animation (mainly its extended states, dendBSATEIn the [32] or with B [33]-[35]. In both cases, a translation into a
semantics). static formalism (Z or B) is used which thereafter constiut
Meta-typing and action semanticsThe set of meta-typing an homogeneous framework for the subsequent steps of the
rules has not to be changed. The only possible open pointi@imal development. Laleau and Polack [36] addressed the
action semanticsHVAL— rules) is the change in the collectionissue to have a two-way translation process. The RoZ ap-
policy through a change in thimatedDiagram constructor Proach [32] has been combined with state diagrams to address
call when running XCLAP (see above). the static / dynamic consistency issue. This is an approach
complementary to ours. However, our focus is more on the
dynamic part of systems (operational semantics), and we try
to be more general as far as the static part is concerned (Z
may be used but algebraic specifications as well). The main
, : . o difference between our approach and these approaches using
by the OverallAnimator class (it builds global transitions 5~ | 5 ic that we try to use the different semantics of the

from local one_s).LocaIAr_umator and OverallAnimator dynamic and the static parts without translating one in® th
are parameterised by instances of three subclasses of gh-

stract classes reifying (i) the communication mode (syn- er

chronous/asynchronous), (ii) the binding mode (binaa; State diagrams and algebraic specificationsln [37], a
and (iii) the treatment of reception variables. Differemt s conceptual framework to plug data description languagies in
mantics can be taken into account by defining new subclasgesadigm-specific ones is presented. The authors illastinair

for the three abstract classes. This principle has beeadreapproach with the Casl-Chart formalism [38] which combines
used and different communication semantics can be taken iStatecharts (following the ®@TEMATE semantics [8]) with
account in XCLAP through its parameterising window (sehe CASL algebraic specification language. A Casl-Chart
above, user interface). The last open point is the encodingspecification is made up of data types written in CASL and

Dynamic rules and communication semanticsDynamic
rules are dealt with locallyfYN — E and DYN — EO rules)
by the LocalAnimator class (it builds local transitions for
a given ESD) and globally@YN — OPEN and CC rules)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

several Statecharts that may use algebraic terms written frintegrating data types within behaviours. Specific abstrac
these data types in events, guards and actions. The semamti@lysis techniques have to be developed for such intebrate
of the combined language is given in terms of the semantic®dels [23]. Another solution is to verify concern models
of the two basic languages. Our work is therefore close tadependently. ESDs can be translated into specific topistin
Casl-Chart, but our approach is more flexible at the dynamianguages abstracting away from the data types. The daga typ
specification level since, more than the integration oflalgie can be verified using theorem provers or tools dedicatedeto th
specification into a given semantics of state diagrams, whosen static languages. This approach has been followed in
propose a reusable semantic framework for the integrationa more complex case study where Z data types have been
formal data types within dynamic formalisms. Casl-Chaelge type-checked using Z/EVES [15]. A remaining issue is the
with the full expressiveness of Statecharts as in our sdoganintegration of verification results for the separate modieis
(using configurations). XCLAP can only deal with flat ESDglobal results for the whole system.

However, tools for Casl-Chart are, as far as we know, limited

to the CASL onesi.e., parsers, type checkers and translators REFERENCES

Into hlgh order |Oglc theorem PrOVers. [1] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, Adst, and

; J. M. Wing, Larch: Languages and Tools for Formal Specificaticer.
All the works mentioned above enable one to use only a Texts and Monographs in Computer Science. Springer-Vefl883.

single data de_scription Ia_nguage. They are also less ﬂex?b!Z] E. Astesiano, H.-J. Kreowski, and B. Krieg-BriicknerisE, Algebraic
for the dynamic aspect since our approach has been defined Foundations of System SpecificatiorSpringer-Verlag, 1999.

to take into account various state diagram semantics. Wige al&] P D- Mosses and M. BidoilCASL — the Common Algebraic Specifica-
tion Language: User Manuaker. Lecture Notes in Computer Science.

have better reuse possibilities for our modules which can be gpyinger-verlag, 2004, vol. 2900.
imported in other application contexts. [4] J. M. Spivey, The Z Notation: A Reference Many&@nd ed. Prentice
Hall International Series in Computer Science, 1992.
[5] J. R. Abrial, The B-Book Cambridge University Press, 1996.
VIl. CONCLUSION [6] OMG, “UML Superstructure Specification, v2.0,” Aug. ZR0document
. . formal/05-07-04.
The separate deS|gn of concern models is a way to tack D. Harel, “Statecharts: A Visual Formalism for Complexsg&m,”

the complexity of systems and promote the reusability af¢ghe Science of Computer Programmingpl. 8, no. 3, pp. 231-274, 1987.

