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Interacting fermions are ubiquitous in nature and understanding their ther-

modynamics is an important problem. We measure the equationof state of a

two-component ultracold Fermi gas for a wide range of interaction strengths at

low temperature. A detailed comparison with theories including Monte-Carlo

calculations and the Lee-Huang-Yang corrections for low-density bosonic and

fermionic superfluids is presented. The low-temperature phase diagram of the

spin imbalanced gas reveals Fermi liquid behavior of the partially polarized

normal phase for all but the weakest interactions. Our results provide a bench-

mark for many-body theories and are relevant to other fermionic systems such

as the crust of neutron stars.
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Recently, ultracold atomic Fermi gases have become a tool ofchoice to study strongly cor-

related quantum systems because of their high controllability, purity and tunability of interac-

tions (1). In the zero-range limit, interactions in a degenerate Fermi system with two spin-

components are completely characterized by a single parameter 1/kFa, wherea is thes-wave

scattering length andkF = (6π2n)1/3 is the Fermi momentum (n is the density per spin state).

In cold atom gases the value of|a| can be tuned over several orders of magnitude using a Fesh-

bach resonance, this offers an opportunity to entirely explore the so-called BCS-BEC crossover,

i.e. the smooth transition from Bardeen-Cooper-Schrieffer (BCS) superfluidity at small negative

values ofa to molecular Bose-Einstein Condensation (BEC) at small positive values ofa (1,2).

Between these two well-understood limiting situationsa diverges, leading to strong quantum

correlations. The description of this system is a challengefor many-body theories, as testified by

the large amount of work in recent years (1). The physics of the BEC-BCS crossover is relevant

for very different systems, ranging from neutron stars to heavy nuclei and superconductors.

In the grand-canonical ensemble and at zero temperature, dimensional analysis shows that

the Equation of State (EoS) of a two-component Fermi gas, relating the pressureP to the chem-

ical potentialsµ1 andµ2 of the spin components can be written as

P (µ1, µ2, a) = P0(µ1)h

(
δ1 ≡

h̄√
2mµ1a

, η ≡ µ2

µ1

)
, (1)

whereP0(µ1) = 1/15π2(2m/h̄2)3/2µ
5/2
1 is the pressure of a single-component ideal Fermi gas,

m is the atom mass and̄h is the Planck constant divided by2π. The indices 1 and 2 refer to the

majority and minority spin components, respectively. Fromthe dimensionless functionh(δ1, η),

it is possible to deduce all the thermodynamic properties ofthe gas, such as the compressibility,

magnetization or the existence of phase transitions; the aim of this paper is to measureh(δ1, η)

for a range of interactions (δ1) and spin imbalances (η) and discuss its physical content.δ1 is

the grand-canonical analog of the dimensionless interaction parameter1/kFa.
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In-situabsorption images of harmonically trapped gases are particularly suited to investigate

their EoS as first demonstrated at MIT (3) and ENS (4). In the particular case of the grand-

canonical ensemble, a simple formula relates the local pressureP at a distancez from the

center of the trap along thez axis to the doubly-integrated density profilesn1 andn2 (5):

P (µ1(z), µ2(z), a) =
mω2

r

2π
(n1(z) + n2(z)) . (2)

Here we define the local chemical potentialsµi(z) = µ0
i − 1

2
mω2

zz
2, whereµ0

i is the chemical

potential of the componenti at the bottom of the trap, assuming local density approximation.

ωr andωz are the transverse and axial angular frequencies of a cylindrically symmetric trap

respectively, andni(z) =
∫

ni(x, y, z)dxdy, is the atomic densityni of the componenti,

doubly integrated over the transversex andy directions. In a single experimental run at a given

magnetic field, two images are recorded, providingn1(z) andn2(z) (see Fig.S4 in (6)); the

z-dependence of the chemical potentials then enables the measurement ofP along a curve in

the(δ1, η) plane (6). This method was validated in (4) for the particular case of the unitary limit

a = ∞. Deducing the functionh from the doubly integrated profiles further requires a precise

calibration ofωz and the knowledge of the central chemical potentialsµ0
i (6).

