
HAL Id: hal-00470124
https://hal.science/hal-00470124

Submitted on 3 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Contract-based Approach for Secure Service
Discovery Systems

Ahmed Nait-Sidi-Moh, Mahmed Bakhouya, Maxime Wack

To cite this version:
Ahmed Nait-Sidi-Moh, Mahmed Bakhouya, Maxime Wack. A Contract-based Approach for Secure
Service Discovery Systems. IEEE International Conference on Pervasive Services, Jul 2007, Istanbul,
Turkey. pp.6 Pages, 10.1109/PERSER.2007.4283953. �hal-00470124�

https://hal.science/hal-00470124
https://hal.archives-ouvertes.fr

A Contract-based Approach for Secure Service
Discovery Systems

A.Nait-Sidi-Moh1, M. Bakhouya2, M. Wack1
1Université de Technologie de Belfort-Montbéliard, 90010 Belfort, France

ahmed.nait@utbm.fr, maxime.wack@utbm.fr
2High Performance Computing Laboratory, George Washington University

bakhouya@gwu.edu

Abstract—Future distributed computing systems will be
ubiquitous and provide accesses to a wide range of services at
any time, every where, and from a variety of devices. The
monitoring and controlling accesses to services are one of the
fundamental challenges that must be faced in the context of
ubiquitous and pervasive environments. To address services
accesses issues, it is necessary to guaranty the user access to
utilize the allowed and available services. More precisely, an
access control must be granted to services in order to regulate
their usage. In this paper, a contract-based approach for
monitoring and controlling accesses to services in ubiquitous
environments is presented. In this approach, client agents and
server agents are bounded by contracts: the server agent expects
that the client agent will not attempt to access other services than
those it required, and the client agent expects that the server
agent will provide the required service.

I. INTRODUCTION

Service discovery and access is an important issue in
distributed network; given a user request, a service discovery
mechanism should locate and return a set of server addresses
that match the description of the requested service [2]. A
fundamental aspect to locate a service in a network is done via
interaction between the provider of the service and the user. A
server (i.e., provider) is a computational component placed at
a given site and makes available a set of services. A client
(i.e., customer) component located at another site requests the
execution of a service via an interaction process with the
server. The server performs the required service and may
produce a result that will be delivered back to the client. It
should be noted that Ubiquitous Computing (UC) is often
considered the same as Pervasive Computing (PC) in the
literature. Gaber in [22, 23] provides a classification of these
two emergent infrastructures and argued that PC is a related
concept that can be distinguished from ubiquitous computing
in terms of environment conditions as follows. Ubiquitous
Computing aims to provide users the ability to access services
and resources all the time and irrespective to their location,
while the main objective in Pervasive Computing (PC) is to
provide spontaneous services created on the fly by mobiles
that interact by ad hoc connections. In 2000, Gaber has
proposed two alternative paradigms to the traditional client to

server interaction paradigm (CSP) and its variants such push,
pull and peer-to-peer interaction, to design and implement
Ubiquitous and Pervasive applications. According to Gaber’s
classification, there are three interaction paradigms: the
traditional Client/Server interaction paradigm (CSP), the
adaptive Services-to-Client Paradigm (SCP) and the
Spontaneous Service Emergence Paradigm (SEP) [22, 23, 24].
The adaptive Services/Client Paradigm (SCP) can be
considered as the opposite to CSP. Indeed, with the traditional
CSP paradigm, it is the user who should initiates a request,
should know a priori that the required service exists and
should be able to provide the location of a server holding that
service. With the alternative SCP paradigm, it is the service
that comes to the user. In other words, in this paradigm, a
decentralized, intelligent and self-organizing middleware
should be able to provide services to users according to their
availability and the network status. As pointed out in [22, 23],
such a middleware can be inspired, for example, from a
biological system like the natural immune system. The second
alternative SEP paradigm to the Client/Server one is more
adequate for pervasive applications. It involves the concept of
spontaneous emergence service composition that suits
pervasive environments. More precisely, spontaneous services
can be created on the fly and be provided by mobiles that
interact by ad hoc connections [22, 23, 24].

