
HAL Id: hal-00470165
https://hal.science/hal-00470165

Submitted on 4 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Upload Bandwidth Estimation and
Communication Resource Allocation Techniques

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Efficient Upload Bandwidth Estimation and Communication
Resource Allocation Techniques. Recent Advances in Signals & Systems [Proceedings of the 9th
WSEAS International Conference on Multimedia, Internet & Video Technologies (MIV)] (ISBN:
978-960-474-114-4 / ISSN: 1790-5109), Sep 2009, Budapest, Hungary. pp.186-191. �hal-00470165�

https://hal.science/hal-00470165
https://hal.archives-ouvertes.fr

Efficient Upload Bandwidth Estimation and Communication Resource

Allocation Techniques

MUGUREL IONUT ANDREICA, NICOLAE TAPUS

Computer Science and Engineering Department

Politehnica University of Bucharest

Splaiul Independentei 313, sector 6, Bucharest

ROMANIA

{mugurel.andreica, nicolae.tapus}@cs.pub.ro https://mail.cs.pub.ro/~mugurel.andreica

Abstract: - In this paper we address two problems, for which we present novel, efficient, algorithmic solutions. The

first problem is motivated by practical situations and is concerned with the efficient estimation of the upload bandwidth

of a machine, particularly in the context of a peer-to-peer content sharing and distribution application. The second

problem is more of a theoretical nature and considers a constrained communication resource allocation situation.

Key-Words: - Upload bandwidth estimation, Communication, Resource allocation, Peer-to-peer, Cooperative method.

1 Introduction
Communication is a key topic in every distributed

system. Providing communication Quality-of-Service

(QoS) guarantees or becoming aware of current

communication parameters are two important tasks

nowadays. In this paper we tackle two problems: a very

practical problem, concerned with the estimation of the

upload bandwidth of a machine, and a theoretical

problem, concerned with the analysis of constrained

communication resource allocations. The rest of this

paper is structured as follows. In Section 2 we discuss

the problem of estimating the upload bandwidth of a

machine and we present our proposed solution. In

Section 3 we discuss a theoretical communication

resource allocation problem, for which we provide novel

algorithmic solutions and we identify new patterns. In

Section 4 we present related work and we conclude.

2 Upload Bandwidth Estimation
Estimating the upload bandwidth of a machine (e.g.

computer) is extremely useful in a wide variety of

scenarios and applications, like, for instance, peer-to-

peer applications based on the Bittorrent tit-for-tat

mechanism or other similar techniques (many file

sharing, live streaming, and video on demand systems

belonging to this class have been proposed during the

past few years [2, 3]). In such systems, the downloaded

data of every peer P is proportional to the data uploaded

by peer P to the other peers. Since in order to maximize

its overall utility, a peer wants to download data at high

transfer rates, it must also be able to upload data to other

peers at high speeds. However, most Internet users are

connected to the Internet via asymmetric links, in which

the download speed (bandwidth) is significantly higher

than the upload speed (bandwidth). As such, the

situation in which the upload bandwidth is fully utilized

can easily occur. Such a situation may cause some

problems. One of the most pregnant ones is the behavior

of TCP flows when the upload link is congested.

Through experiments, we determined that if a peer P

downloads data at a rate D through a TCP connection,

then an upload rate U of up to 2-5% of D is used by the

TCP protocol for sending ACK messages. If the upload

link is congested and less than U bandwidth is available,

the download rate D cannot be maintained and the TCP

protocol makes use of its well known AIMD mechanism,

which reduces the download speed drastically in a short

time (while allowing it to increase back to its former

values only slowly). Thus, when the upload link is

congested, the download rates of TCP connections are,

on average, far from the optimal performance. If,

however, we knew the (available) upload bandwidth, we

could reserve part of it for TCP acknowledgements, thus

maintaining the download rate at a high average value.