Our experimental setup is presented in (7). We prepared an imbalanced mixture of6Li in

the two lowest internal spin states, at the magnetic field of834 G (wherea = ∞), and trapped

it in a hybrid magnetic-optical dipole trap. We then performed evaporative cooling by lowering

the optical trap power, while the magnetic field was ramped tothe final desired value fora.

The cloud typically containedN = 2 to 10 × 104 atoms in each spin state at a temperature of

0.03(3) TF , justifying ourT = 0 assumption (6). The final trap frequencies areωz/2π ∼ 30 Hz,

ωr/2π ∼ 1 kHz. Below a critical spin population imbalance, our atomicsample consists of a

fully-paired superfluid occupying the center of the trap, surrounded by a normal mixed phase

and an outer rim of an ideal gas of majority component atoms (4,7,8).
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For a given magnetic field, 10 to 20 images are taken, leading after averaging to a low-

noise EoS along one line in the(δ1, η) plane. Measurements at different magnetic fields chosen

between 766 G and 981 G give a sampling of the surfaceh(δ1, η) in the range−1 < δ1 < 0.6

and−2 < η < 0.7 (Fig.1). LetA(δ1) be the limiting value of the ratio of chemical potentials

µ1(z)/µ2(z) below which the minority density vanishes. At fixedδ1 andη < A(δ1), h(δ1, η)

represents the EoS of an ideal Fermi gas of majority atoms andis equal to1. For η > A(δ1),

it slowly rises and corresponds to the normal mixed phase, where both spin components are

present. At a critical valueη = ηc(δ1), the slope ofh abruptly changes (6), the signature of a

first-order phase transition from the normal phase (forA < η < ηc) to a superfluid phase with a

lower chemical potential imbalance (η > ηc). We notice that the discontinuity is present for all

values ofδ1 we investigated, and this feature is more pronounced on the BEC side.

Let us first consider the EoS of the superfluid phase,η > ηc. Each of ourin-situ images

has, along thez-axis, values of the chemical potential ratioη(z) = µ2(z)/µ1(z) both lower

and greater thanηc. In the region whereη(z) > ηc the doubly-integrated density difference

n̄1(z) − n̄2(z) is constant within our signal-to-noise ratio (see Fig.S4).This is the signature of

equal densities of the two species in the superfluid core,i.e. the superfluid is fully paired. Using

Gibbs-Duhem relationni =
∂P
∂µi

, equal densitiesn1 = n2 imply thatP (µ1, µ2, a) is a function

of µ anda only, whereµ ≡ (µ1 + µ2)/2. For the balanced superfluid, we then write the EoS

symmetrically:

P (µ1, µ2, a) = 2P0(µ̃)hS

(
δ̃ ≡ h̄√

2mµ̃a

)
. (3)

In order to avoid using negative chemical potentials, we define hereµ̃ = µ − Eb/2, where

Eb is the molecular binding energyEb = −h̄2/ma2 for a > 0 (and0 for a ≤ 0). hS(δ̃) is

then a single-variable function. It fully describes the ground state macroscopic properties of the

balanced superfluid in the BEC-BCS crossover and is displayed in Fig.2 as black dots.

In order to extract relevant physical quantities, such as beyond mean-field corrections, it is
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convenient to parametrize our data with analytic functions. In this pursuit, we use Padé-type

approximants (6), interpolating between the EoS measured around unitarityand the well-known

mean-field expansions on the BEC and BCS limits. The two analytic functions,hBCS
S andhBEC

S

are respectively represented in blue and red solid lines in Fig.2 and represent our best estimate

of the EoS in the whole BEC-BCS crossover.

