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Interacting fermions are ubiquitous in nature and understanding their ther-
modynamics is an important problem. We measure the equationf state of a
two-component ultracold Fermi gas for a wide range of interation strengths at
low temperature. A detailed comparison with theories incluling Monte-Carlo
calculations and the Lee-Huang-Yang corrections for low-dnsity bosonic and
fermionic superfluids is presented. The low-temperature phse diagram of the
spin imbalanced gas reveals Fermi liquid behavior of the parally polarized
normal phase for all but the weakest interactions. Our resuls provide a bench-
mark for many-body theories and are relevant to other fermianic systems such

as the crust of neutron stars.



Recently, ultracold atomic Fermi gases have become a tadflaite to study strongly cor-
related quantum systems because of their high contratigtpurity and tunability of interac-
tions (1). In the zero-range limit, interactions in a degeneratariraystem with two spin-
components are completely characterized by a single paeaiyé ~a, wherea is the s-wave
scattering length anklx = (672n)/? is the Fermi momentumn(is the density per spin state).
In cold atom gases the value |af can be tuned over several orders of magnitude using a Fesh-
bach resonance, this offers an opportunity to entirelyaehe so-called BCS-BEC crossover,
i.e. the smooth transition from Bardeen-Cooper-Schrieffer@Bsuperfluidity at small negative
values ofa to molecular Bose-Einstein Condensation (BEC) at smaitipes/alues ofa (1, 2).
Between these two well-understood limiting situatiandiverges, leading to strong quantum
correlations. The description of this system is a challdagmany-body theories, as testified by
the large amount of work in recent yeat$.(The physics of the BEC-BCS crossover is relevant
for very different systems, ranging from neutron stars avyenuclei and superconductors.

In the grand-canonical ensemble and at zero temperatunendional analysis shows that
the Equation of State (EoS) of a two-component Fermi gaatingl the pressur® to the chem-

ical potentials:; andu, of the spin components can be written as

h
P(Mlaﬂ%a) = Po(ﬂl)h <51 = maﬁ = %) ) (1)

wherePy(y11) = 1/1572(2m/h?)3/23? is the pressure of a single-component ideal Fermi gas,
m is the atom mass aridis the Planck constant divided Byt. The indices 1 and 2 refer to the
majority and minority spin components, respectively. Ftbedimensionless functidno,, n),

it is possible to deduce all the thermodynamic propertigh®fjas, such as the compressibility,
magnetization or the existence of phase transitions; theoéihis paper is to measufés,, n)

for a range of interaction9{) and spin imbalanceg)) and discuss its physical conten. is

the grand-canonical analog of the dimensionless intenagtarametet /kra.



In-situabsorption images of harmonically trapped gases are pkatig suited to investigate
their EoS as first demonstrated at MI3) @nd ENS §). In the particular case of the grand-
canonical ensemble, a simple formula relates the localspres® at a distance: from the
center of the trap along theaxis to the doubly-integrated density profilgsandn, (5):

mw?

P (2), n2(2), a) = ——= (M(2) +M2(2)) . @)

Here we define the local chemical potentig)éz) = uf — smw?z?, wherey! is the chemical
potential of the componeritat the bottom of the trap, assuming local density approxonat
w, andw, are the transverse and axial angular frequencies of a cidally symmetric trap
respectively, andi;(z) = [ n;(z,y, z)dzdy, is the atomic density:; of the component,
doubly integrated over the transvernsandy directions. In a single experimental run at a given
magnetic field, two images are recorded, providingz) andmn,(z) (see Fig.S4 in)); the
z-dependence of the chemical potentials then enables theumegaent ofP along a curve in
the (61, n) plane 6). This method was validated id)for the particular case of the unitary limit
a = oo. Deducing the functionh from the doubly integrated profiles further requires a meci
calibration ofw, and the knowledge of the central chemical potentidlés).