Today service discovery is a very active area of research
and development. Challenges are to build a scalable and
efficient service discovery framework. More precisely, the
management of the rapid increase of available services should
not incur excessive overhead and create bottleneck. Also, the
time of the request resolution should be reasonably fast [2, 19,
20, 21]. However, very little has been done regarding the
access control problem. More precisely, the main problem is
how to manage access policies to disparate services that are
not under the control of a single system designer/administrator
[1, 3]. A computational contract that defines an exchange of
services between a client and a provider of services is
required. Contracts need to be negotiated and signed
electronically too, to ensure that both the client and the
provider accept their terms as binding.

In this paper, we propose an agent-based solution that
meets the automatic computerized contracts for negotiating
and controlling services usage in service discovery systems.
Contracts express the terms under which agents representing
clients and agents representing servers promise to exchange
resources, such as processor time.

The rest of the paper is structured as follows. In section 2,
related work of secure service discovery systems is presented.
Section 3 presents a contract-based model for service
discovery systems. In section 4, a modeling study of
considered process is given. Conclusion and future works are
given in section 5.

II. SECURE SERVICE DISCOVERY SYSTEM
Service discovery systems are systems that enable services

to advertise their existence in a dynamic way, and can be
discovered, configured and used by other devices with a
minimum or without manual efforts. In open environment
where there are many opportunities for both fraudulent
services and misbehaving clients, service discovery systems
are subject to a real challenge from security. In other words, to
provide high confidence to users, these systems must have the
capabilities of authenticating users and service providers,
verifying the integrity of services, protecting the
confidentiality of information, controlling the access to
services based on security policies, and detecting malicious
services and users.

In most known service discovery systems, trustworthy and
secure accesses to such services are only critical requirements
addressed. For example, Jini protects the access to the service
but not discovery of the service [21]. Also, communication is
done via Java RMI, which is not-encrypted. In contrast, SLP
provides authentication in the local domain but not cross-
domain. Indeed, no mechanism is offered for authentication of
users [19]. SSDS (Secure Service Discovery System) provides
a number of specific improvements in security [20]. Security
is a core component of SSDS where communications are both
encrypted and authenticated. SSDS help clients to determine
the trustworthiness of services.

In SSDS [20], key entities in the architecture include the
clients, the providers, and the discovery servers. Clients query
the service discovery framework for the providers of their
requested services. A client only interacts with its home
discovery server. Providers provide application-level
distributed services. To advertise its service, each provider
sends service announcement to the service discovery
framework. Similar to a client, a provider only interacts with
its home discovery server. Discovery servers are key entities
in the architecture. They act as brokers between service clients
and providers. There is a discovery server in each domain.
The discovery servers are organized as a hierarchy. More
precisely, each provider server at the lowest level is called the
home provider by the hosts in that lowest level domain. To
perform service discovery, there will be exchange of service
queries and service announcements between discovery

servers. Within this architecture, servers can be dynamically
added to scale up the system under heavy load. The hierarchy
of servers also detects and restarts a failed server. SDS service
availability is announced by periodic (authenticated)
multicasts from discovery servers. The discovery server cache
service information. An important distinction of the SSDS
provides extremely strong mandatory security: all parties are
authenticated, and all message traffic is encrypted. More
precisely, SSDS uses: 1) Public Key authenticated SDS server
announcements that assures authenticity of discovery service;
2) One-way encrypted service announcements (combined
public and private key protocol) that assures privacy and
authenticity of service descriptions; 3) Secure RMI to
authenticate and encrypt remote method invocation; and 4)
Certificates and a Certificate Authority structure to
authenticate all principals. However, the SSDS system focuses
only on communication security and secures accesses to such
services but not on access control problem. In the rest of this
paper a contract-based approach for negotiating and
controlling services usage in service discovery systems and in
particular for SSDS is presented.