Other situations in which knowing the (available) upload

bandwidth of a machine is useful are concerned with the

implementation of higher-level functions and behaviors,

like content seeding, peer selection, bandwidth trading,

and so on. In this section we will present a novel upload

bandwidth estimation technique, which was partly

developed in the context of the European Union FP7

project P2P-Next. At the moment, the technique is

applicable for estimating the upload capacity of a

machine (i.e. its total upload bandwidth), in the absence

of background traffic. The technique also works when

background traffic is present, but it does not compute the

available upload bandwidth, because the background

communication flows can be influenced by our method.

 An upload bandwidth estimation technique should be

as non-intrusive as possible (i.e. it should generate little

extra traffic). If possible, it would be desirable to make

use of the existing traffic in order to estimate the upload

bandwidth. Due to portability reasons, the technique

should be implemented in user-space and should not

make use of operating system-specific functions.

 Our proposed technique works as follows. When a

peer S wants to estimate its upload bandwidth, it will

need the help of N≥1 other helper peers (P(1), ..., P(N)).

Peer S will send M(i) packets to each peer P(i) (1≤i≤N).

The packets sent to the same peer P(i) must have equal

sizes (PSize(i)), but packets sent to different peers may

have different sizes. It is also not necessary to send the

same number of packets to every peer P(i). Peer S will

send the M(1)+…+M(N) packets one after another, in

some order, such that any 2 consecutive packets sent by

S should preferably be sent to two different peers. What

is important, however, is that the upload bandwidth of

the peer S should be constantly used, i.e. there should be

no delays between two consecutive packets sent by S.

We assume a FIFO queue at the sender (as is usually the

case), i.e. the packets are transferred on the upload link

in the order in which they are sent by S (no matter to

which helper peer they are sent).

 When a peer P(i) receives the j
th
 packet, this packet

will also contain the value TAB(i,j)=the total amount of

bytes that peer S has sent to all the N peers up to the

moment when the currently received packet was sent by

S (including the size PSize(i) of the currently received

packet). Then, let TAB(i,j-1) be the value received by

P(i) at the previous packet (we consider the case j≥2).

Let's assume that packet j-1 was received by P(i) at time

T(i,j-1) and packet j was received at time T(i,j). Peer P(i)

will compute an estimation U(i,j-1)=(TAB(i,j)-TAB(i,j-

1))/(T(i,j)-T(i,j-1)) of the upload bandwidth of peer S.

Note that some of the packets sent by peer S may be lost

and the j
th
 packet received by peer P(i) may not

necessarily be the j
th
 packet sent by peer S to P(i). The

packets may also be received out of order. When a peer

P(i) receives a packet, it first checks if the information

contained in the packet regarding the total number of

bytes sent so far by peer S is larger than that of the

previously received packet (unless it is the first received

packet) - if the information value is not larger, then the

currently received packet is discarded. The information

regarding the total number of bytes sent by peer S acts as

a sequence number for the packets, because it increases

with time. After sending the last packet to every peer

P(i), peer S notifies every peer P(i) that the test is

complete (the notification should preferably not be lost,

although it is not important if a small fraction of peers do

not receive the notification). Every peer P(i) has a time

limit for waiting for new packets. When this limit is

exceeded, it will assume that the test is complete (i.e. it

will behave as if it had received the test completion

notification). At the end, every peer P(i) has E(i)

estimations: U(i,1), ..., U(i,E(i)). We will remove from

this set the outliers (the values which are too high or too

low) and compute an average Uavg(i) of the remaining

values. Peer P(i) will then send Uavg(i) to peer S. For

the outliers removal we considered the following

technique. We compute the median value Umed of the

estimations. Then, we remove all the estimations which

are smaller than p1·Umed or larger than p2·Umed (for some

carefully chosen values 0≤p1≤1 and p2≥1). Afterwards,

we perform an iterated removal of borderline values. As

long as we have more than K estimations left (e.g. K=3)

