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Abstract: - In this paper we address two problems, for which we present novel, efficient, algorithmic solutions. The 

first problem is motivated by practical situations and is concerned with the efficient estimation of the upload bandwidth 

of a machine, particularly in the context of a peer-to-peer content sharing and distribution application. The second 

problem is more of a theoretical nature and considers a constrained communication resource allocation situation. 
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1   Introduction 
Communication is a key topic in every distributed 

system. Providing communication Quality-of-Service 

(QoS) guarantees or becoming aware of current 

communication parameters are two important tasks 

nowadays. In this paper we tackle two problems: a very 

practical problem, concerned with the estimation of the 

upload bandwidth of a machine, and a theoretical 

problem, concerned with the analysis of constrained 

communication resource allocations. The rest of this 

paper is structured as follows. In Section 2 we discuss 

the problem of estimating the upload bandwidth of a 

machine and we present our proposed solution. In 

Section 3 we discuss a theoretical communication 

resource allocation problem, for which we provide novel 

algorithmic solutions and we identify new patterns. In 

Section 4 we present related work and we conclude. 

 

 

2   Upload Bandwidth Estimation 
Estimating the upload bandwidth of a machine (e.g. 

computer) is extremely useful in a wide variety of 

scenarios and applications, like, for instance, peer-to-

peer applications based on the Bittorrent tit-for-tat 

mechanism or other similar techniques (many file 

sharing, live streaming, and video on demand systems 

belonging to this class have been proposed during the 

past few years [2, 3]). In such systems, the downloaded 

data of every peer P is proportional to the data uploaded 

by peer P to the other peers. Since in order to maximize 

its overall utility, a peer wants to download data at high 

transfer rates, it must also be able to upload data to other 

peers at high speeds. However, most Internet users are 

connected to the Internet via asymmetric links, in which 

the download speed (bandwidth) is significantly higher 

than the upload speed (bandwidth). As such, the 

situation in which the upload bandwidth is fully utilized 

can easily occur. Such a situation may cause some 

problems. One of the most pregnant ones is the behavior 

of TCP flows when the upload link is congested. 

Through experiments, we determined that if a peer P 

downloads data at a rate D through a TCP connection, 

then an upload rate U of up to 2-5% of D is used by the 

TCP protocol for sending ACK messages. If the upload 

link is congested and less than U bandwidth is available, 

the download rate D cannot be maintained and the TCP 

protocol makes use of its well known AIMD mechanism, 

which reduces the download speed drastically in a short 

time (while allowing it to increase back to its former 

values only slowly). Thus, when the upload link is 

congested, the download rates of TCP connections are, 

on average, far from the optimal performance. If, 

however, we knew the (available) upload bandwidth, we 

could reserve part of it for TCP acknowledgements, thus 

maintaining the download rate at a high average value. 

Other situations in which knowing the (available) upload 

bandwidth of a machine is useful are concerned with the 

implementation of higher-level functions and behaviors, 

like content seeding, peer selection, bandwidth trading, 

and so on. In this section we will present a novel upload 

bandwidth estimation technique, which was partly 

developed in the context of the European Union FP7 

project P2P-Next. At the moment, the technique is 

applicable for estimating the upload capacity of a 

machine (i.e. its total upload bandwidth), in the absence 

of background traffic. The technique also works when 

background traffic is present, but it does not compute the 

available upload bandwidth, because the background 

communication flows can be influenced by our method. 

     An upload bandwidth estimation technique should be 

as non-intrusive as possible (i.e. it should generate little 



extra traffic). If possible, it would be desirable to make 

use of the existing traffic in order to estimate the upload 

bandwidth. Due to portability reasons, the technique 

should be implemented in user-space and should not 

make use of operating system-specific functions. 

     Our proposed technique works as follows. When a 

peer S wants to estimate its upload bandwidth, it will 

need the help of N≥1 other helper peers (P(1), ..., P(N)). 

Peer S will send M(i) packets to each peer P(i) (1≤i≤N). 

The packets sent to the same peer P(i) must have equal 

sizes (PSize(i)), but packets sent to different peers may 

have different sizes. It is also not necessary to send the 

same number of packets to every peer P(i). Peer S will 

send the M(1)+…+M(N) packets one after another, in 

some order, such that any 2 consecutive packets sent by 

S should preferably be sent to two different peers. What 

is important, however, is that the upload bandwidth of 

the peer S should be constantly used, i.e. there should be 

no delays between two consecutive packets sent by S. 

