
HAL Id: hal-00470163
https://hal.science/hal-00470163v1

Submitted on 4 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Paradigm for Document Transformation
Arnaud Blouin, Olivier Beaudoux

To cite this version:
Arnaud Blouin, Olivier Beaudoux. Mapping Paradigm for Document Transformation. Do-
cEng - ACM symposium on Document engineering, Aug 2007, Winnipeg, Canada. pp.219–221,
�10.1145/1284420.1284473�. �hal-00470163�

https://hal.science/hal-00470163v1
https://hal.archives-ouvertes.fr

Mapping Paradigm for Document Transformation

Arnaud Blouin and Olivier Beaudoux
ESEO - GRI

Angers,
France

{arnaud.blouin, obeaudoux}@eseo.fr

ABSTRACT

Since the advent of XML, the ability to transform documents using

transformation languages such as XSLT has become an important

challenge. However, writing a transformation script (e.g. an XSLT

stylesheet) is still an expert task. This paper proposes a simpler

way to transform documents by defining a relation between two

schemas expressed through our mapping language. And then by us-

ing a transformation process that applies the mapping instances of

the schemas. Thus, a user only needs to focus on the mapping with-

out having any knowledge about how a transformation language

and its processor work. This paper outlines our mapping approach

and language, and illustrates them with an example.

Categories and Subject Descriptors

I.7 [Document and text Processing]: Document Preparation—

Markup languages

General Terms

Design, languages

Keywords

XML, document transformation, mapping, XSLT

1. INTRODUCTION
XML [9] is now a standard for storing or organizing data. In

order to make these XML data interoperable, other standards like

XSLT have been defined; XSLT [10] is a programming language

specifically designed for XML transformation being, thereby, a medium

of communication between applications. XSLT is now a widely

used transformation language in spite of some limitations: we can

hardly know if two XSLT stylesheets give the same result [7] or

modify incrementally a presentation [8, 1]. Moreover, the process

of mapping and the process of transformation are not clearly sepa-

rated making the development of an XSLT program (usually called

an XSLT stylesheet) more difficult than it should be.

Mapping brings interoperability between heterogeneous data and

applications by establishing correspondences between two schemas.

Author version.

Whereas a transformation process concerns the transformation of

two instances of these schemas [4], as depicted in figure 1.

Source

Schema

Target

Schema

Mapping

Source

Document

Target

Document

Instance of Instance of

Processor

(XSLT, ATL, eXAcT,...)

Mapping to Transformation

Transformation

Figure 1: From Mapping to Transformation

In a transformation program such as an XSLT stylesheet, the sep-

aration between these two processes is not apparent. Our work aims

to propose a mapping language that allows a user to write a map-

ping between two schemas without needing the level of program-

ming skills needed for XSLT stylesheets since a mapping is a speci-

fication disjoined from the (often complex) transformation process.

Research has already been carried out to avoid the direct use of

transformation languages such as XSLT. Pietriga et al. present in

[5] a visual approach to XML transformation. This point of view

is very attractive since it reduces user’s cognitive load. However,

it has the drawback to create complex graphics for complex trans-

formations. In the mapping domain, Clio [6] is a tool that allows

a user to graphically define a mapping between relational schemas;

its mapping language has the main drawback to not allow opera-

tions between associations of the two concerned schemas.

The first part of this paper introduces our proposed approach and

is following by a simple example illustrating it.

2. PROPOSED APPROACH
The mapping concept is already used in the database domain to

facilitate the integration and the management of databases [2] [6].

However, there is no simple schema-mapping language allowing

the definition of mappings between UML class diagrams. Our ap-

proach aims to define a mapping language which would be easily

integrated with UML editors. By specifying only the process of

mapping between two schemas, we are independent of the trans-

formation processor that could be an XSLT, ATL [3], or eXAcT

processor. It allows an XSLT, ATL or eXAcT non-expert to eas-

ily establish a mapping between two schemas, that will produce a

transformation between an instance of each schema.