we perform the following action: (1) we compute

Um=the average of the values of the remaining

estimations and sgm=the standard deviation; (2) we

remove all the estimations whose values do not belong to

the interval [Um-q·sgm, Um+q·sgm] (for a carefully

chosen value of q; e.g. q=1); (3) if no values were

removed in step (2) then we break the loop. In the end,

peer S will receive the estimations Uavg(i) from (some

of) the peers P(i). If at least a fraction PA (e.g. PA=0.6)

of these values are “close” (and at least PB·N values

were received; 0<PB≤1), then we remove the other

values and compute the average of the remaining values:

this will be the estimated upload bandwidth. We define

closeness as follows. We compute the median Umd of the

received values and then we compute the number of

received values which lie in the interval [p3·Umd, p4·Umd]

(where 0≤p3≤1 and p4≥1). If we do not have at least a

fraction PA of “close” values, then it is possible for the

estimated values to be too low, because the upload

bandwidth estimations of peer P(i) are also influenced

by the available bandwidth AB(S,P(i)) of the path

between S and P(i) (in fact, theoretically, we have T(i,j)-

T(i,j-1)=max{(TAB(i,j)-TAB(i,j-1))/SUB, PSize(i) / AB(S,

P(i))}, where SUB is the upload bandwidth of peer S).

This issue can be solved by sending larger packets or by

using more helper peers: this way, two consecutive

packets will reach a peer P(i) after a larger time interval,

overcoming the influence of AB(S,P(i)). Fig. 1 depicts

the proposed technique, in which the same number of

equally sized packets is sent to each of the N=4 helper

peers in a round-robin fashion.

 Let’s have a closer look now at the way the upload

bandwidth estimation technique works. If N=1, then

P(1) actually estimates a value B which is upper

bounded by the smaller of the following two values: the

(available) bandwidth of the path between S and P(1)

and the upload bandwidth of S. In fact, it is possible that

the available bandwidth from peer S to any of the helper

peers is smaller than the upload bandwidth of peer S.

However, by sending packets to multiple peers (e.g. in a

round-robin fashion), peer S does not congest the paths

to the helper peers. Moreover, a helper peer P(i) also

receives the total number of bytes sent by peer S so far

during the test. The difference between the total number

of bytes transmitted with two consecutive packets

received by P(i) is larger than the number of bytes that

peer S could have sent directly to P(i) in the same time

period (when N>1). A requirement for the technique to

work correctly is that the sum of the bandwidths of the

paths from S to every helper peer should be at least as

large as the upload bandwidth of peer S (that is why

larger packets or more helper peers are useful). If,

however, the paths from S to multiple helper peers share

common bottleneck links (other than the upload link of

peer S), then the technique may still incorrectly estimate

(e.g. underestimate) the upload bandwidth. It is, thus,

desirable for the helper peers to be geographically

distributed, so that the paths from S to the helper peers

may be as disjoint as possible. Let's notice that we can

use the method presented above for estimating the

upload bandwidth in a continuous manner. Peer S

repeatedly sends packets to each of the peers P(i). After

receiving the j
th
 packet (j≥MinP(i)), peer P(i) can

provide an estimation Uavg(i,j) using the previous

MinP(i) estimations (thus, we use a sliding window kind

of approach). MinP(i) is the minimum number of packets

peer P(i) needs to receive in order to consider the

estimations to be statistically relevant.