We assume a FIFO queue at the sender (as is usually the 

case), i.e. the packets are transferred on the upload link 

in the order in which they are sent by S (no matter to 

which helper peer they are sent). 

     When a peer P(i) receives the j
th
 packet, this packet 

will also contain the value TAB(i,j)=the total amount of 

bytes that peer S has sent to all the N peers up to the 

moment when the currently received packet was sent by 

S (including the size PSize(i) of the currently received 

packet). Then, let TAB(i,j-1) be the value received by 

P(i) at the previous packet (we consider the case j≥2). 

Let's assume that packet j-1 was received by P(i) at time 

T(i,j-1) and packet j was received at time T(i,j). Peer P(i) 

will compute an estimation U(i,j-1)=(TAB(i,j)-TAB(i,j-

1))/(T(i,j)-T(i,j-1)) of the upload bandwidth of peer S. 

Note that some of the packets sent by peer S may be lost 

and the j
th
 packet received by peer P(i) may not 

necessarily be the j
th
 packet sent by peer S to P(i). The 

packets may also be received out of order. When a peer 

P(i) receives a packet, it first checks if the information 

contained in the packet regarding the total number of 

bytes sent so far by peer S is larger than that of the 

previously received packet (unless it is the first received 

packet) - if the information value is not larger, then the 

currently received packet is discarded. The information 

regarding the total number of bytes sent by peer S acts as 

a sequence number for the packets, because it increases 

with time. After sending the last packet to every peer 

P(i), peer S notifies every peer P(i) that the test is 

complete (the notification should preferably not be lost, 

although it is not important if a small fraction of peers do 

not receive the notification). Every peer P(i) has a time 

limit for waiting for new packets. When this limit is 

exceeded, it will assume that the test is complete (i.e. it 

will behave as if it had received the test completion 

notification). At the end, every peer P(i) has E(i) 

estimations: U(i,1), ..., U(i,E(i)). We will remove from 

this set the outliers (the values which are too high or too 

low) and compute an average Uavg(i) of the remaining 

values. Peer P(i) will then send Uavg(i) to peer S. For 

the outliers removal we considered the following 

technique. We compute the median value Umed of the 

estimations. Then, we remove all the estimations which 

are smaller than p1·Umed or larger than p2·Umed (for some 

carefully chosen values 0≤p1≤1 and p2≥1). Afterwards, 

we perform an iterated removal of borderline values. As 

long as we have more than K estimations left (e.g. K=3) 

we perform the following action: (1) we compute 

Um=the average of the values of the remaining 

estimations and sgm=the standard deviation; (2) we 

remove all the estimations whose values do not belong to 

the interval [Um-q·sgm, Um+q·sgm] (for a carefully 

chosen value of q; e.g. q=1); (3) if no values were 

removed in step (2) then we break the loop. In the end, 

peer S will receive the estimations Uavg(i) from (some 

of) the peers P(i). If at least a fraction PA (e.g. PA=0.6) 

of these values are “close” (and at least PB·N values 

were received; 0<PB≤1), then we remove the other 

values and compute the average of the remaining values: 

this will be the estimated upload bandwidth. We define 

closeness as follows. We compute the median Umd of the 

received values and then we compute the number of 

received values which lie in the interval [p3·Umd, p4·Umd] 

(where 0≤p3≤1 and p4≥1). If we do not have at least a 

fraction PA of “close” values, then it is possible for the 

estimated values to be too low, because the upload 

bandwidth estimations of peer P(i) are also influenced 

by the available bandwidth AB(S,P(i)) of the path 

between S and P(i) (in fact, theoretically, we have T(i,j)-

T(i,j-1)=max{(TAB(i,j)-TAB(i,j-1))/SUB, PSize(i) / AB(S, 

P(i))}, where SUB is the upload bandwidth of peer S). 

This issue can be solved by sending larger packets or by 

using more helper peers: this way, two consecutive 

packets will reach a peer P(i) after a larger time interval, 

overcoming the influence of AB(S,P(i)). Fig. 1 depicts 

the proposed technique, in which the same number of 

equally sized packets is sent to each of the N=4 helper 

peers in a round-robin fashion. 