First, on the BCS sidẽδ < 0, hBCS
S yields the following perturbative expansion of the energy

in series ofkFa:

E =
3

5
NEF

(
1 +

10

9π
kFa+ 0.18(2)(kFa)

2 + 0.03(2)(kFa)
3 + . . .

)
,

whereN is the total number of atoms,EF is the Fermi energy and where by construction of

hBCS
S , the mean-field term (proportional tokFa) is fixed to its exact value10/9π. We obtain

beyond mean-field corrections up to3rd order. The term proportional to(kFa)2 agrees with

the Lee-Yang (9, 10) theoretical calculation4(11 − 2 log 2)/21π2 ≃ 0.186. The third order

coefficient also agrees with the value0.030 computed in (11).

Second, around unitarity the EoS expands as

E =
3

5
NEF

(
ξs − ζ

1

kFa
+ . . .

)
. (4)

We find the universal parameter of the unitaryT = 0 superfluid,ξs = 0.41(1) with 2 %

accuracy. This value is in agreement with recent calculations and measurements (1). Our

thermodynamic measurementζ = 0.93(5) can be compared with a recent experimental value

ζ = 0.91(4) (12) as well as the theoretical valueζ = 0.95 (13), both of them obtained through

the study of the pair correlation function. This experimental agreement confirms the remarkable

link between the macroscopic thermodynamic properties andthe microscopic short-range pair

correlations, as shown theoretically in (14).

Third, in the BEC limit the EoS of the superfluid is that of a weakly interacting Bose-
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Einstein condensate of molecules (9,15):

E =
N

2
Eb +N

πh̄2add
2m

n

(
1 +

128

15
√
π

√
na3dd + ...

)
, (5)

whereadd = 0.6a is the dimer-dimer scattering length (1) andn is the dimer density. The term

in
√
na3dd is the well-known Lee-Huang-Yang (LHY) correction to the mean-field interaction

between molecules (9, 15). Signatures of beyond mean-field effects were previously observed

through a pioneering study of collective modes (16) and density profile analysis (17) but no

quantitative comparison with (5) was made. Fitting our datain the deep BEC regime with

Eq.(5), we measure the bosonic LHY coefficient 4.4(5), in agreement with the exact value

128/15
√
π ≃ 4.81 calculated for elementary bosons in (9) and recently for composite bosons

in (15).

Having checked this important beyond mean-field contribution, we can go one step fur-

ther in the expansion. The analogy with point-like bosons suggests to write the next term as
[
8

3
(4π − 3

√
3)na3dd(log(na

3
dd) +B)

]
(6,18,19). UsinghBEC

S (δ̃) (Fig.2, and (6)), we deduce the

effective three-body parameter for composite bosonsB = 7(1). Interestingly, this value is close

to the bosonic hard-sphere calculationB = 8.5 (20) and to the valueB ≈ 7.2 for point-like

bosons with large scattering length (19).

Our measurements also allow direct comparison with advanced many-body theories devel-

oped for homogeneous gases in the strongly correlated regime. As displayed in Fig.3A, our

data are in agreement with a Nozières-Schmitt-Rink approximation (21) but shows significant

differences from a quantum Monte-Carlo calculation (22) and a diagrammatic approach (23).

The measured EoS strongly disfavors the prediction of BCS mean-field theory.

Comparison with Fixed-Node Monte-Carlo theories requiresthe calculation of the EoS

ξ(1/kFa) in the canonical ensemble:

ξ
(

1

kFa

)
≡ E − N

2
Eb

3

5
NEF

,
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that is deduced fromhBCS
S (δ̃) andhBEC

S (δ̃) (6). As shown in Fig.3B, the agreement with theories

(24–26) is very good.

We now discuss the EoS of the partially polarized normal phase (black points in Fig.1). At

low concentrations, we expect the minority atoms to behave as non-interacting quasi-particles,

the fermionic polarons (27). The polarons are dressed by the majority Fermi sea througha

renormalized chemical potentialµ2 − A(δ1)µ1 (28) and an effective massm∗(δ1) (26, 29, 30).