models. Yet, it requires the definition of formally grounded[sl D. Harel and A. Naamad, “The 1TEMATE Semantics of Statecharts,”
. L . . . ACM Transactions on Software Engineering and Methodglagy. 5,
techniques for their integration. In this article we have-pr no. 4, pp. 293-333, 1996.

posed a semantic framework for the integration of static anf] J. Lilius and I. Porres, “Formalising UML State Machinés Model
dynamic aspects through the extension of state diagrarh\s wit Checking,” in Proc. of the International Conference on the Unified

L . . Modelling Language: Beyond the Standard (UML'9%er. Lecture
formal data types. This joint use of a graphical notation otes in Computer Science, R. France and B. Rumpe, Eds.1728.

with formal languages enables one to take advantage of both Springer-Verlag, 1999, pp. 430-445.
approaches. [10] D. Latella, I. Majzik, and M. Massink, “Towards a Form@pera-
. L . tional Semantics of UML Statechart Diagrams,” Broc. of the IFIP
The proposed framework is generic in the sense that it can TC6/WGH6.1 3rd International Conference on Formal MethaatsGpen

deal with various state diagrams semantics and differaticst Object-Based Distributed Systems (FMOODS9B) Ciancarini_and
specification languages provided that the first one is ginn R. Gorrieri, Eds. Kluwer Academic Publishers, 1999, pp.-81.

. 1] M. van der Beeck, “Formalization of UML-Statechartsti Proc. of
in terms of (Some form Of) LTS and that the latter SUDPO% the 4th International Conference on the Unified Modellingngaage

the definition of term evaluation mechanisms. Genericity is (UML'01), ser. Lecture Notes in Computer Science, M. Gogolla and

achieved through abstract semantic rules and abstraceptc__ C- Kobryn, Eds., vol. 2185. Springer-Verlag, 2001, pp. 408
din their f lisi | b ined to déhl [12] J. Jurjens, “A UML Statecharts Semantics with MessBgssing,” in
used in their formalising. Rules can be constrained to déal w Proc. of the 17th ACM Symposium on Applied Computing (SAC'02

specific semanticse.g, communication rules may describe ACM, 2002, pp. 1009-1013.

different communication models between diagrams. Interdé3] C: Attiogbé, P. Poizat, and G. Salatn, “IntegratidrFormal Datatypes
. b h h | d L within State Diagrams,” ifProc. of the 6th International Conference
tion between ESDs through external descriptions (sequence on Fundamental Approaches to Software Engineering (FABE'€er.

diagrams or synchronised products) has been experimented Lecture Notes in Computer Science, M. Pezze, Ed., vol. 262dringer-
[39] and fully integrated into the framework. Verlag, 2003, pp. 341-355.

. . . 14], C. Choppy, P. Poizat, and J.-C. Royer, “The Korrigan iEimment,”
The use of an operational semantics enabled the design f[mb Journal of Universal Computer Scienceol. 7, no. 1, pp. 19-36, 2001,

implementation of xCLAP, a prototype tool for the animation special issue on Tools for System Design and Verification. _
of our integrated formalism. Its UML graphical front-end15] C. Attioghé, P. Poizat, and G. Salain, “Specificatafina Gas Station

. - . e using a Formalism Integrating Formal Datatypes withine&Siiagrams,”
and its back-end enable specmers to epr0|t speuﬁcatmdw a in Proc. of the 8th International Workshop on Formal Methods fo

animation in a user-friendly way even if by now it presents Parallel Programming: Theory and Applications (FMPPTA)0Zser.
restrictions on the structure of ESDs taken as input (flaesta, 'EEE Computer Society Press, France, 2003.

