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GRAMMATICAL INFERENCE BY SPECIALIZATION AS A STATE SPLITTING STRATEGY

We exhibit connexions beteween two already known learning algorithms developped in different backgrounds. This allows to show that learning classical (or AB) categorial grammars by specialization can be identified with a "state splitting" strategy, in a search space made of extended automata. It also leads to a new interpretation of why it is possible to learn categorial grammars from semantically typed (in Montague's sense) examples.

). In particular, the "state merging" operator used in automata learning was shown to be nothing but a special case of the "unification of variables" operator used in the BP algorithm.

The previous learning algorithms all belung to the family of generalization strategies. A generalization strategy applies as follows: the initial hypothesis is a "least general grammar" representing the available examples. Then, an operator is used to generalize this hypothesis until it belongs to the target class. But in symbolic machine learning in general, and in grammatical inference in particular, there also exists a lesser known family of specialization strategies. In such strategies, the initial hypothesis is the whole target class of grammars. Each example is considered as a constraint which restricts this space, until the space is reduced to a single grammar.

Introduction

The aim of this paper is to show that the translation of CGs into RA, which has helped to better understand the family of generalization strategies, can also help to better understand the family of specialization strategies. As a matter of fact, as it was the case for generalization strategies, specialization approaches have been proposed independantly in two distinct backgrounds: to learn CGs in the one hand, and to learn regular grammars represented by finite state automata in the other hand.

To reach this aim, we first need to briefly recall in section 2. how to transform a CG into a recursive automaton. For sake of simplicity, we restrict ourselves in most of this article to unidirectional CGs, but the definitions can be extended to plain CGs. In section 3., we first present the specialization strategy described in [START_REF] Moreau | Apprentissage partiel de grammaires lexicalises[END_REF], allowing to learn rigid CGs from positive examples. We then explain how it relates to another specialization strategy, which targets regular languages represented by finite state automata [START_REF] Fredouille | Experiences sur l'inference de langage par specialisation[END_REF]. As expected, we show that Moreau's algorithm can be interpreted as a "state splitting" strategy applying on RA. Finaly, the whole picture is completed in section 4. by a new interpretation of yet another already known algorithm allowing to learn CGs from semantically typed (in Montague's sense) examples [START_REF] Dudau-Sofronie | Learning categorial grammars from semantic types[END_REF]). It appears to be an efficiently controled specialization approach.

From categorial grammars to recursive automata

Basic definitions of categorial grammars

Definition 1 (unidirectional classical categorial grammars) Let B be an enumerable set of basic categories containing the axiom S ∈ B. Cat(B) is the smallest set such that B ⊆ Cat(B) and for any A, B ∈ Cat (B), A/B ∈ Cat (B) (for bidirectional CGs, we also have B\A ∈ Cat (B)). For every finite vocabulary Σ, a unidirectional categorial grammar G is a finite relation over Σ × Cat(B). We note w, C ∈ G the assignment of the category C ∈ Cat(B) to the word w ∈ Σ. In classical (or AB) unidirectional categorial grammars (UCGs in the following) the only syntactic rule, called Forward Application and noted FA is:

∀A, B ∈ Cat(B), A/B B → A. The language of G is: L(G)={w = v 1 . . . v n ∈ Σ + | ∀i ∈ {1, . . . , n}, ∃A i ∈ Cat (B) such that v i , A i ∈ G and A 1 . . . A n → * S}
, where → * is the reflexive and transitive closure of the relation →.

Let for example, B = {S, CN, IV } (where CN stands for "common noun" and IV for "intransitive verbs"), Σ = {John, runs, a, man} and G = { John, S/IV , runs, IV , a, (S/IV )/CN , man, CN }. This over-simple UCG only recognizes the sentences "John runs" and "a man runs".