     Let’s have a closer look now at the way the upload 

bandwidth estimation technique works. If N=1, then 

P(1) actually estimates a value B which is upper 

bounded by the smaller of the following two values: the 

(available) bandwidth of the path between S and P(1) 

and the upload bandwidth of S. In fact, it is possible that 

the available bandwidth from peer S to any of the helper 

peers is smaller than the upload bandwidth of peer S. 

However, by sending packets to multiple peers (e.g. in a 

round-robin fashion), peer S does not congest the paths 

to the helper peers. Moreover, a helper peer P(i) also 

receives the total number of bytes sent by peer S so far 

during the test. The difference between the total number 



of bytes transmitted with two consecutive packets 

received by P(i) is larger than the number of bytes that 

peer S could have sent directly to P(i) in the same time 

period (when N>1). A requirement for the technique to 

work correctly is that the sum of the bandwidths of the 

paths from S to every helper peer should be at least as 

large as the upload bandwidth of peer S (that is why 

larger packets or more helper peers are useful). If, 

however, the paths from S to multiple helper peers share 

common bottleneck links (other than the upload link of 

peer S), then the technique may still incorrectly estimate 

(e.g. underestimate) the upload bandwidth. It is, thus, 

desirable for the helper peers to be geographically 

distributed, so that the paths from S to the helper peers 

may be as disjoint as possible. Let's notice that we can 

use the method presented above for estimating the 

upload bandwidth in a continuous manner. Peer S 

repeatedly sends packets to each of the peers P(i). After 

receiving the j
th
 packet (j≥MinP(i)), peer P(i) can 

provide an estimation Uavg(i,j) using the previous 

MinP(i) estimations (thus, we use a sliding window kind 

of approach). MinP(i) is the minimum number of packets 

peer P(i) needs to receive in order to consider the 

estimations to be statistically relevant. 

     If the upload bandwidth estimation technique is used 

in order to help the decision making process of an 

application App, then the technique can make use of the 

information regarding the upload bandwidth consumed 

by App (this information can be made available, as the 

technique is integrated into App). We will consider that 

all the upload traffic generated by App is sent to a 

"virtual helper peer" P(N+1), which will not send any 

estimation back (although, in reality, the upload traffic 

of App may have multiple destinations). Note that in 

order for the presented technique to produce reliable 

results, peer S must never be idle in terms of upload 

traffic (i.e. it should always upload something): this is 

because when a peer P(i) measures the time difference 

between two consecutive packets that it receives, it 

makes the implicit assumption that peer S has been 

uploading data during all this time. Thus, as long as the 

upload buffer(s) of peer S are not empty, peer S does not 

have to send a new packet to any of its helper peers; it 

just has to increase the counter of the total number of 

bytes sent by S. However, since upload bandwidth 

estimations are received by peer S only from the peers 

P(i), peer S cannot postpone indefinitely the sending of a 

packet to a peer P(i) (even if the application App 

generates enough traffic). Thus, the previously described 

technique can be modified as follows. Peer S will only 

send the next packet to the next peer P(i) (e.g. in the 

round-robin order) if the amount of upload buffer space 

used by App is below a certain threshold or the duration 

between the moment when the previous message was 

sent to a helper peer P(*) and the current time moment 

exceeds a given time limit. Note that when we also use 

existing App traffic, we can reduce the number of 

packets after which a peer P(i) computes an estimation, 

thus reducing the overall extra traffic generated by this 

method. The number of packets after which an 

estimation is computed could even be determined by 

each helper peer separately, based on the values 

(TAB(i,j)-TAB(i,j-1)) and (T(i,j)-T(i,j-1)) (e.g. the larger 

these values are, the fewer packets are required before 

obtaining an accurate estimation). 