 If the upload bandwidth estimation technique is used

in order to help the decision making process of an

application App, then the technique can make use of the

information regarding the upload bandwidth consumed

by App (this information can be made available, as the

technique is integrated into App). We will consider that

all the upload traffic generated by App is sent to a

"virtual helper peer" P(N+1), which will not send any

estimation back (although, in reality, the upload traffic

of App may have multiple destinations). Note that in

order for the presented technique to produce reliable

results, peer S must never be idle in terms of upload

traffic (i.e. it should always upload something): this is

because when a peer P(i) measures the time difference

between two consecutive packets that it receives, it

makes the implicit assumption that peer S has been

uploading data during all this time. Thus, as long as the

upload buffer(s) of peer S are not empty, peer S does not

have to send a new packet to any of its helper peers; it

just has to increase the counter of the total number of

bytes sent by S. However, since upload bandwidth

estimations are received by peer S only from the peers

P(i), peer S cannot postpone indefinitely the sending of a

packet to a peer P(i) (even if the application App

generates enough traffic). Thus, the previously described

technique can be modified as follows. Peer S will only

send the next packet to the next peer P(i) (e.g. in the

round-robin order) if the amount of upload buffer space

used by App is below a certain threshold or the duration

between the moment when the previous message was

sent to a helper peer P(*) and the current time moment

exceeds a given time limit. Note that when we also use

existing App traffic, we can reduce the number of

packets after which a peer P(i) computes an estimation,

thus reducing the overall extra traffic generated by this

method. The number of packets after which an

estimation is computed could even be determined by

each helper peer separately, based on the values

(TAB(i,j)-TAB(i,j-1)) and (T(i,j)-T(i,j-1)) (e.g. the larger

these values are, the fewer packets are required before

obtaining an accurate estimation).

Fig. 1. Upload bandwidth estimation in progress.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6

P(1)

P(2)

P(3)

Fig. 2. Estimated upload bandwidth (Bps) as a function of

packet size (2
10

-2
15

 bytes).

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

1 2 3 4 5 6

Fig. 3. The product between the error of the estimation and the

total generated traffic for each of the 6 tests.
 We implemented the proposed technique in the

Python programming language and we validated it as

follows. The source peer S was located behind a NAT (in

Bucharest), running Windows Vista; we used N=3

helper peers, all running Linux: P(1) was located at the

Technical University of Delft (Netherlands), P(2) was

located at the University of Craiova (Romania), and P(3)

was located at the Politehnica University of Bucharest

(Romania). We sent M=20 packets to every helper peer,

in a round-robin manner; we used p1=0.2, p2=5, p3=0.8,

p4=1.2, PA=PB=0.6 and PSize(1)=…=PSize(N). We ran

6 tests, in which we only changed the packet sizes: 1024,

2048, 4096, 8192, 16384, and 32768 bytes. The source

peer opened one TCP connection to every helper peer,

for sending the corresponding packets (we designed our

own protocol in order to mark the beginning and the end

of a packet). The estimation computed by each helper

peer is presented in Fig. 2. Later, we also performed the

same test, by sending UDP packets (instead of TCP).

The results were similar. We also computed the upload

bandwidth of the computer by using the SpeedTest

website (http://www.speedtest.net), obtaining a value of

approximately 232.500 Bps. We noticed that the results

of our test were closer to 240.000-245.000 Bps, which

was, in fact, the appropriate range for the upload

bandwidth of the tested computer. Then, we wanted to

decide which packet size is most suitable for estimating

the upload bandwidth for the tested computer. We

considered that the correct upload bandwidth was

240.000 Bps and we computed the error between the

estimated value and the correct value (i.e. the absolute

difference between them) for each of the 6 tests. Then,

we multiplied the error by the total generated traffic and

we plotted the results in Fig. 3. Some good packet sizes

are between 2048 and 16384 bytes; of course, the lower

the packet size, the better. We also performed some tests

which showed us that the technique is not currently

efficient for estimating the available upload bandwidth.

We used the same scenario, in which we started two

background applications on the tested computer,

uploading data at 70 KBps and, respectively, 80 KBps

overall. The applications were custom made by us. They

uploaded random data to a given destination, using PT≥1

parallel TCP streams each and sending 4 KB packets.