A schema is a set of classes and associations between classes. A

class is defined by its unique name within the schema and includes

a set of attributes. An association Bs from a class A to a class B

represents the set of the B’s instances involved in the relation; we

note |Bs| the multiplicity of Bs. A schema can be defined in differ-

ent formats such as XML-Schema, or XMI. Given two schemas E

and F , a mapping is an application f from E to F . A mapping

can also be defined as a set M = {f1, f2, . . . , fn} where each fi
is a sub-mapping defining a part of the correspondence between the

schemas E and F . Consequently, a sub-mapping is an application

f ′ from E′ ⊂ E to F ′ ⊂ F . In our framework, our mapping lan-

guage describes a mapping from one schema to another defined by

a set a sub-mappings.

Syntactically, our mapping language is composed of a set of sub-

mappings contained in a main mapping that defines the schemas to

use. Each sub-mapping defines relations between the implicated

components via instructions.

1..n 0..1Bs Ds

C

value

A

value

DB

Class2Class

Asso2Asso

Asso2Class

a1 c

a2

b1 d1

Source Target

d2

Classes2Class

Figure 2: Different kinds of mappings

Sub-mappings can be classified in categories. Four of them are

represented in figure 2. The two most important are the associ-

ation to association (Asso2Asso) sub-mapping and the class to

class (Class2Class) sub-mapping. The goals of an Asso2Asso sub-

mapping are twofold: it defines both the multiplicity of the output

association and the position of each object. For example, given

two associations Es and Fs with |Es| = 0..n and |Fs| = 0..n , a

sub-mapping from Es to Fs could be as follows:

1: Es -> Fs

2: {

3: |Es| -> |Fs|

4: Es@i -> Fs@i

5: }

The first line specifies that the sub-mapping concerns the relation

from Es to Fs. Line 3 defines the multiplicity of the relation Fs

(|Fs|) as being linked to the multiplicity of Es. The next line es-

tablishes the order of each object related to Fs: for each object

related to Es at the position i ∈ [0, n], an object exists within Fs

at the same position i. More complex operations can be carried out

during this step; for example we can define the order of the objects

related to Fs by inverting these related to Es:

invert(Es)@i -> Fs@i

invert(Es) returns the list of the objects related to Es in the reverse

order.

A class2class sub-mapping defines the relation between the at-

tributes of the two given classes. For example, given two classes G

and H, where g1 and g2 are two attributes of G and h1 and h2 two

of H. A possible sub-mapping from G to H could be:

1: G -> H

2: {

3: min(g1,g2) -> h1

4: max(g1,g2) -> h2

5: }

min(g1,g2) -> h1 means that the minimum between g1 and g2 is

linked to h1.

Mixes of these two kinds of sub-mappings can be used to cre-

ate more complex sub-mappings; for example we can define a n-

classes to class or an association to class. Complex features are

notably conditions that can be used into sub-mapping instructions.

The following code sample defines the syntax of conditions.

1: Is -> J, K

2: {

3: |Is|=0:

4: 0 -> J.value

5: |Is|>0:

6: |Is| -> K.value

4: }

Given an association Is and two classes J and K, and a mapping

from Is to J and K. J and K are linked to Is respectively when the

multiplicity of Is is, equal to 0, and greater than 0.

Our mapping language is not specified in XML. XML is a stan-

dard to store data but we believe it is not a good programming lan-

guage notably because of its verbosity. The syntax and the grammar

of a programming language must be defined according to its target

domain (here the mapping domain) in order to be efficient and easy

to use. However, we have planned to specify an XML version of

our mapping language in order to be more easily transformed as is

the case with the Relax NG and Relax NG Compact languages. For

example, the ”mapping to transformation” step described in figure

1, may be an XSLT stylesheet that transforms the XML version of a

mapping into the document that will be used by the transformation

processor.

3. EXAMPLE
Figure 3 presents a simple case of mapping from a library to a

table; a library is defined by its name and contains documents de-

scribed by their authors, title and year. A table contains lines where

each line corresponds to a document and a header that defines the

title of each column. Each line and the header have the same num-

ber of cells.