Our experimental setup is presented Th (We prepared an imbalanced mixturebef in
the two lowest internal spin states, at the magnetic fieBadfG (wherea = oc), and trapped
it in a hybrid magnetic-optical dipole trap. We then perfedrevaporative cooling by lowering
the optical trap power, while the magnetic field was rampethéofinal desired value fai.
The cloud typically contained’ = 2 to 10 x 10* atoms in each spin state at a temperature of
0.03(3) T, justifying ourT" = 0 assumption®). The final trap frequencies akg /27 ~ 30 Hz,
w,/2m ~ 1 kHz. Below a critical spin population imbalance, our atosgenple consists of a
fully-paired superfluid occupying the center of the traprsunded by a normal mixed phase

and an outer rim of an ideal gas of majority component atams, 8.



For a given magnetic field, 10 to 20 images are taken, leadieg averaging to a low-
noise EoS along one line in thié,, n) plane. Measurements at different magnetic fields chosen
between 766 G and 981 G give a sampling of the surfdée n) in the range-1 < §; < 0.6
and—2 < n < 0.7 (Fig[1). LetA(6;) be the limiting value of the ratio of chemical potentials
p1(2)/p2(z) below which the minority density vanishes. At fixédandn < A(6;), h(d1,7)
represents the EoS of an ideal Fermi gas of majority atomssaequal tol. Forn > A(d,),
it slowly rises and corresponds to the normal mixed phaserevhoth spin components are
present. At a critical valug = 7.(¢4;), the slope ofh abruptly changesdj, the signature of a
first-order phase transition from the normal phase ot n < 7.) to a superfluid phase with a
lower chemical potential imbalance & 7.). We notice that the discontinuity is present for all
values ofd; we investigated, and this feature is more pronounced on E@ 8de.

Let us first consider the EoS of the superfluid phase; .. Each of ounn-situ images
has, along the-axis, values of the chemical potential ratjoz) = po(z)/p1(2) both lower
and greater than.. In the region wherej(z) > 7. the doubly-integrated density difference
n1(z) — na(2) is constant within our signal-to-noise ratio (see Fig.S4)is is the signature of
equal densities of the two species in the superfluid ca@eahe superfluid is fully paired. Using
Gibbs-Duhem relatiom; = g—i, equal densitiegs; = ny imply that P(u1, us, a) is a function
of x anda only, wherey = (u; + u2)/2. For the balanced superfluid, we then write the EoS

symmetrically:

- ~ h
P(p, po, a) = 2Po(n)hs (5 = m) : 3)

In order to avoid using negative chemical potentials, wengefierei = p — E,/2, where
E, is the molecular binding energll, = —h*/ma® for a > 0 (and0 for a < 0). hg(g) is
then a single-variable function. It fully describes thelugrd state macroscopic properties of the
balanced superfluid in the BEC-BCS crossover and is disglayEig[2 as black dots.

In order to extract relevant physical quantities, such gehe mean-field corrections, it is
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convenient to parametrize our data with analytic functiolmsthis pursuit, we use Padé-type
approximantsg), interpolating between the EoS measured around unitnifythe well-known
mean-field expansions on the BEC and BCS limits. The two gigdlynctions,,2° andh5FC
are respectively represented in blue and red solid linesgfgand represent our best estimate
of the EoS in the whole BEC-BCS crossover.

First, on the BCS sidé < 0, k3 yields the following perturbative expansion of the energy

in series ofkpa:

3 10
E = gNEF <1 + 9—kpa +0.18(2)(kra)? 4+ 0.03(2) (kra)® + . . > ,
T

where N is the total number of atomd;- is the Fermi energy and where by construction of
hECS, the mean-field term (proportional fg-a) is fixed to its exact value0/9r. We obtain
beyond mean-field corrections up 38' order. The term proportional tt-a)? agrees with
the Lee-Yang 4, 10 theoretical calculationd(11 — 2log2)/217% ~ 0.186. The third order
coefficient also agrees with the valo®30 computed in {1).

Second, around unitarity the EoS expands as

3

E:ENEF(§5—4$+...). (4)

We find the universal parameter of the unitéfy= 0 superfluid,{; = 0.41(1) with 2 %
accuracy. This value is in agreement with recent calcuiatiand measurement$)( Our
thermodynamic measuremept= 0.93(5) can be compared with a recent experimental value
¢ = 0.91(4) (12) as well as the theoretical valde= 0.95 (13), both of them obtained through
the study of the pair correlation function. This experinaéagreement confirms the remarkable
link between the macroscopic thermodynamic propertiestia@anicroscopic short-range pair
correlations, as shown theoretically ij.