. . . . é?16] M. Broy and E.-R. OlderogTrace-Oriented Models of Concurrency
dlagrams). As in [401! the use of flattenlng algorlthms 8S 8" ger. Handbook of Process Algebra. Elsevier, 2001, ch. 21@p-195.

preliminary step is a possible solution to this limitatiocks [17] S. J. Garland and J. V. Guttag, “A Guide to LP, the Larchver,” Palo

far as validation and verification are concerned, modelsbean __ Alto, California,” Technical Report, 1991. . .
. db | ified . del checki hni élS] H. Kirchner and C. Ringeissen, “Executing CASL Equaéib Specifi-
animate ut also verified using model checking techniques, cations with the ELAN Rewrite Engine,” November 2000, cobtenT-9,

using XCLAP as a preprocessor to build a global state- http://www.daimi.au.dk/"pdm/Common/Notes/T-9/

space LTS and verifying it afterwards with dedicated toold® A. Auverlot, C. Cailler, M. Coriton, V. Gruet, and M. Ne™“xCLAP:

such as the CADP tool-box. A main drawback of intearated Animation of State Diagrams with Formal Data, Master's Regr
!) -) g Project, University of Nantes. Tool and documentation labé on G.

formalisms is the state explosion which may appear when Salaiin’'s webpage.” 2003, directed by C. Attiogbé and Gaifa

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

(38]

G. Nedéléc, M. Papillon, C. Piedsnoirs, and G. SaJdiCLAP: a Class
Library for Automata in Python, Master's Degree Project,ivérsity
of Nantes. Tool and documentation available on G. Salaielspage.”
1999, directed by M. Allemand and P. Poizat.

R. Cleaveland, T. Li, and S. Sim$he Concurrency Workbench of the
New Century (Version 1.2)Department of Computer Science, North
Carolina State University, 2000.

H. Garavel, F. Lang, and R. Mateescu, “An Overview of GAR001,”
EASST Newslettenvol. 4, pp. 13-24, 2001, also available as INRIA
Technical Report RT-0254.

P. Poizat, J.-C. Royer, and G. Salaiin, “Bounded Anslgsd Decompo-
sition for Behavioural Descriptions of Components,’Rroc. of the Int.
Conf. on Formal Methods for Open Object-Based Distributgdt&ns
(FMOODS'06) ser. Lecture Notes in Computer Science, vol. 4037.
Springer-Verlag, 2006, pp. 33-47.

R.-J. Back, D. Bjorklund, J. Lilius, L. Milovanov, ant Porres, “A
Workbench to Experiment on New Model Engineering Applizas,”

in Proc. of The Unified Modeling Language, Modeling Languages a
Applications Conference (UML'2003%¥er. Lecture Notes in Computer
Science, vol. 2863. Springer-Verlag, 2003, pp. 96-100.

N. Dershowitz, “Orderings for Term-Rewriting Systein3heoretical
Computer Sciencevol. 17, no. 3, pp. 279-301, 1982.

X. Jia, A Tutorial of ZANS DePaul University, 1998.

——, ZTC: A Type Checker for Z Notation (User's Guid&ePaul
University, 1998.

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreawand
C. Ringeissen, “An Overview of ELAN,” ininternational Workshop
on Rewriting Logic and its Applicationsser. Electronic Notes
in Theoretical Computer Science, C. Kirchner and H. Kirechne
Eds., vol. 15. Elsevier Science, 1998. [Online]. Availablettp:
Ilwww.elsevier.com/locate/entcs/volumel5.html

M. V. Cengarle and A. Knap, “A Formal Semantics for OCI4,1.in
Proc. of the 4th International Conference on the Unified Mitg Lan-
guage (UML'01) ser. Lecture Notes in Computer Science, M. Gogolla
and C. Kobryn, Eds., vol. 2185. Springer-Verlag, 2001, g8-133.
T. Clark and J. Warmer, EdsQbject Modeling with the OCL, The
Rationale behind the Object Constraint Languager. Lecture Notes
in Computer Science, vol. 2263. Springer-Verlag, 2002.

R. Bussow and M. Weber, “A Steam-Boiler Control Speeifion with
Statecharts and Z,” ifFormal Methods for Industrial Applications:
Specifying and Programming the Steam Boilser. Lecture Notes in
Computer Science, J.-R. Abrial, E. Borger, and H. Langra&ds.
Springer-Verlag, 1996, vol. 1165, pp. 109-128.

S. Dupuy, Y. Ledru, and M. Chabre-Peccoud, “An OvervietvRoZ:
A Tool for Integrating UML and Z Specifications,” ifProc. of the
Advanced Information Systems Engineering ConferenceSEEB0) ser.
Lecture Notes in Computer Science, B. Wangler and L. Bergrads.,
vol. 1789. Springer-Verlag, 2000, pp. 417-430.