Following a Fermi liquid picture, we propose to express the gas pressure as the sum of the Fermi

pressure of the bare majority atoms and of the polarons (4):

h(δ1, η) = 1 +

(
m∗(δ1)

m

)3/2

(η − A(δ1))
5/2. (6)

Our measured EoS agrees with this model at unitarity and on the BEC side of the resonance

(Fig.1), where we use form∗(δ1) the most advanced calculations (30, 31). On the BCS side of

the resonance however, we observe at large minority concentrations an intriguing deviation to

(6). In the BCS regime, the superfluid is less robust to spin imbalance. Consequently, the ratio of

the two densitiesn1/n2 in the normal phase becomes close to unity near the superfluid/normal

boundaryηc. The polaron ideal gas picture then fails.

Alternatively, we can let the effective massm∗ be a free parameter in model (6) in the fit

of our data aroundη = A. We obtain the value of the polaron effective mass in the BEC-BCS

crossover (Fig.4).

An important consistency check of our study is provided by the comparison between our

direct measurements ofηc(δ1) (from Fig.1, black dots in the inset of Fig.4) and a calculated

ηc(δ1) from Eq.(6) and the EoS of the superfluidhS. Assuming negligible surface tension,

the normal/superfluid boundary is given by equating the pressure and chemical potential in

the two phases. This procedure leads to the solid red line in the inset of Fig.4, in excellent

agreement with the direct measurements. In addition, by integrating our measured EoS of the
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homogeneous gas over the trap, one retrieves the critical polarization for superfluidity of a

trapped gas, in agreement with most previous measurements (6).

We have measured the equation of state of a two-component Fermi gas at zero temperature

in the BEC-BCS crossover. As a first extension, we could explore the thermodynamics of the

far BEC region of the phase diagram where a new phase associated with a polarized superfluid

appears (17, 26). Another interesting direction would be the mapping of theEoS as a function

of temperature and investigate the influence of finite effective range that is playing a key role in

higher density parts of neutron stars.
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Figure 1:h(δ1, η) of a zero-temperature two-component Fermi gas in the BEC-BCS crossover.
(A): Samples of the data for different magnetic fields. The black (red) data points correspond to
the normal (superfluid) phase, and are separated atηc(δ1) by a clear kink in the local slope ofh.
Solid black lines are the predictions of the polaron ideal gas model, Eq (6). The scattering length
corresponding to each curve is (from left to right) :(1.7, 3.4,∞,−1.3) in units of104 a0, where
a0 is the Bohr radius. (B):h(δ1, η). The black dots are data recorded for each magnetic field
value (as in Fig.1a). The black lines correspond to the parametric curves(δ1(η), η) scanned by
the density inhomogeneity in the harmonic trap (6). The red line isA(δ1), the frontier between
the fully polarized (FP) ideal gash = 1 and the normal partially polarized (PP) phase. The
green line isηc(δ1) marking the phase transition between the normal and superfluid (S) phases.
The surface is the parametrization ofh(δ1, η) given in the text.
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Figure 2:hS(δ̃) of theT = 0 balanced superfluid in the BEC-BCS crossover (black dots). The
blue solid line is the fithBCS

S (δ̃) on the BCS side of the resonance, the red solid line is the
fit hBEC

S (δ̃) on the BEC side (see text). The dotted (dashed) red line is themean-field (Lee-
Huang-Yang) theory (33). Inset: Zoom on the BCS side. The dotted (resp. dashed) blueline
is the EoS including the mean-field (resp. Lee-Yang) term. The systematic uncertainties on the
x andy-axis are about5 %. The errors bars represent the standard deviation of the statistical
uncertainty.