We first set PT=10 and then we ran the same upload

bandwidth estimation tests, except the one with packet

size of 1024 bytes. The overall transfer speed of each

application decreased by at most 3 KBps during the tests

and the test results were close to 90 KBps (i.e. the

available upload bandwidth was estimated rather

accurately). However, when we used PT=1, the transfer

speeds of the two background applications dropped

significantly, depending on the packet size. For packet

sizes of 32768 bytes used during the test, the transfer

speeds of the applications dropped down to 20-30 KBps

each. Thus, the TCP flows of the background

applications can be severely influenced by our proposed

technique. If we could somehow instruct the operating

system to handle the test packets as low priority packets

(i.e. send the test packets only when no other packets are

waiting to be sent, or after they were ignored for more

than a certain time duration), then we might be able to

use only the actual available upload bandwidth.

However, it seems that most operating systems consider

that every flow has the same priority and packets are sent

in a first-come first-served manner. A possible way of

estimating the available upload bandwidth AUB is the

following. We can introduce an upload speed limit R in

our technique – thus, peer S will not necessarily upload

data continuously. Let U(R) be the upload bandwidth

estimation obtained for a limit R. If U(R)≥cr·R, then

R≤AUB; if U(R)<cr·R then R>AUB (where 0<cr≤1, but

close to 1). Thus, we could use a search technique (e.g.

exponential and binary search) for finding the largest

limit R for which U(R)≥cr·R (i.e. R≤AUB). In the end we

mention that our technique also works when the tested

machine has multiple physical upload links. In this case

we must find a suitable set of helper peers, such that

when performing the test, all the upload links are

saturated (enough packets are sent through each link), or

we could try to test every upload link separately.

 We also considered a different approach, for

estimating the available upload bandwidth, based on

measuring ping times to a set of carefully chosen

landmarks from the Internet. The source peer S uploads

data at (at most) a (total) given rate R to a subset of

helper peers, for a duration T, during which it measures

the ping times to the set of landmarks. We expect that, as

the transfer rate R gets closer to the available upload

bandwidth AUB, a larger fraction of pings exceed their

time limit. Then, we could increase (or decrease) the rate

R with small increments, until the ping times satisfy

some quality conditions (e.g. a percentage of them are

below some threshold), thus converging towards AUB.

We present below the results of a first set of

experiments. Peer S was located in Bucharest, did not

have a public IP address, was running Windows Vista

and its upload capacity was approx. 60 KBps. We chose

only one helper peer P, located at the Politehnica

University of Bucharest (UPB), running Linux and

having a public IP address. We ran the test scenario 5

times. The maximum transfer rate was limited at: 25

KBps, 35 KBps, 40 KBps, 45 KBps and unbounded.

Every time, the total duration of the upload test was 10

minutes. We measured ping times from the peer S to a

machine located at the UPB site. Without the test traffic,

the ping times ranged from 15 to 60 milliseconds. For

the 25 KBps upper bound, most of the ping times were

under 100 msec, with only 3 occasional ping time spikes

(two of which were ping timeouts). For the 35 KBps

limit, most of the ping times were under 400 msec and

no ping timeouts occurred. For the 40 KBps, several

pings timed out in the beginning of the test; however,

except for this, the ping times were quite constant, not

exceeding 500 msec. For the 45 KBps, all the ping times

during the actual data transfer exceeded our 20 second

time limit. In the unbounded case, the average upload

rate was 55 KBps and the ping times showed a steady

increase towards our 20 second time out limit, followed

by many ping timeouts. From this set of experiments, we

draw the following preliminary conclusions. During an

upload bandwidth test without variable background

traffic, the ping times present quite a regular behavior.

We mention that this behavior is also the result of the

technique used to limit the transfer rate. We considered

several techniques, some of which led to irregular ping

time behavior, and we settled on one where the actual

upload rate is constantly corrected (both by introducing

time delays and by sending at most a number X of bytes

at a time, where X depends on the current upload rate

and on the total number of bytes transmitted so far). As

expected, the average ping time and the median ping

time increase with the upper bound of the upload rate.