 
Fig. 1. Upload bandwidth estimation in progress. 
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Fig. 2. Estimated upload bandwidth (Bps) as a function of 
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Fig. 3. The product between the error of the estimation and the 

total generated traffic for each of the 6 tests. 
     We implemented the proposed technique in the 

Python programming language and we validated it as 

follows. The source peer S was located behind a NAT (in 

Bucharest), running Windows Vista; we used N=3 

helper peers, all running Linux: P(1) was located at the 

Technical University of Delft (Netherlands), P(2) was 

located at the University of Craiova (Romania), and P(3) 

was located at the Politehnica University of Bucharest 

(Romania). We sent M=20 packets to every helper peer, 

in a round-robin manner; we used p1=0.2, p2=5, p3=0.8, 

p4=1.2, PA=PB=0.6 and PSize(1)=…=PSize(N). We ran 

6 tests, in which we only changed the packet sizes: 1024, 

2048, 4096, 8192, 16384, and 32768 bytes. The source 

peer opened one TCP connection to every helper peer, 

for sending the corresponding packets (we designed our 

own protocol in order to mark the beginning and the end 

of a packet). The estimation computed by each helper 

peer is presented in Fig. 2. Later, we also performed the 

same test, by sending UDP packets (instead of TCP). 

The results were similar. We also computed the upload 



bandwidth of the computer by using the SpeedTest 

website (http://www.speedtest.net), obtaining a value of 

approximately 232.500 Bps. We noticed that the results 

of our test were closer to 240.000-245.000 Bps, which 

was, in fact, the appropriate range for the upload 

bandwidth of the tested computer. Then, we wanted to 

decide which packet size is most suitable for estimating 

the upload bandwidth for the tested computer. We 

considered that the correct upload bandwidth was 

240.000 Bps and we computed the error between the 

estimated value and the correct value (i.e. the absolute 

difference between them) for each of the 6 tests. Then, 

we multiplied the error by the total generated traffic and 

we plotted the results in Fig. 3. Some good packet sizes 

are between 2048 and 16384 bytes; of course, the lower 

the packet size, the better. We also performed some tests 

which showed us that the technique is not currently 

efficient for estimating the available upload bandwidth. 

We used the same scenario, in which we started two 

background applications on the tested computer, 

uploading data at 70 KBps and, respectively, 80 KBps 

overall. The applications were custom made by us. They 

uploaded random data to a given destination, using PT≥1 

parallel TCP streams each and sending 4 KB packets. 

We first set PT=10 and then we ran the same upload 

bandwidth estimation tests, except the one with packet 

size of 1024 bytes. The overall transfer speed of each 

application decreased by at most 3 KBps during the tests 

and the test results were close to 90 KBps (i.e. the 

available upload bandwidth was estimated rather 

accurately). However, when we used PT=1, the transfer 

speeds of the two background applications dropped 

significantly, depending on the packet size. For packet 

sizes of 32768 bytes used during the test, the transfer 

speeds of the applications dropped down to 20-30 KBps 

each. Thus, the TCP flows of the background 

applications can be severely influenced by our proposed 

technique. If we could somehow instruct the operating 

system to handle the test packets as low priority packets 

(i.e. send the test packets only when no other packets are 

waiting to be sent, or after they were ignored for more 

than a certain time duration), then we might be able to 

use only the actual available upload bandwidth. 

However, it seems that most operating systems consider 

that every flow has the same priority and packets are sent 

in a first-come first-served manner. A possible way of 

estimating the available upload bandwidth AUB is the 

following. We can introduce an upload speed limit R in 

our technique – thus, peer S will not necessarily upload 

data continuously. Let U(R) be the upload bandwidth 

estimation obtained for a limit R. If U(R)≥cr·R, then 

R≤AUB; if U(R)<cr·R then R>AUB (where 0<cr≤1, but 

close to 1). Thus, we could use a search technique (e.g. 

exponential and binary search) for finding the largest 

limit R for which U(R)≥cr·R (i.e. R≤AUB). In the end we 

mention that our technique also works when the tested 

machine has multiple physical upload links. In this case 

we must find a suitable set of helper peers, such that 

when performing the test, all the upload links are 

saturated (enough packets are sent through each link), or 

we could try to test every upload link separately. 

     We also considered a different approach, for 

estimating the available upload bandwidth, based on 

measuring ping times to a set of carefully chosen 

landmarks from the Internet. The source peer S uploads 

data at (at most) a (total) given rate R to a subset of 

helper peers, for a duration T, during which it measures 

the ping times to the set of landmarks. We expect that, as 

the transfer rate R gets closer to the available upload 

bandwidth AUB, a larger fraction of pings exceed their 

time limit. Then, we could increase (or decrease) the rate 

R with small increments, until the ping times satisfy 

some quality conditions (e.g. a percentage of them are 

below some threshold), thus converging towards AUB. 