Third, in the BEC limit the EoS of the superfluid is that of a kkyainteracting Bose-



Einstein condensate of molecul&s 15):

N whlagq 128
EFE=—FE+N 1+— 3 5
g ot N— ”< +15\/7—T Nagq + )a (5)

whereay; = 0.6a is the dimer-dimer scattering length) @ndn is the dimer density. The term
in @ is the well-known Lee-Huang-Yang (LHY) correction to theanefield interaction
between molecule®(15. Signatures of beyond mean-field effects were previousgeoved
through a pioneering study of collective modés$)(and density profile analysidT) but no
quantitative comparison witH](5) was made. Fitting our datéhe deep BEC regime with
Eq.(3), we measure the bosonic LHY coefficient 4.4(5), ineagrent with the exact value
128/15+/m ~ 4.81 calculated for elementary bosons B) &nd recently for composite bosons
in (15).

Having checked this important beyond mean-field contrdsytwe can go one step fur-
ther in the expansion. The analogy with point-like bosorggests to write the next term as
[%(M — 3V3)nal,(log(nad,) + B)} (6,18,19. UsinghBEC(0) (Fig2, and 6)), we deduce the
effective three-body parameter for composite bogéns 7(1). Interestingly, this value is close
to the bosonic hard-sphere calculatiBn= 8.5 (20) and to the value3 ~ 7.2 for point-like
bosons with large scattering lengttty.

Our measurements also allow direct comparison with advhn@ny-body theories devel-
oped for homogeneous gases in the strongly correlated eegis displayed in Fij]3A, our
data are in agreement with a Nozieres-Schmitt-Rink appration 1) but shows significant
differences from a quantum Monte-Carlo calculati@®)(and a diagrammatic approach3j.
The measured EoS strongly disfavors the prediction of BC&miield theory.

Comparison with Fixed-Node Monte-Carlo theories requites calculation of the EoS

¢(1/kpa) in the canonical ensemble:

( 1 )_E—%Eb
k:Fa o %NEF ’
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that is deduced fromh2°5(5) andhZ2EC°(5) (6). As shown in Fid3B, the agreement with theories
(24-29 is very good.

We now discuss the EoS of the partially polarized normal elfakck points in Fig]1). At
low concentrations, we expect the minority atoms to behavwsoa-interacting quasi-particles,
the fermionic polarons27). The polarons are dressed by the majority Fermi sea thraugh
renormalized chemical potential — A(0;)r1 (28) and an effective mass*(0;) (26, 29, 30.
Following a Fermi liquid picture, we propose to express thegressure as the sum of the Fermi

pressure of the bare majority atoms and of the polaréns (

i 3/2
o) =14 (") g ) ©

Our measured EoS agrees with this model at unitarity and @BHEC side of the resonance
(Fig.d), where we use fon*(6;) the most advanced calculatior80(31). On the BCS side of
the resonance however, we observe at large minority coratemts an intriguing deviation to
(B). Inthe BCS regime, the superfluid is less robust to spbailence. Consequently, the ratio of
the two densities, /n, in the normal phase becomes close to unity near the supéntbuidal
boundarys,.. The polaron ideal gas picture then fails.

Alternatively, we can let the effective mass' be a free parameter in modg] (6) in the fit
of our data aroung = A. We obtain the value of the polaron effective mass in the
crossover (Fig]4).

An important consistency check of our study is provided by ¢domparison between our
direct measurements of.(9;) (from Fig[1, black dots in the inset of Fi$§.4) and a calcudate
n.(61) from Eq.(6) and the EoS of the superfluig. Assuming negligible surface tension,
the normal/superfluid boundary is given by equating the qanesand chemical potential in
the two phases. This procedure leads to the solid red linbdrirtset of Fig}4, in excellent

agreement with the direct measurements. In addition, ®gnating our measured EoS of the



homogeneous gas over the trap, one retrieves the critidatipation for superfluidity of a
trapped gas, in agreement with most previous measuren@nts (