14



ãã ã ã ã
ã ã
ã
ã

ã

ã

ã

ã

ã

ã

ã

ã

óóóóó
óó
ó
ó
ó

ó

ó

ó

ó

ó

ó

ó

é é é
é
é
é

é

é

-1.0-0.5 0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

35

∆
�

h S
H∆�
L ã ã

ã
ã
ã
ã

ã

ã

ã

ã

ó ó ó
ó ó
ó
ó
ó

ó

ó

ó

é é
é

é

é

é

-1 -0.5 0

1

2

3

4

5

ò

ò

ò

ò

ò

ò
ò
òò
òò
ò
òò

ò

ò

ò

ò

ò
�

�

�

�

�

�
�

�

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1�kFa

Ξ
H1
�k

F
aL

HALHAL HBLHBL

Figure 3: Comparison with many-body theories. (A): Direct comparison ofhS(δ̃) with a
quantum Monte-Carlo calculation, red open circles (22), a diagrammatic method, green open
squares (23), a Nozières-Schmitt-Rink approximation, blue open triangles (21) and the BCS
mean-field theory, solid blue line. Inset: Zoom on the BCS side. (B) EoS in the canonical en-
sembleξ(1/kFa) (solid black line) deduced from the Padé-type approximants to the experimen-
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teractions
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Materials and Methods

Extracting the EoS of the uniform gas from the density profiles of trapped clouds

In this section, we provide additional insight on the reconstruction of the EoS of the uniform

gas. Several steps are required to deduce the EoS from the doubly-integrated profiles. First, the

determination of(δ1, η) along thez axis requires a precise calibration ofωz and the knowledge

of the central chemical potentialsµ0
i . The axial confinement is produced by a magnetic field

curvature, which ensures very good reproducibility.ωz is calibrated (to< 1%) by measuring the

frequency of the axial center of mass dipole mode.µ0
1 is determined using the fully polarized

outer rim of the cloud. In this region the density profile is fitted by a Thomas-Fermi formula

n1(z) = α(1− z2/R2
1)

5/2, which givesµ0
1 =

1

2
mω2

zR
2
1. h is then directly obtained by taking the

ratio (n1(z) + n2(z))/α(1− z2/R2
1)

5/2, thus avoiding the measurement of the radial frequency

ωr and cancelling many systematic effects such as imperfect atom counting (3,4).

The determination ofµ0
2 requires some information on the EoS. We use the outer radiusof

the minority component as a reference. Indeed, in the limit of vanishing minority spin density,

the minority chemical potential is equal to the one of a single minority atom immersed in a

Fermi sea of majority atoms, the so-called polaron problem.All advanced calculations (26,29,

30) and the measurement in (28) agree on the value of the chemical potential ratioA(δ1) =

µ2/µ1 whenn2 → 0, which is plotted in the inset of Fig.4.µ0
2 is then fitted on each image so

thatη = µ2z/µ1z is equal toA(δ1(µ1z)) at the pointz where the minority density vanishes.
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Within the local density approximation (LDA), the local chemical potentials along thez-

axis vary asµiz = µ0
i − 1

2
mω2

zz
2 (for speciesi). The local interaction parameter, defined as

δ1z = h̄/
√
2mµ1za (where1 is the majority component), also varies along the cloud, as well as

the local chemical potential imbalanceηz = µ2z/µ1z. Substitutingz in δ1 in favor ofη, we find:

δ1(η) = δ01

√
1− η

1− η0
, (7)

whereδ01 = h̄/
√
2mµ0

1a (resp.η0 = µ0
2/µ

0
1) is the interaction strength (resp. local imbalance) at

the center of the cloud and we dropped thez subscript for clarity. Each trapped density profile

thus gives the EoS along the parametric curve(δ1(η), η).