We present below the results of a first set of 

experiments. Peer S was located in Bucharest, did not 

have a public IP address, was running Windows Vista 

and its upload capacity was approx. 60 KBps. We chose 

only one helper peer P, located at the Politehnica 

University of Bucharest (UPB), running Linux and 

having a public IP address. We ran the test scenario 5 

times. The maximum transfer rate was limited at: 25 

KBps, 35 KBps, 40 KBps, 45 KBps and unbounded. 

Every time, the total duration of the upload test was 10 

minutes. We measured ping times from the peer S to a 

machine located at the UPB site. Without the test traffic, 

the ping times ranged from 15 to 60 milliseconds. For 

the 25 KBps upper bound, most of the ping times were 

under 100 msec, with only 3 occasional ping time spikes 

(two of which were ping timeouts). For the 35 KBps 

limit, most of the ping times were under 400 msec and 

no ping timeouts occurred. For the 40 KBps, several 

pings timed out in the beginning of the test; however, 

except for this, the ping times were quite constant, not 

exceeding 500 msec. For the 45 KBps, all the ping times 

during the actual data transfer exceeded our 20 second 

time limit. In the unbounded case, the average upload 

rate was 55 KBps and the ping times showed a steady 

increase towards our 20 second time out limit, followed 

by many ping timeouts. From this set of experiments, we 

draw the following preliminary conclusions. During an 

upload bandwidth test without variable background 

traffic, the ping times present quite a regular behavior. 

We mention that this behavior is also the result of the 

technique used to limit the transfer rate. We considered 

several techniques, some of which led to irregular ping 

time behavior, and we settled on one where the actual 

upload rate is constantly corrected (both by introducing 

time delays and by sending at most a number X of bytes 

at a time, where X depends on the current upload rate 



and on the total number of bytes transmitted so far). As 

expected, the average ping time and the median ping 

time increase with the upper bound of the upload rate. 

The implemented mechanism is intrusive, because it 

needs to send a significant amount of extra traffic in the 

network. However, we believe that it can be used in a 

useful non-intrusive manner, as follows. In order to 

estimate AUB accurately using this technique, we might 

need to send data at the same rate as the available 

bandwidth. We consider this to be too intrusive and we 

propose the following use in applications App which 

want to use this technique in order to increase their total 

upload speed. We can estimate if AUB is larger than a 

small value R (by sending data at the rate R and checking 

if the ping times satisfy the quality conditions). Let’s 

assume that the current upload rate of App is U. If 

AUB≥R, we will use the technique again only after the 

upload transfer rate of App becomes U+R. Thus, we only 

generate as much extra traffic as App can use. As future 

work, we intend to find a correlation between a 

statistical measure SM of the ping times and the upload 

rate U. By using the technique for several small values 

{U1, ..., Ur} of the upload rates and computing the 

corresponding statistical measures {SM1, ..., SMr}, we 

hope to find a correlation U=f(SM). Then, by setting an 

upper limit SMmax on the statistical measure, we could 

compute the largest upload rate Umax that we can use. 

 

 

3   Allocating Communication Resources 

to Customers with Access Restrictions 
We consider the following problem. We have N 

communication providers (numbered from 0 to N-1), 

each provider i (0≤i≤N-1) offering S(i) communication 

resource units. We also have N communication resource 

consumers (also numbered from 0 to N-1), each 

consumer i (0≤i≤N-1) being able to consume at most P(i) 

resource units. Due to physical (and other) constraints, 

the resources from a provider i (0≤i≤N-1) can be 

allocated only to the consumers i and ((i+1) mod N). 

Let’s define ralloc(i,j) the amount of resources allocated 

from provider i to consumer j (j=i or ((i+1) mod N)). 

These values must be integers and must satisfy the 

constraints that ralloc(i,i)+ralloc(i,((i+1) mod N))≤S(i) 

and ralloc(i,i)+ralloc(((i-1+N) mod N), i)≤P(i) (for 

every i, 0≤i≤N-1). We want to allocate as many resource 

units as possible to the consumers, i.e. we want the sum 

of the ralloc(*,*) values to be maximum. Actually, we 

will study a more general function. Let’s define the 

variable x=ralloc(0,0) (0≤x≤XMAX=min{S(0), P(0)}). 