We have measured the equation of state of a two-componemi Eeas at zero temperature
in the BEC-BCS crossover. As a first extension, we could erptioe thermodynamics of the
far BEC region of the phase diagram where a new phase asseigh a polarized superfluid
appearsX7,26. Another interesting direction would be the mapping of HaS as a function
of temperature and investigate the influence of finite effestinge that is playing a key role in

higher density parts of neutron stars.
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Figure 1:h(01,7n) of a zero-temperature two-component Fermi gas in the BEG-B@ssover.
(A): Samples of the data for different magnetic fields. Treechl(red) data points correspond to
the normal (superfluid) phase, and are separatgd &t) by a clear kink in the local slope @&f
Solid black lines are the predictions of the polaron idealgadel, Eq[(6). The scattering length
corresponding to each curve is (from left to righf):7, 3.4, oo, —1.3) in units of 10* ay, where

ao is the Bohr radius. (B)h(41,7n). The black dots are data recorded for each magnetic field
value (as in Fig]1a). The black lines correspond to the panaercurvesd;(n), n) scanned by
the density inhomogeneity in the harmonic tr&jp (The red line isA(¢; ), the frontier between
the fully polarized (FP) ideal gas = 1 and the normal partially polarized (PP) phase. The
green line ig).(d;) marking the phase transition between the normal and sujok{8) phases.
The surface is the parametrization/db,, ) given in the text.
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Figure 2:h4(6) of theT = 0 balanced superfluid in the BEC-BCS crossover (black dotsg. T

blue solid line is the fith2°5(5) on the BCS side of the resonance, the red solid line is the
fit hBEC(5) on the BEC side (see text). The dotted (dashed) red line isntan-field (Lee-
Huang-Yang) theory33). Inset: Zoom on the BCS side. The dotted (resp. dashed)libkeie

is the EOS including the mean-field (resp. Lee-Yang) terne gystematic uncertainties on the
x andy-axis are aboub %. The errors bars represent the standard deviation of thiststal

uncertainty.
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Figure 3: Comparison with many-body theories. (A): Direotnparison ofhs(g) with a
guantum Monte-Carlo calculation, red open circl2g)( a diagrammatic method, green open
squares 43), a Nozieres-Schmitt-Rink approximation, blue openngilas 1) and the BCS
mean-field theory, solid blue line. Inset: Zoom on the BC®si®) EoS in the canonical en-
semblet(1/kra) (solid black line) deduced from the Padé-type approxim#mthe experimen-
tal datah2“® and hBEC plotted in FiglP. Fixed-Node Monte-Carlo theories: redags 24),
blue circles 25), green triangles26).
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-1.0 -0.5 0.0 0.5

Figure 4: Effective mass:*/m of the polaron in the BEC-BCS crossover (black dots). The
blue dashed line is a calculation fro29j, red open square8Q), green dot-dashed lin26),

and blue solid line31). Measurements at unitarity through density profile analfidue trian-

gle (3)) and collective modes study (brown empty circig)(are also displayed. Inset: Phase
diagram of a zero-temperature imbalanced Fermi gas in tli&-BES crossover. The blue line
is the theoretical value of (26, 29, 30 that sets the separation between the partially polarized
(PP) and the fully polarized (FP) phases. Black dots are traesnred values of (as in Fig[lLA)
which set the separation between the superfluid (S) phastampartially polarized phase. The
red line is the calculation aof, using our EoS of the superfluid and the modgl (6) for the nor-
mal phase. The green squares are lower boungs @iven by the values of the gap measured
in (32), see 6).
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Supporting Online Material for
The Equation of State of a Low-Temperature Fermi Gas with Turable In-
teractions

N. Navon, S. Nascimbene, F. Chevy, C. Salomon

Materials and Methods

Extracting the EoS of the uniform gas from the density profiles of trapped clouds

In this section, we provide additional insight on the red¢anrtion of the EoS of the uniform
gas. Several steps are required to deduce the EoS from théydategrated profiles. First, the
determination ofo;, ) along thez axis requires a precise calibrationwef and the knowledge
of the central chemical potentigl§. The axial confinement is produced by a magnetic field
curvature, which ensures very good reproducibilityis calibrated (to< 1%) by measuring the
frequency of the axial center of mass dipole mogdgis determined using the fully polarized
outer rim of the cloud. In this region the density profile iseflit by a Thomas-Fermi formula
m1(2) = a(1 — 2?/R})*?, which givesu) = Imw?R?. his then directly obtained by taking the
ratio (7, (z) + m(2)) /(1 — 22/ R?)*/2, thus avoiding the measurement of the radial frequency
w, and cancelling many systematic effects such as imperfenot abunting 8, 4).