Recursive automata and their language Definition 2 (recursive automaton)

A recursive automaton R is a 5-tuple R = Q, Σ, γ, q 0 , F such that Q is the finite set of states of R, Σ is its finite vocabulary, q 0 ∈ Q its (unique) initial state and F ∈ Q its (unique) final state. γ is the transition function of R, defined from Q × (Σ ∪ Q) to 2 Q .
We restrict ourselves to recursive automata (RA in the following) with unique initial and final states, but it is not a crucial choice The only important difference between this definition and the classical definition of finite state automata is that in a RA, it is possible to label a transition either by an element of Σ or by an element of Q. To use a transition labeled by a state q ∈ Q, you need to generate a string belonging to the language L R (q) of this state q, i.e. a string corresponding to a path starting at the state q and reaching the final state F . The general definition of the set {L R (q)|q ∈ Q} is thus recursive: when it exists, it is a smallest fix-point. In fact, RA are a special case of Recursive Transition Networks [START_REF] Woods | Transition network grammars of natural language analysis[END_REF].

Definition 3 (language of a RA) We define the set of languages L R (q), for every q ∈ Q as the smallest set satisfying: (i) L R (F ) = ; (ii) if there exists a transition labeled by a ∈ Σ between q and q , i.e. q ∈ γ(q, a) then: a.L R (q ) ⊆ L R (q); (iii) if there exists a transition labeled by r ∈ Q between q and q , i.e. q ∈ γ(q, r) then: L R (r).L R (q ) ⊆ L R (q). Finaly, the language of R is:

L(R) = L R (q 0 ).

From unidirectional CGs to RA

Every UCG can be transformed into a strongly equivalent RA, i.e. a RA generating the same structural descriptions [START_REF] Tellier | Learning recursive automata from positive examples[END_REF]. Let G be a UCG over Σ × Cat(B). Build R = Q, Σ, γ, q 0 , F as follows:

• let N be the set of every subcategory of a category assigned to an element of Σ in G (a category is a subcategory of itself). Then Q = N ∪ {F } with F / ∈ N . The initial state q 0 = S, the final one is F .

• For every q ∈ Q, define a transition labeled by q between the state q and F (that is, F ∈ γ(q, q)). 

Learning by specialization

Learning rigid UCG from positive examples

A rigid CG G is a CG in which every word w ∈ Σ is assigned at most one category C. Kanazawa has proved [START_REF] Kanazawa | Learnable Classes of Categorial Grammars, The European Association for Logic, Language and Information[END_REF]) that the set of every (bidirectional) CG is learnable "in the limit" (i.e. in the sense of [START_REF] Gold | Language identification in the limit[END_REF] from positive examples, i.e. from sentences. Two distinct learning algorithms are now available for this purpose: Kanazawa's, derived from "BP" [START_REF] Buszkowski | Categorial grammars determined from linguistic data by unification[END_REF], is a generalization strategy; the one proposed in [START_REF] Moreau | Apprentissage partiel de grammaires lexicalises[END_REF]) is a specialization strategy. It is the latter, in its unidirectional version, that we will briefly recall here.

At its start, each member of the vocabulary used at least once in the available example sentences is assigned a distinct variable. For example, for the sentences {"John runs", "a man runs"}, the initial assignment is A = { John, x 1 , runs, x 2 , a, x 3 , man, x 4 }. A specifies a set of grammars: the set of CGs G such that there exists an substitution h satisfying h(A) = { w, h(C) | w, C ∈ A} ⊆ G. It is obvious that the inital set A always specifies the whole set of rigid CGs built on Σ.

Then, each sentence is parsed with the assigments in A. The only possible way to parse "John runs" with only FA is to substitute S/x 2 to x 1 . This substitution is a constraint that the variable x 1 must satisfy: x 1 is thus replaced by S/x 2 in A.

To parse "a man runs", two solutions are possible: either x 3 = (S/x 2 )/x 4 , either x 3 = S/x 5 and x 4 = x 5 /x 2 (with x 5 a new variable). A then becomes a disjunction of distinct possible sets of assignments. A combinatorial explosion can occur.