The images used to reconstruct the EoS at a given magnetic field do not perfectly belong

to the same curve(δ1(η), η). Here we quantify the systematic error produced by overlapping

(and then averaging) the various images. To do so, we have simulated density profiles using

our measured EoS with the distribution of initial parameters {(δ01j, η0j )} (wherej is the image

index) of the images used and have reproduced the reconstruction process. We then compare

this result to the expected EoS corresponding to the mean values of{(δ01j, η0j )}. The difference

is less than3 %. Moreover, the determination ofµ0
2 usingA(δ1) as a reference (as explained

in the text), leads to an additional systematic error. We estimate it to be4 % on thehS axis of

Fig.2. The uncertainty on the imaging system magnification leads to a5 % systematic error on

the δ̃ axis of Fig.2, while trap anharmonicity effects are expected to be2%.

The critical chemical potentialηc is extracted from each equation of stateh(δ1, η) obtained

at a given magnetic field. We fit the data in a regionη ∈ [η − 0.2, η + 0.2] with a continuous

function made of two straight segments, and observe that thelocation of the breaking point is

insensitive to theη value defining the set of points chosen for the fit. This shows that our data

supports an abrupt change of slope, andηc is identified as the breaking point.
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Parametrization of the Superfluid Equation of State

In order to extract physical parameters in the BEC-BCS crossover from our equation of state

and to calculate the canonical EoS, we use a simple parametrization of our data that possesses

the correct asymptotic behaviors (atδ̃ → ±∞ andδ̃ → 0).

First, on the BCS sidẽδ < 0, we use a Padé-type approximant:

hBCS
S (δ̃) =

δ̃2 + α1δ̃ + α2

δ̃2 + α3δ̃ + α4

. (8)

Using the mean-field asymptotic behaviorhS(δ̃) ≃ 1 − 5/(3πδ̃) in the BCS regime as a con-

straint on theαi, a fit of our data for̃δ < 0.2 with (8) leads to theαi coefficients gathered in

Table S3.

Second, on the BEC sidẽδ > 0, we capture the behavior in the BEC limit (Eq.(5) in the

paper with the additionallog term) using the following formula:

hBEC
S (δ̃) =

β1 + β2δ̃ + β3δ̃ log(1 + δ̃) + β4δ̃
2 + β5δ̃

3

1 + β6δ̃2
. (9)

The βi being contrained by the values ofξs andζ previously determined from the BCS side

and by the exactly known coefficients in (5), we fit our data forδ̃ > −0.2 with a single free

parameter in (9) and obtain the values ofβi in Table S3.

The three-bodyB parameter

For a weakly interacting Bose-Einstein condensate, the ground state energy can be written as

(18,19):

E = N
2πh̄2a

m
n

(
1 +

128

15
√
π

√
na3 +

[
8

3
(4π − 3

√
3)na3(log(na3) +B)

]
+ ...

)
, (10)

The first term is the mean-field contribution, the second is the Lee-Huang-Yang correction. The

third term involves the three-body problem and was first calculated in (18). It was shown in (15)
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that this equation of state is rigorously valid for composite bosons up to the LHY term by sub-

stracting to the energy the binding energy of the molecules,replacinga by the dimer-dimer

scattering lengthadd, m by the dimer mass and consideringn as the dimer density. The anal-

ogy with point-like bosons suggests to write the next term for a Bose-Einstein condensate of

dimers as
[
8

3
(4π − 3

√
3)na3dd(log(na

3
dd) + B)

]
. The coefficient before thelog term is given by

the low-momenta physics (18) where the composite nature of the dimers should not play a role.

The coefficientB also involves the three-boson problem at high momenta, unveiling the inner

structure of the dimers. For elementary bosons,B depends on the microscopic details of the

interaction potential between bosons and involves Efimov physics (19). On the other hand, the

internal structure of the dimers is completely characterized by the scattering lengtha. Hence,

we could expect the three-dimer problem to be solely described bya as well.B would take a

universal value,i.e. independent on the fermionic species. UsinghBEC
S (δ̃), we deduce the ef-

fective three-body parameter for composite bosonsB = 7(1). Interestingly, this value is close

to the bosonic hard-sphere calculationB = 8.5 (20) and to the valueB ≈ 7.2 for point-like

bosons with large scattering length (19).