The determination ofi) requires some information on the EoS. We use the outer radlius
the minority component as a reference. Indeed, in the lilmraaishing minority spin density,
the minority chemical potential is equal to the one of a fnglinority atom immersed in a
Fermi sea of majority atoms, the so-called polaron probl&lnadvanced calculation6, 29,

30) and the measurement i@8) agree on the value of the chemical potential radi@,) =

o/ 11 Whenny, — 0, which is plotted in the inset of Fig.4.) is then fitted on each image so

thatn = uo. /1, is equal toA(d; (11.)) at the pointz where the minority density vanishes.
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Within the local density approximation (LDA), the local chieal potentials along the-
axis vary asu;, = pf — smw?z? (for species). The local interaction parameter, defined as
01, = h//2muq.a (Wherel is the majority component), also varies along the cloud, el as
the local chemical potential imbalange= 1. /u;.. Substituting in d; in favor ofn, we find:

1 —
i) = 1= (7)

wheres) = h/\/ma (resp.ny = 19/1?) is the interaction strength (resp. local imbalance) at
the center of the cloud and we dropped th&ubscript for clarity. Each trapped density profile
thus gives the EoS along the parametric cunén), n).

The images used to reconstruct the EoS at a given magnetiadfiehot perfectly belong
to the same curvéj, (n),n). Here we quantify the systematic error produced by oveitapp
(and then averaging) the various images. To do so, we havwda®d density profiles using
our measured EoS with the distribution of initial parametgr?;, 1})} (wherej is the image
index) of the images used and have reproduced the recotistrgpgcocess. We then compare
this result to the expected EoS corresponding to the meaesaif{ (57;,7?)}. The difference
is less thar8 %. Moreover, the determination gf) using A(d;) as a reference (as explained
in the text), leads to an additional systematic error. Warege it to bed % on thehg axis of

Fig.2. The uncertainty on the imaging system magnificatéaus to & % systematic error on

the o axis of Fig.2, while trap anharmonicity effects are expedtebe2%.

The critical chemical potentiaj. is extracted from each equation of state;, ) obtained
at a given magnetic field. We fit the data in a regipa [7 — 0.2,7 + 0.2] with a continuous
function made of two straight segments, and observe thdbtation of the breaking point is
insensitive to they value defining the set of points chosen for the fit. This shdwas dur data

supports an abrupt change of slope, an identified as the breaking point.
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Parametrization of the Superfluid Equation of State
In order to extract physical parameters in the BEC-BCS ongmsfrom our equation of state
and to calculate the canonical EoS, we use a simple paraasin of our data that possesses
the correct asymptotic behaviors fats oo andd — 0).

First, on the BCS side < 0, we use a Padé-type approximant:

_52+0z15+0z2

hBCSg—~ _ )
s () 52+0z35+0z4

(8)

Using the mean-field asymptotic behavigy(é) ~ 1 — 5/(374) in the BCS regime as a con-
straint on they;, a fit of our data fo < 0.2 with (B) leads to they; coefficients gathered in
Table S3.

Second, on the BEC side > 0, we capture the behavior in the BEC limit (Eq.(5) in the
paper with the additiondbg term) using the following formula:

_ Bt B20 + Ba0log(1 +0) + 10° + 550°
1+ 602 '

hEEC(5) 9)

The 3; being contrained by the values &f and { previously determined from the BCS side
and by the exactly known coefficients in (5), we fit our datafar —0.2 with a single free

parameter in[({9) and obtain the valuesipfn Table S3.