State merges and state splits

The previous algorithm can now be interpreted in terms of operations applying on RA. As we have seen, A is a disjunction of sets of assignments. Each of these sets can be transformed into a RA, as described in section 2.3.. What is the effect of a constraint on a RA ?

For UCG, the constraints always take the form: x k = x l , with x k and x l already introduced variables, or x k = X m /X n , with X m and X n any category built on the set of every variables union S. The effect of a constraint of the form x k = x l on a RA is a state merge. The effect of a constraint of the form x k = X m /X n can be decomposed in three steps: (i) X m /X n replaces x k everywhere in the RA, (ii) every subcategory of X m and X n (including themselves) becomes a new state, linked to the state F by a transition labeled by its name, and every / inside X m /X n becomes a transition, labeled by the fraction of the names of the linked states (at least, X m and X n are linked by X m /X n ), (iii) the states of the same name are merged.

This operation can be compared to the "state splitting strategy" proposed in (Fredouille and Miclet 2000) to learn finite state automata by specialization. For example, the constraint x 1 = S/x 2 has the effect of splitting the state x 1 into two new states: S and x 2 (then, as a state named x 2 already exists, the new one is merged with the previous one). But our specialization operation is more general, because of the recursive nature of the automata on which it applies. It is also better founded, because it is the formal counterpart of well-defined substitutions.

Learning from typed examples

The idea of learning CGs from typed (in Montague's sense) examples was introduced in (Dudau- [START_REF] Dudau-Sofronie | Learning categorial grammars from semantic types[END_REF]). Montague's types are derived from categories by a morphism, and associated with the vocabulary in the sentences. They can be interpreted as semantic information available in the environment or previously learned. We illustrate the learning strategy and its effects on RA on a simple example. Let: a man runs e, t , e, t , t e, t e, t (tx 1 (tx 2 e))x 3 (tx 4 e) tx 5 e tx 6 e

In this typed sentence, t and e are the usual montagovian basic types. The last line is the result of a simple pre-treatment to reorder the types in a UCG fashion and to introduce distinct variables at every place where an operator / could occur. When we transform this initial assignment into a RA, we obtain three states (plus "F"), each linked to the unique final state F, with their own name and "a", "man" and "runs" as respective labels. The learning algorithm applies as in section 3.1.: it consists in trying to parse the sentence, by defining constraints on the variables.

In a first step, the only way to apply FA between two consecutive types of the example is to define: x 3 = /. This, as already seen, provokes a state split. But the FA rule relying on the introduced operator can apply only if tx 4 e = tx 5 e, that is if x 4 = x 5 , which specifies a state merge. Not every couple of states can be merged at this step: states are also semantically typed in the sense of [START_REF] Coste | Introducing domain and typing bias in automata inference[END_REF]). The result of this step is the set: { a, (tx 1 (tx 2 e))/(tx 4 e) , man, tx 4 e , runs, tx 6 e }, corresponding with the first (simplified) RA of Figure 2.

In a second step, similar to the first one, we have: x 1 = / and x 2 = x 6 . The type t, corresponding with the category S, is now a subcategory of an assigned category, and a new state t playing the role of initial state is thus introduced. The RA obtained, on the right in Figure 2., is isomorph to the one of Figure 1., and recognizes the initial sentence. The types helped to cenverge to the correct solution quicker. 

Conclusion

In this paper, we propose a new perspective on already known techniques. First, we see that RA are able to represent the search space of a specialization learning algorithm. In fact, as A is a disjunction of sets, the search space of Moreau's algorithm can be represented by a disjunction of RA. Second, we show that the algorithm to learn CGs from typed examples proposed in [START_REF] Dudau-Sofronie | Learning categorial grammars from semantic types[END_REF]) is a specialization strategy with typed constraints. The initial semantic types associated with the elements of the vocabulary specify some kind of maximal bound on the possible splits to be performed, allowing to limit the combinatorial explosion of solutions.
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