E. Sekerinski and R. Zurob, “Translating StatechadsBt” in Proc.
of the 3rd International Conference on Integrated Formal tivtels
(IFM’02), ser. Lecture Notes in Computer Science, M. Butler, L. Retre
and K. Sere, Eds., vol. 2335. Springer-Verlag, 2002, pp—128.

K. Lano, K. Androutsopoulos, and P. Kan, “StructuringéRtive Sys-
tems in B AMN,” in Proc. of the 3rd IEEE International Conference on
Formal Engineering Methods (ICFEM'00) IEEE Computer Society
Press, 2000, pp. 25-34.

H. Ledang and J. Souquiéeres, “Contributions for MédglUML State-
Charts in B,” inProc. of the 3rd International Conference on Integrated
Formal Methods (IFM'02) ser. Lecture Notes in Computer Science,
M. Butler, L. Petre, and K. Sere, Eds., vol. 2335. Springeriag,
2002, pp. 109-127.

R. Laleau and F. Polack, “Coming and Going from UML to B: A
Proposal to Support Traceability in Rigorous 1S Developtjien Proc.

of the 2nd International Z and B Conference (ZB'02pr. Lecture
Notes in Computer Science, D. Bert, J. P. Bowen, M. C. Henaod,
K. Robinson, Eds., vol. 2272. Springer-Verlag, 2002, pi-&B4.

E. Astesiano, M. Cerioli, and G. Reggio, “Plugging Da@anstructs
into Paradigm-Specific Languages: Towards an ApplicatmrumL,”

14

[39] G. Salaiin and P. Poizat, “Interacting Extended Stasgiams,” inProc.

of the Int. Workshop on Semantic Foundations of Engineebegign
Languages (SFEDL'04)er. ENTCS, vol. 115, 2005, pp. 49-57.

[40] A. David, M. O. Mdller, and W. Yi, “Formal Verification oUML State-

charts with Real-Time Extensions,” Proc. of the International Confer-
ence on Fundamental Approaches to Software Engineerin@HERR)
ser. Lecture Notes in Computer Science, R.-D. Kutsche and/éher,
Eds., vol. 2306. Springer-Verlag, 2002, pp. 218-232.

Christian Attiogb € received a PhD in Computer
Science from the University of Toulouse Il in 1992.
His is currently associate professor at the Univer-
sity of Nantes, France and researcher at the LINA
Laboratory were he is the leader of the Depend-
able Components and Systems team. His research
interests include formal methods for dependable
system development. He is engaged in research that
i includes formal methods integration, multi-paradigm
specifications, the B Method, the combination of
theorem proving and model checking for multi-facet

analysis of concurrent, distributed and reactive systems.

Pascal Poizatis associate professor at the Univer-
sity of Evry and invited researcher in the ARLES
project at INRIA, France. He received a PhD in
Computer Science from the University of Nantes,
France, in 2000. His PhD topics were the integration
of static and dynamic aspects in formal description
languages, the use of symbolic transition systems
and the development of expressive modal logic
gluing mechanisms. His current research interests
include formal models and verification techniques
for component and service based systems, more

specifically issues related to coordination and adaptation

Gwen Salaunis associate researcher in the VASY
project at INRIA, France. He received a PhD in
Computer Science from the University of Nantes,
France, in 2003. His PhD topic was the study of
different integration and verification techniques for
heterogeneous formal specification languages. He
spent one year at the University of Rome "La
Sapienza”, Italy, addressing the application of formal
methods to Web Services design and verification.
At INRIA, he has been working on bridges be-
tween process calculi, and on the verification of

in Proc. of the 8th International Conference on Algebraic Melblogy asynchronous circuits and architectures. His researeineistss include issues
and Software Technology (AMAST'08r. Lecture Notes in Computer refated to formal methods and software engineering, spatitin integration,

Science, T. Rus, Ed., vol. 1816. Springer-Verlag, 2000,2713—292.
G. Reggio and L. Repetto, “Casl-Chart: A CombinationStatecharts
and of the Algebraic Specification Language CASL,”Rmoc. of the
8th International Conference on Algebraic Methodology &uaftware
Technology (AMAST’0Q)ser. Lecture Notes in Computer Science,
T. Rus, Ed., vol. 1816. Springer-Verlag, 2000, pp. 243-257.

coordination and adaptation.