The three-body B parameter
For a weakly interacting Bose-Einstein condensate, thargtstate energy can be written as

(18,19:

orh?a 128 8
E=N 1+ ——=Vna® + |5 (4m — ’(1 ’ B} 1
— n( +15\/7_T\/na + |5m 3v/3)na® (log(na®) + B)| + ) (10)

The first term is the mean-field contribution, the seconded. fke-Huang-Yang correction. The

third term involves the three-body problem and was firstuated in (8). It was shown in15)
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that this equation of state is rigorously valid for compe&ibsons up to the LHY term by sub-
stracting to the energy the binding energy of the moleculgslacinga by the dimer-dimer
scattering lengtla,, m by the dimer mass and considerings the dimer density. The anal-
ogy with point-like bosons suggests to write the next termafdose-Einstein condensate of
dimers as{§(47r — 3V3)nad,(log(nad,) + B)}. The coefficient before thieg term is given by
the low-momenta physic4d.8) where the composite nature of the dimers should not plajea ro
The coefficientB also involves the three-boson problem at high momenta,ilimy¢he inner
structure of the dimers. For elementary bosaBsjepends on the microscopic details of the
interaction potential between bosons and involves Efimgsials (L9). On the other hand, the
internal structure of the dimers is completely characeetiy the scattering length Hence,
we could expect the three-dimer problem to be solely desdrity« as well. B would take a
universal valuei.e. independent on the fermionic species. Usiigf€(4), we deduce the ef-
fective three-body parameter for composite bosBns 7(1). Interestingly, this value is close
to the bosonic hard-sphere calculatiBn= 8.5 (20) and to the value3 ~ 7.2 for point-like

bosons with large scattering lengttty.

Derivation of the pressure formula (2)
We consider a mixture of speciesof massm;, trapped in a harmonic trap of transverse fre-

quenciesv,;. Using Gibbs-Duhem relation at a constant temperdfym” = ", n;du;, then

MWl _ [ MW oP opP
2 27 nz—/; 27 dxdy(’?m _/;d’”‘ia_m’

7

where we have used local density approximatiosi) = 1 — V(r)) to convert the integral

over space to an integral on the chemical potentials. Tlegrat is straightforward and yields

1

20



Eqg (2) of the main text is a special case of [Eq (11) for two spimgonents of equal masses

confined by the same trapping potential.

Critical Polarization for a Trapped Gas

Here we compare our measurements of the chemical potenbalance for the normal/superfluid
transition to previous workss(1, S2, 7, B where this phase transition was characterized by mea-
suring the maximum polarizatioR. above which the superfluid is no longer present. We define
the polarization? = (N; — Ny)/(N; + Ny), wherel; is the total atom number for the species

i. Modeling the normal phase using

m*(d;)

3/2
h(d1,m) =1+ ( ) (n — A(61))*?, (12)

we calculate the atom numbat by integrating the densities = 0P/0u; over the trap:

Ni= [ drni(u = V(x), 1 = V(r),a).

The critical polarization is obtained when the transiti@mmal to superfluid occurs at the bot-
tom of the trap,i.e. for xS/l = n.(6?), where? = h/\/ma. n.(61) is provided by
the solid red line in Fig.3 (see text). In Fig.S1, we pltas a function ofl /kra, where
kr = h(w.w?)3(6N,)Y3, providing a direct comparison with previous experimermtata
(S1,S2,7,8 Our results are in excellent agreement wii (7, § but not with §2, where
the partially polarized phase is absent. As the atom nun@etsrap anisotropy in our experi-

ment are close to those i82), this discrepancy remains to be understood.

Grand Canonical-Canonical Correspondence
In this section, we explicit the conversion formulas betwtee grand-canonical and canonical

ensembles. We recall that the energy denSity E/V is linked to the pressure by the usual
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Legendre transforri = — P+ un wherey = %’ﬁ is the chemical potential in the fully paired
superfluid and: is the total atomic density. Combining this relationshiphithe Gibbs-Duhem
relationd P = ndp and using the proper normalization for the dimensionlesstfanh(4), one

finds the two formulas:

)
ZE((S) = (h(5) 5h,(5))1/3 (13)

) - )
O = Ge) e )

Eq (I3) relates the natural variables of both ensembledevinj (T#) provides the canonical
EoS. The canonical EoS (displayed in Fig.3b) is then simptgioed through a parametric plot
of (z(4),£(d)) using the Padé-type fitting functions fofd). Another familiar quantity that can

be calculated from our fits is the chemical potential in theCBBECS crossover:

1

£ = a0 (55 - 0)) (15)

wheref(9) is the Heaviside step function.