Let rsum(x) be the maximum sum of the allocated 

resource units, if ralloc(0,0)=x. We want to be able to 

compute the values of this function for every possible 

value of x. We will start with an O(N·XMAX) time 

algorithm. For every possible value of x, we will be able 

to compute rsum(x) in O(N) time. We denote this 

algorithm, returning rsum(x), by Algo(x). We will 

maintain the values Palloc(i)=the number of resource 

units allocated to consumer i and Salloc(i)=the number 

of resource units allocated from the provider i. Initially, 

we will have Salloc(i)=Palloc(i)=0 (1≤i≤N-1) and 

Salloc(0)=Palloc(0)=x. We will traverse the resource 

providers in order, from 0 to N-1. Let’s assume that we 

reached provider i. If i>0 we will try to allocate as many 

resources as possible from the provider i to the consumer 

i. We compute q=min{S(i)-Salloc(i), P(i)-Palloc(i)} and 

allocate q resource units from provider i to consumer i: 

we set Salloc(i)=Salloc(i)+q and Palloc(i)=Palloc(i)+q. 

Afterwards, no matter what the value of i is (i.e. for i=0, 

too), we will try to allocate as many resources from 

provider i to the consumer i’=((i+1) mod N). We 

compute q’=min{S(i)-Salloc(i), P(i’)-Palloc(i’)} and 

then we allocate q’ resource units from provider i to the 

consumer i’: we set Salloc(i)=Salloc(i)+q’ and 

Palloc(i’)=Palloc(i’)+q’. This O(N) greedy algorithm 

allocates the maximum amount of resource units, given 

that x resource units were allocated from provider 0 to 

the consumer 0. rsum(x) is then equal to the sum of the 

Salloc(*) (or Palloc(*)) values. The motivation behind 

this fact is simple. Once ralloc(0,0) is fixed, the 

remaining resources from provider 0 are only useful to 

the consumer (0+1) mod N and, thus, they will be 

allocated to this consumer. Then, if consumer (0+1) mod 

N can consume any more resources, then it doesn’t make 

sense not to allocate those resources from the provider 

(0+1) mod N, as these resources would be used 

efficiently. The arguments extend to the other providers 

and consumers, in increasing order of their index. 

     In order to improve the time complexity, we will 

introduce the following functions: f(i,x)=the number of 

resource units allocated from provider i to the consumer 

i, given that x resources were allocated from provider 0 

to consumer 0, and g((i+1) mod N, x)=the number of 

resources units allocated from provider i to the consumer 

((i+1) mod N), given that x resources were allocated 

from provider 0 to consumer 0. We will compute these 

functions one at a time and we will see that they have a 

very specific structure. We have f(0,x)=x (0≤x≤XMAX). 

g((0+1) mod N, x)=min{S(0)-f(0,x), P(1 mod N)}. 

f(1,x)=min{P(1)-g(1,x), S(1)}. In general, we have 

f(i,x)=min{P(i)-g(i,x), S(i)} (1≤i≤N-1) and g((i+1) mod 

N, x)=min{S(i)-f(i,x), P((i+1) mod N} (0≤i≤N-2). g(0,x) 

is defined as min{S(N-1)-f(N-1,x), P(0)-x}. These 

functions can be computed iteratively. We can compute 

g(1,*) from f(0,*), then f(1,*) from g(1,*), then g(2,*) 

from f(1,*), then f(2,*) from g(2,*), and so on (g(i,*) 

from f((i-1+N) mod N,*) and then f(i,*) from g(i,*)). The 

important property of these functions is their structure. 

The values of the f(i,x) functions are as follows: for 



0≤x≤A(i,x), f(i,x)=V1(i,x). For A(i,x)≤x≤B(i,x), f(i,x) is 

increasing with slope 1, i.e. f(i,x)=V1(i,x)+(x-A(i,x)). For 

B(i,x)≤x≤XMAX, f(i,x)=V2(i,x), where V2(i,x)=V1(i,x)+ 

B(i,x)-A(i,x). Thus, every function f(i,x) consists of a part 

where its values are constant, then an increasing part 

(with slope 1) and then another part where its values are 

constant again. Any of these parts can be void. The g(i,x) 

(1≤i≤N-1) functions are similar, except that the values on 

the middle parts are decreasing, i.e.: their values are 

constant on an interval [0,C(i,x)], then decreasing (with 

slope -1) on an interval [C(i,x), D(i,x)] and then constant 

again. g(0,x) is a bit special, in the sense that, at the end, 

it may contain an extra part where its values are 

decreasing again (with slope -1): thus, its general 

structure is an interval of constant values, followed by an 

interval of decreasing values (with slope -1), followed by 

another interval of constant values and, possibly, 

followed by another interval of decreasing values (also 

with slope -1). Thus, every function f(i,x) and g(i,x) has a 

O(1) breakpoints. We will sort the coordinates of these 

breakpoints (including x=0 and x=XMAX) in increasing 

order and we will generate events for each breakpoint. 