The implemented mechanism is intrusive, because it

needs to send a significant amount of extra traffic in the

network. However, we believe that it can be used in a

useful non-intrusive manner, as follows. In order to

estimate AUB accurately using this technique, we might

need to send data at the same rate as the available

bandwidth. We consider this to be too intrusive and we

propose the following use in applications App which

want to use this technique in order to increase their total

upload speed. We can estimate if AUB is larger than a

small value R (by sending data at the rate R and checking

if the ping times satisfy the quality conditions). Let’s

assume that the current upload rate of App is U. If

AUB≥R, we will use the technique again only after the

upload transfer rate of App becomes U+R. Thus, we only

generate as much extra traffic as App can use. As future

work, we intend to find a correlation between a

statistical measure SM of the ping times and the upload

rate U. By using the technique for several small values

{U1, ..., Ur} of the upload rates and computing the

corresponding statistical measures {SM1, ..., SMr}, we

hope to find a correlation U=f(SM). Then, by setting an

upper limit SMmax on the statistical measure, we could

compute the largest upload rate Umax that we can use.

3 Allocating Communication Resources

to Customers with Access Restrictions
We consider the following problem. We have N

communication providers (numbered from 0 to N-1),

each provider i (0≤i≤N-1) offering S(i) communication

resource units. We also have N communication resource

consumers (also numbered from 0 to N-1), each

consumer i (0≤i≤N-1) being able to consume at most P(i)

resource units. Due to physical (and other) constraints,

the resources from a provider i (0≤i≤N-1) can be

allocated only to the consumers i and ((i+1) mod N).

Let’s define ralloc(i,j) the amount of resources allocated

from provider i to consumer j (j=i or ((i+1) mod N)).

These values must be integers and must satisfy the

constraints that ralloc(i,i)+ralloc(i,((i+1) mod N))≤S(i)

and ralloc(i,i)+ralloc(((i-1+N) mod N), i)≤P(i) (for

every i, 0≤i≤N-1). We want to allocate as many resource

units as possible to the consumers, i.e. we want the sum

of the ralloc(*,*) values to be maximum. Actually, we

will study a more general function. Let’s define the

variable x=ralloc(0,0) (0≤x≤XMAX=min{S(0), P(0)}).

Let rsum(x) be the maximum sum of the allocated

resource units, if ralloc(0,0)=x. We want to be able to

compute the values of this function for every possible

value of x. We will start with an O(N·XMAX) time

algorithm. For every possible value of x, we will be able

to compute rsum(x) in O(N) time. We denote this

algorithm, returning rsum(x), by Algo(x). We will

maintain the values Palloc(i)=the number of resource

units allocated to consumer i and Salloc(i)=the number

of resource units allocated from the provider i. Initially,

we will have Salloc(i)=Palloc(i)=0 (1≤i≤N-1) and

Salloc(0)=Palloc(0)=x. We will traverse the resource

providers in order, from 0 to N-1. Let’s assume that we

reached provider i. If i>0 we will try to allocate as many

resources as possible from the provider i to the consumer

i. We compute q=min{S(i)-Salloc(i), P(i)-Palloc(i)} and

allocate q resource units from provider i to consumer i:

we set Salloc(i)=Salloc(i)+q and Palloc(i)=Palloc(i)+q.

Afterwards, no matter what the value of i is (i.e. for i=0,

too), we will try to allocate as many resources from

provider i to the consumer i’=((i+1) mod N). We

compute q’=min{S(i)-Salloc(i), P(i’)-Palloc(i’)} and

then we allocate q’ resource units from provider i to the

consumer i’: we set Salloc(i)=Salloc(i)+q’ and

Palloc(i’)=Palloc(i’)+q’. This O(N) greedy algorithm

allocates the maximum amount of resource units, given

that x resource units were allocated from provider 0 to

the consumer 0. rsum(x) is then equal to the sum of the

Salloc(*) (or Palloc(*)) values. The motivation behind

this fact is simple. Once ralloc(0,0) is fixed, the

remaining resources from provider 0 are only useful to

the consumer (0+1) mod N and, thus, they will be

allocated to this consumer. Then, if consumer (0+1) mod

N can consume any more resources, then it doesn’t make

sense not to allocate those resources from the provider

(0+1) mod N, as these resources would be used

efficiently. The arguments extend to the other providers

and consumers, in increasing order of their index.