Thermometry
We perform thermometry of our imbalanced gases on the follgnzed outer shell of the cloud,
which is non-interacting. We thus fit the wings of the dengitgfiles with finite-temperature
Thomas-Fermi distributionsS@. Using this technique, we find a temperature7oflz =
0.03(3) at the unitary limit and on the BEC side of the resonance, gézature much smaller
than the critical temperature for superfluidify in this interaction range, justifying thHE = 0
assumption.

On the BCS side, the small size of the fully polarized regemders this method inaccurate
and gives an experimental upper boufdl'» < 0.13. However, the observation of a wide

superfluid plateau on the doubly-integrated density dffiee is a signature of an unpolarized
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superfluid phase clearly indicating thgt< 7.. In the normal phase, finite temperature correc-
tions are expected to be of the order(@%/7r)?>. AsT < T, < Tr in the BCS regime, they
are expected to be negligible. In addition, we observe anplwhange of slope at the nor-
mal/superfluid boundary indicating the presence of a firdeophase transition. Consequently,
this gives an upper bourld < T:,; whereT;,; is the temperature of the tri-critical point at which
the phase transition becomes of second order. Finite-textyve corrections are expected to
be dominated by thermal excitations of Bogoliubov-Andarpbonons. From the superfluid
equation of state determined from our data we compute thedspiesound: = \/W

as a function of interaction strength, and the finite-terapee correction to the pressure for
T = T, predicted by a mean-field theor$4, S5, S We thus infer that the systematic error

on hgs due to a finite temperature is less tha% 2or our data on the BCS side of the resonance.

Link between the critical imbalance . and the pairing gap A

An intriguing link exists between the measurements)@6,) and the superfluid pairing gap
A. Indeed, ford; < 0.6 we have observed that the superfluid is unpolarized. An @njzeld
superfluid becomes unstable as soon as flipping the spin afa@rityiatom decreases the grand-
potential(? = E — ;N7 — puaNo. After the spin-flip, a pair is broken and releases an energy
equals toAE = 2A. Thus the total grand-potential differenceA$2 = py — iy + 2A. The
superfluid is stable against infinitesimal polarization@sgl asA2 > 0, hence the minority
chemical potentigh, must be lower thap — A, wherep = (u1 + p2)/2. This argument yields
lower bounds on the values gf: 1. > (1 —A/u)/(1+ A/p) (empty green squares in the inset
of Fig.4). We observe that ouy. data is very close to these bounds, calculated from previous
experimental determinations of the gap frdB&)( As initially pointed out in §7) for the unitary
gas, this suggests that in the investigated range the suidetdlnormal transition is driven by

single-particle excitations of the superfluid.
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Fig. S1.Critical PolarizationP, of a trapped imbalanced Fermi gas in the BEC-BCS crossover
(solid black line) and comparison with the data from MIT (glares&) and blue triangles
(SD), ENS (green circle®)), and Rice (empty black squar8d). In the gray region® > P,

the superfluid phase is absent.
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aq (0%)] Q3 Oy
-1.137 0.533 -0.606 0.141

b1 B B3 Ba Bs Be
3.78 8.22 8.22 -4.21 3.65 0.186

Table S2.Padé-type approximants coefficientsand s; fitted from our data.
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Fig. S3.Canonical-Grand Canonical Correspondence in the BEC-B&Sover. (a) Canonical
natural variablel /kra as a function of the grand-canonical natural variablgb) Chemical
potential in the canonical ensemble (black solid line). é@mnparison, mean-field BCS theory
is the dashed blue line, the binding energy, the dashedmed li
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Fig. S4. Raw data: doubly-integrated density profifegz) (gray dots) andi,(z) = 71 (z) —
m2(z) (black dots) for a gas prepared in the unitary linfit., B2, Rs are the boundaries of the
fully polarized phase, of the partially polarized phasej ahthe superfluid core, respectively.
The plateau on the density differengg(z) observed in the regiofx| < R indicates equal
densities for both spin components in the superfluid phase.
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