Derivation of the pressure formula (2)

We consider a mixture of speciesi, of massmi, trapped in a harmonic trap of transverse fre-

quenciesωri. Using Gibbs-Duhem relation at a constant temperatureT , dP =
∑

i nidµi, then

∑

i

miω
2
ri

2π
ni =

∫ ∑

i

miω
2
ri

2π
dxdy

∂P

∂µi
=
∫ ∑

i

dµi
∂P

∂µi
,

where we have used local density approximation (µi(r) = µ0
i − V (r)) to convert the integral

over space to an integral on the chemical potentials. The integral is straightforward and yields

P (µiz, T ) =
1

2π

∑

i

miω
2
rini(z). (11)
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Eq (2) of the main text is a special case of Eq (11) for two spin components of equal masses

confined by the same trapping potential.

Critical Polarization for a Trapped Gas

Here we compare our measurements of the chemical potential imbalance for the normal/superfluid

transition to previous works (S1,S2,7,8), where this phase transition was characterized by mea-

suring the maximum polarizationPc above which the superfluid is no longer present. We define

the polarizationP = (N1 −N2)/(N1 +N2), whereNi is the total atom number for the species

i. Modeling the normal phase using

h(δ1, η) = 1 +

(
m∗(δ1)

m

)3/2

(η − A(δ1))
5/2, (12)

we calculate the atom numberNi by integrating the densitiesni = ∂P/∂µi over the trap:

Ni =
∫
d3
rni(µ

0
1 − V (r), µ0

2 − V (r), a).

The critical polarization is obtained when the transition normal to superfluid occurs at the bot-

tom of the trap,i.e. for µ0
2/µ

0
1 = ηc(δ

0
1), whereδ01 = h̄/

√
2mµ0

1a. ηc(δ1) is provided by

the solid red line in Fig.3 (see text). In Fig.S1, we plotPc as a function of1/kFa, where

kF = h̄(ωzω
2
r)

1/3(6N1)
1/3, providing a direct comparison with previous experimentaldata

(S1, S2, 7, 8). Our results are in excellent agreement with (S1, 7, 8) but not with (S2), where

the partially polarized phase is absent. As the atom numbersand trap anisotropy in our experi-

ment are close to those in (S2), this discrepancy remains to be understood.

Grand Canonical-Canonical Correspondence

In this section, we explicit the conversion formulas between the grand-canonical and canonical

ensembles. We recall that the energy densityE = E/V is linked to the pressure by the usual
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Legendre transformE = −P +µn whereµ = µ1+µ2

2
is the chemical potential in the fully paired

superfluid andn is the total atomic density. Combining this relationship with the Gibbs-Duhem

relationdP = ndµ and using the proper normalization for the dimensionless functionh(δ), one

finds the two formulas:

x(δ) =
δ

(h(δ)− δ
5
h′(δ))1/3

(13)

ξ(δ) =
h(δ)− δ

3
h′(δ)

(h(δ)− δ
5
h′(δ))5/3

(14)

Eq (13) relates the natural variables of both ensembles, while Eq (14) provides the canonical

EoS. The canonical EoS (displayed in Fig.3b) is then simply obtained through a parametric plot

of (x(δ), ξ(δ)) using the Padé-type fitting functions forh(δ). Another familiar quantity that can

be calculated from our fits is the chemical potential in the BEC-BCS crossover:

µ

EF
= x(δ)2

(
1

δ2
− θ(δ)

)
, (15)

whereθ(δ) is the Heaviside step function.

Thermometry

We perform thermometry of our imbalanced gases on the fully polarized outer shell of the cloud,

which is non-interacting. We thus fit the wings of the densityprofiles with finite-temperature

Thomas-Fermi distributions (S3). Using this technique, we find a temperature ofT/TF =

0.03(3) at the unitary limit and on the BEC side of the resonance, a temperature much smaller

than the critical temperature for superfluidityTc in this interaction range, justifying theT = 0

assumption.