 In order to improve the time complexity, we will

introduce the following functions: f(i,x)=the number of

resource units allocated from provider i to the consumer

i, given that x resources were allocated from provider 0

to consumer 0, and g((i+1) mod N, x)=the number of

resources units allocated from provider i to the consumer

((i+1) mod N), given that x resources were allocated

from provider 0 to consumer 0. We will compute these

functions one at a time and we will see that they have a

very specific structure. We have f(0,x)=x (0≤x≤XMAX).

g((0+1) mod N, x)=min{S(0)-f(0,x), P(1 mod N)}.

f(1,x)=min{P(1)-g(1,x), S(1)}. In general, we have

f(i,x)=min{P(i)-g(i,x), S(i)} (1≤i≤N-1) and g((i+1) mod

N, x)=min{S(i)-f(i,x), P((i+1) mod N} (0≤i≤N-2). g(0,x)

is defined as min{S(N-1)-f(N-1,x), P(0)-x}. These

functions can be computed iteratively. We can compute

g(1,*) from f(0,*), then f(1,*) from g(1,*), then g(2,*)

from f(1,*), then f(2,*) from g(2,*), and so on (g(i,*)

from f((i-1+N) mod N,*) and then f(i,*) from g(i,*)). The

important property of these functions is their structure.

The values of the f(i,x) functions are as follows: for

0≤x≤A(i,x), f(i,x)=V1(i,x). For A(i,x)≤x≤B(i,x), f(i,x) is

increasing with slope 1, i.e. f(i,x)=V1(i,x)+(x-A(i,x)). For

B(i,x)≤x≤XMAX, f(i,x)=V2(i,x), where V2(i,x)=V1(i,x)+

B(i,x)-A(i,x). Thus, every function f(i,x) consists of a part

where its values are constant, then an increasing part

(with slope 1) and then another part where its values are

constant again. Any of these parts can be void. The g(i,x)

(1≤i≤N-1) functions are similar, except that the values on

the middle parts are decreasing, i.e.: their values are

constant on an interval [0,C(i,x)], then decreasing (with

slope -1) on an interval [C(i,x), D(i,x)] and then constant

again. g(0,x) is a bit special, in the sense that, at the end,

it may contain an extra part where its values are

decreasing again (with slope -1): thus, its general

structure is an interval of constant values, followed by an

interval of decreasing values (with slope -1), followed by

another interval of constant values and, possibly,

followed by another interval of decreasing values (also

with slope -1). Thus, every function f(i,x) and g(i,x) has a

O(1) breakpoints. We will sort the coordinates of these

breakpoints (including x=0 and x=XMAX) in increasing

order and we will generate events for each breakpoint.

Each event will have a value: 0, +1 or -1 (depending on

whether the corresponding function is constant,

increasing or decreasing starting from that breakpoint)

and an x-coordinate. We initialize a variable Sum as the

sum of the values f(i,0) and g(i,0) (0≤i≤N-1), i.e.

rsum(0)=Sum, and we set sf(0≤i≤N-1)=sg(0≤i≤N-1)=0

(sf(i) and sg(j) will be the current slopes of the functions

f(i,x) and g(j,x)). We also maintain a variable Dif, which

is initially 0. Whenever we encounter a new event

corresponding to a function f(i,x) or g(i,x), we first

compute the values of the function rsum corresponding

to the values x between E’+1 and E, where E’ is the

coordinate of the previous event (or 0). For every value

E’+1≤x≤E, rsum(x) will be equal to Sum+Dif·(x-E’).