Each event will have a value: 0, +1 or -1 (depending on 

whether the corresponding function is constant, 

increasing or decreasing starting from that breakpoint) 

and an x-coordinate. We initialize a variable Sum as the 

sum of the values f(i,0) and g(i,0) (0≤i≤N-1), i.e. 

rsum(0)=Sum, and we set sf(0≤i≤N-1)=sg(0≤i≤N-1)=0 

(sf(i) and sg(j) will be the current slopes of the functions 

f(i,x) and g(j,x)). We also maintain a variable Dif, which 

is initially 0. Whenever we encounter a new event 

corresponding to a function f(i,x) or g(i,x), we first 

compute the values of the function rsum corresponding 

to the values x between E’+1 and E, where E’ is the 

coordinate of the previous event (or 0). For every value 

E’+1≤x≤E, rsum(x) will be equal to Sum+Dif·(x-E’). 

Afterwards, we set Sum=Sum+Dif·(E-E’) and then we 

subtract from Dif the previous slope of the function (sf(i) 

for f(i), or sg(i) for g(i)) and add to Dif the value 

associated to the event (then we set sf(i) or sg(i) to the 

value associated to the event, depending on the function 

to which the event corresponds). This way, we can 

compute all the values of the function rsum(*) in 

O(N·log(N)+XMAX) time. However, we can do even 

better. A more careful analysis of the structure of the 

functions f(*,x) and g(*,x) leads to the observation that 

the function rsum(x) has the following structure: it is 

increasing (with slope 1) from x=0 up to x=U, then its 

values are constant up to x=V (V≥U) and then its values 

are decreasing (with slope -1) up to x=XMAX. Thus, let’s 

assume that y1=Algo(0) and y2=Algo(XMAX) are the 

values computed by the algorithm Algo for x=0 and 

x=XMAX. Based on these values, we will compute 

x1=((y2-y1+XMAX) div 2) and yx1=Algo(x1). If (y2-

y1+XMAX) is an odd number then we set x2=x1+1 and 

yx2=Algo(x2); otherwise (if it is even) we set x2=x1 and 

yx2=yx1. Then, we compute d1=y1+x1-yx1 and 

d2=y2+(XMAX-x2)-yx2. The function rsum(x) is 

increasing (with slope 1) from x=0 up to x=x1-d1 (its 

values are rsum(x)=y1+x). On the interval [x=x1-

d1+1,x=x2+d2] the function rsum(x) is constant (we have 

rsum(x)=yx1). Finally, rsum(x) is decreasing (with slope 

-1) from x=x2+d2+1 up to x=XMAX (its values are 

rsum(x)=y2+(XMAX-x)). The time complexity of this 

approach is O(N+XMAX). 

 

 

4   Related Work and Conclusions 
Many end-to-end bandwidth estimation tools and 

techniques have been developed during the past few 

years, like packet pair/train dispersion, variable packet 

size, or self-loading periodic streams (see [1] for a short 

survey on this, and [5]). However, none of them can be 

used for estimating the upload bandwidth of a machine. 

Nevertheless, we were inspired by these methods when 

we developed the upload bandwidth estimation 

technique presented in this paper. Communication 

resource allocation problems have been studied in many 

papers (e.g. [4]), including those presenting video on 

demand or live streaming applications and models [2, 3]. 

     In this paper we analyzed two problems. One of them 

is motivated by practical requirements and aims at 

estimating accurately the upload capacity (total upload 

bandwidth) of a machine. The other one is interesting 

from a theoretical point of view and considers the 

constrained allocation of communication resources to 

customers. We presented novel algorithmic solutions for 

both problems. As future work, we will attempt to 

develop a method for accurately and efficiently 

estimating the available upload bandwidth of a machine. 
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