On the BCS side, the small size of the fully polarized region renders this method inaccurate

and gives an experimental upper boundT/TF < 0.13. However, the observation of a wide

superfluid plateau on the doubly-integrated density difference is a signature of an unpolarized
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superfluid phase clearly indicating thatT < Tc. In the normal phase, finite temperature correc-

tions are expected to be of the order of(T/TF )
2. As T < Tc ≪ TF in the BCS regime, they

are expected to be negligible. In addition, we observe an abrupt change of slope at the nor-

mal/superfluid boundary indicating the presence of a first-order phase transition. Consequently,

this gives an upper boundT < Ttri whereTtri is the temperature of the tri-critical point at which

the phase transition becomes of second order. Finite-temperature corrections are expected to

be dominated by thermal excitations of Bogoliubov-Anderson phonons. From the superfluid

equation of state determined from our data we compute the speed of soundc =
√
n/m∂µ/∂n

as a function of interaction strength, and the finite-temperature correction to the pressure for

T = Ttri predicted by a mean-field theory (S4, S5, S6). We thus infer that the systematic error

onhS due to a finite temperature is less than 2% for our data on the BCS side of the resonance.

Link between the critical imbalanceηc and the pairing gap∆

An intriguing link exists between the measurements ofηc(δ1) and the superfluid pairing gap

∆. Indeed, forδ1 < 0.6 we have observed that the superfluid is unpolarized. An unpolarized

superfluid becomes unstable as soon as flipping the spin of a minority atom decreases the grand-

potentialΩ = E − µ1N1 − µ2N2. After the spin-flip, a pair is broken and releases an energy

equals to∆E = 2∆. Thus the total grand-potential difference is∆Ω = µ2 − µ1 + 2∆. The

superfluid is stable against infinitesimal polarization as long as∆Ω > 0, hence the minority

chemical potentialµ2 must be lower thanµ−∆, whereµ = (µ1+µ2)/2. This argument yields

lower bounds on the values ofηc: ηc > (1−∆/µ)/(1+∆/µ) (empty green squares in the inset

of Fig.4). We observe that ourηc data is very close to these bounds, calculated from previous

experimental determinations of the gap from (32). As initially pointed out in (S7) for the unitary

gas, this suggests that in the investigated range the superfluid to normal transition is driven by

single-particle excitations of the superfluid.
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Fig. S1.Critical PolarizationPc of a trapped imbalanced Fermi gas in the BEC-BCS crossover
(solid black line) and comparison with the data from MIT (redsquares (8) and blue triangles
(S1)), ENS (green circle (7)), and Rice (empty black square (S2)). In the gray regionP > Pc,
the superfluid phase is absent.
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α1 α2 α3 α4

-1.137 0.533 -0.606 0.141
β1 β2 β3 β4 β5 β6

3.78 8.22 8.22 -4.21 3.65 0.186

Table S2.Padé-type approximants coefficientsαi andβi fitted from our data.
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Fig. S3.Canonical-Grand Canonical Correspondence in the BEC-BCS crossover. (a) Canonical
natural variable1/kFa as a function of the grand-canonical natural variableδ. (b) Chemical
potential in the canonical ensemble (black solid line). Forcomparison, mean-field BCS theory
is the dashed blue line, the binding energy, the dashed red line.
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Fig. S4. Raw data: doubly-integrated density profilesn2(z) (gray dots) andnd(z) = n1(z) −
n2(z) (black dots) for a gas prepared in the unitary limit.R1, R2, RS are the boundaries of the
fully polarized phase, of the partially polarized phase, and of the superfluid core, respectively.
The plateau on the density differencend(z) observed in the region|z| < RS indicates equal
densities for both spin components in the superfluid phase.
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