Afterwards, we set Sum=Sum+Dif·(E-E’) and then we

subtract from Dif the previous slope of the function (sf(i)

for f(i), or sg(i) for g(i)) and add to Dif the value

associated to the event (then we set sf(i) or sg(i) to the

value associated to the event, depending on the function

to which the event corresponds). This way, we can

compute all the values of the function rsum(*) in

O(N·log(N)+XMAX) time. However, we can do even

better. A more careful analysis of the structure of the

functions f(*,x) and g(*,x) leads to the observation that

the function rsum(x) has the following structure: it is

increasing (with slope 1) from x=0 up to x=U, then its

values are constant up to x=V (V≥U) and then its values

are decreasing (with slope -1) up to x=XMAX. Thus, let’s

assume that y1=Algo(0) and y2=Algo(XMAX) are the

values computed by the algorithm Algo for x=0 and

x=XMAX. Based on these values, we will compute

x1=((y2-y1+XMAX) div 2) and yx1=Algo(x1). If (y2-

y1+XMAX) is an odd number then we set x2=x1+1 and

yx2=Algo(x2); otherwise (if it is even) we set x2=x1 and

yx2=yx1. Then, we compute d1=y1+x1-yx1 and

d2=y2+(XMAX-x2)-yx2. The function rsum(x) is

increasing (with slope 1) from x=0 up to x=x1-d1 (its

values are rsum(x)=y1+x). On the interval [x=x1-

d1+1,x=x2+d2] the function rsum(x) is constant (we have

rsum(x)=yx1). Finally, rsum(x) is decreasing (with slope

-1) from x=x2+d2+1 up to x=XMAX (its values are

rsum(x)=y2+(XMAX-x)). The time complexity of this

approach is O(N+XMAX).

4 Related Work and Conclusions
Many end-to-end bandwidth estimation tools and

techniques have been developed during the past few

years, like packet pair/train dispersion, variable packet

size, or self-loading periodic streams (see [1] for a short

survey on this, and [5]). However, none of them can be

used for estimating the upload bandwidth of a machine.

Nevertheless, we were inspired by these methods when

we developed the upload bandwidth estimation

technique presented in this paper. Communication

resource allocation problems have been studied in many

papers (e.g. [4]), including those presenting video on

demand or live streaming applications and models [2, 3].

 In this paper we analyzed two problems. One of them

is motivated by practical requirements and aims at

estimating accurately the upload capacity (total upload

bandwidth) of a machine. The other one is interesting

from a theoretical point of view and considers the

constrained allocation of communication resources to

customers. We presented novel algorithmic solutions for

both problems. As future work, we will attempt to

develop a method for accurately and efficiently

estimating the available upload bandwidth of a machine.

References:

[1] R. Prasad, C. Dovrolis, M. Murray, and K. C. Caffy,

Bandwidth Estimation: Metrics, Measurement

Techniques, and Tools, IEEE Network, Vol. 17, No.

6, 2003, pp. 27-35.

[2] S. Tewari, and L. Kleinrock, Analytical Model for

BitTorrent-Based Live Video Streaming,

Proceedings of the IEEE Consumer Communications

and Networking Conference, 2007, pp. 976-980.

[3] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S.

Pai, Improving VoD Server Efficiency with

Bittorrent, Proceedings of the 15
th
 International

Conference on Multimedia, 2007, pp. 117-126.

[4] J. Huang, Z. Han, M. Chiang, and H. V. Poor,

Auction-Based Resource Allocation for Cooperative

Communications, IEEE Journal on Selected Areas in

Comm., Vol. 26, No. 7, 2008, pp. 1226-1237.

[5] K. Lai, and M. Baker, Measuring Bandwidth, Proc.

of the IEEE INFOCOM, 1999, pp. 235-245.