D2L

L2T

L2H
ld ld

ldld

1

0..n

1..c

documents

lines

cellsL cellsH

Library

name

ld

Table

name

Document

authors
title
year

HeaderLine

Cell

value

1..c

0..n

Ds2Ls

Figure 3: Library2Table Mapping

The following code corresponds to a possible mapping of figure

3. The main mapping Library2Table defines that the mapping is

from the schema library.xsd to the schema table.xsd. This mapping

is composed of four sub-mappings; the sub-mapping L2T simply

links the name of the library to the name of the table. By ”links” we

means for each Library a Table must exist. The sub-mapping L2H

links the library to the header of the table: the multiplicity of the

association cellsHeader takes the value 3 and the content of each

cell is defined. We can notice that the Library of the sub-mapping

L2H is never used in the instructions. A sub-mapping does not

necessary use the source classes and associations in its instructions

since their main utility is to be linked to the target classes and asso-

ciations of the sub-mapping. Line 10, Header.cellH means that we

can access to the associations related to a class from this class. The

sub-mapping Ds2Ls is a Asso2Asso sub-mapping; as explained in

the previous section, this kind of mapping defines the multiplicity

of the association lines and defines the order of each object related

to lines. The last sub-mapping D2L is a Class2Class sub-mapping

that establishes a connection between a Document and a Line: the

multiplicity of the association cellsLine takes the value 3 and each

of these three cells is linked to an attribute of Document, i.e. au-

thors, title and year.

1: Library2Table : library.xsd -> table.xsd

2: {

3: L2T : Library -> Table

4: {

5: name -> name

6: }

7: L2H : Library -> Header

8: {

9: 3 -> |Header.cellsHeader|

10: "Authors" -> Header.cellsH@1.value

11: "Title" -> Header.cellsH@2.value

12: "Year" -> Header.cellsH@3.value

13: }

14: Ds2Ls : documents -> lines

15: {

16: |documents| -> |lines|

17: documents@i -> lines@i

18: }

19: D2L : Document -> Line

20: {

21: 3 -> |Line.cellsLine|

22: Document.authors -> Line.cellsL@1.value

23: Document.title -> Line.cellsL@2.value

24: Document.year -> Line.cellsL@3.value

25: }

26: }

Thanks to the distinct separation of each sub-mapping, we think

that our mapping language has the advantage to be more readable

than an XSLT or an eXAcT program. Moreover, it could be graph-

ically depicted within UML class diagrams and seems easier to im-

plement and to understand for a beginner than an XSLT stylesheet.

But above all, our mapping process can be used behind different

kinds of transformation processes such as XSLT, ATL or eXAcT,

which is mainly due to the declarative approach of the language.

Since a mapping operates at the schema level, transformed doc-

uments are always valid, which is not necessarily the case with

transformation process.

4. CONCLUSION
In this paper, we propose the use of mapping in the context of

document transformation. This approach facilitates the creation

of a transformation by establishing the mapping between the con-

cerned schemas and by being technologically independent from a

transformation language and its processor. The next step of our

work will be the implementation of our mapping language, the con-

nection with a transformation process with the support of incremen-

tal transformation and user interaction. Tests on more realistic and

complex cases will be done too.

5. REFERENCES
[1] O. Beaudoux. XML active transformation (eXAcT):

transforming documents within interactive systems. In

DocEng ’05: ACM symposium on Document engineering,

pages 146–148. ACM Press, 2005.

[2] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision

for management of complex models. SIGMOD Rec.,

29(4):55–63, 2000.

[3] F. Jouault and I. Kurtev. Transforming models with ATL. In

Satellite Events at the MoDELS 2005 Conference, pages

128–138. Springer, 2006.

[4] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y.

Halevy. Representing and reasoning about mappings

between domain models. In Eighteenth national conference

on Artificial intelligence, pages 80–86. American

Association for Artificial Intelligence, 2002.

[5] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: a visual

approach to XML transformations. In DocEng ’01: Proc. of

the 2001 ACM Symposium on Document engineering, pages

1–10, 2001.

[6] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and

R. Fagin. Translating web data. In Proceedings of VLDB

2002, pages 598–609, 2002.

[7] A. Trombetta and D. Montesi. Equivalences and

optimizations in an expressive XSLT fragment. In IDEAS

’04: Proc. of the International Database Engineering and

Applications Symposium, pages 171–180. IEEE Computer

Society, 2004.

[8] L. Villard and N. Layaïda. An incremental XSLT

transformation processor for XML document manipulation.

In WWW ’02: Proc. of the 11th international conference on

World Wide Web, pages 474–485, New York, NY, USA,

2002. ACM Press.

[9] W3C. Extensible markup language 1.1 specification.

Technical report, W3C, 2006.

[10] W3C. XSL transformations (XSLT) version 2.0

recommendation. Technical report, W3C, 2007.