III. ACCESS CONTROL MODEL
The model presented in this section concerns the access

control to discovered and selected computing services. A
service is an abstract concept, representing a piece of
computation - an application or a component - or a hardware
device, such as a stereo display, processor, or a measurement
instrument. More precisely, services are bound to specific
hosts, representing hardware devises (e.g. disk), logical
system objects (e.g. socket) or software entities, which are
managed by an application [2].

A. Service description
For a client - whether human or another software

component to access a service, that service must be described
by a clearly public interface. For example, services can be
expressively described by a language description in order to
obtain effective matches between their capabilities. Web
service description languages should be used to describe
software components. They define components identification
and accessing methods that enable the discovery and the use
of these components (i.e., the resources). A service description
language is sufficiently expressive and flexible that it can be
used not only in discovery, but also negotiation proposals and
agreements. We can use any particular language description of
to describe resources and permit to clients to compare
different resources descriptions and choose the required. An
example of service description language that can be used is
WSDL (Web Services Description Language) [10]. This
language would seem to provide a good basis for the
definition of service syntax and forms the basic for a lot of
web service composition [11]. For example, a software
component can be described by the following information:
identifier, type (software, hardware), description, identifier of
provider, resource requirement of its execution (OS, min

RAM, min CPU, in bandwidth for transfer, etc) [10]. More
precisely, in a software component description, there are three
main parts: 1) the attributes, 2) the Capsule, and the
Constraints and requirements [9]. Attributes include the
characteristic of a software component such as the operations
that can be invoked and their respective input and output
parameters. The capsule gives information about the service
localization, the invocation protocol and the port. The
constraints and requirements give information about the
required resources needed to execute the service. The
following example shows a description of video service
component (i.e., Web service).
Attributes
service-identifier = "Video-1-12";
num instances = 3 ;
type = "Wservice";
isMobile = "No"; //
description = "Video service";
provider-identifier = "Video-1";
input-parameters = {Type of film, Name of film, etc};
output-parameters = {XML Doc video Details};
price = 5;
Capsule
location = "video.domain.com";
protocol = https;
port = 80;
Constraints and Requirements
diskfree > 100; //Kbytes
memoryfree >= 128; //Kbytes
OpSys = "SOLARIS 2.5"

The Requirements part includes execution needs of the

component towards the available resources. For example, a
software component requires more than 100 Kbytes of free
disk space and at least 128 Kbytes of free memory to be
executed. Furthermore, the software component can be
executed under SOLARIS 2.5 environment.

In resources that are bound to specific hosts, like service
description, there are three main parts in the description:
attributes, capsule, and constraints. The Attributes part
includes characteristics of a resource, such as location, CPU
usage, and free memory. These values can change over time.
The Constraints part includes constraint expressions defined
by the resource provider for the allocation of this resource [9].
The following example shows a description of a workstation.
In this example, the workstation has 228 megabytes free
memory, 10 gigabytes disk free, and running Solaris 2.5. The
workstation is provided by CLUS and located at
“clus.univ.edu.com”.
Attributes:
resource-identifier = " CLUS-M1";
type = "Machine";
description = "workstation of seas group at univ";
provider-identifier = "CLUS001";
diskfree = 10; //gigabytes
memoryfree = 228; //megabytes
cache = 8; //megabytes

OpSys = "SOLARIS 2.5";
price = 5;
Capsule
location = "clus.univ.edu.com ";
Constraints:
untrusted = {“NA”}

B. Negotiation process
In this section, a lifecycle model to help us understand the

interactions which take place between a client and a server
engaged in the service discovery and access is presented. In
this model each client is represented by an agent called client
agent and each server is represented by an agent server agent.
The lifecycle of an interaction between the client agent and
the server agent is as follows: service localization, negotiation
of contract, formation and examining of the contract, signature
of the contract, activity, and termination. In the first phase, a
client agent wishing to purchase access to a service must
locate potential service providers able to meet its requirement.
This is done by the client agent and the server agent. This
phase depends on the protocol used in each service discovery
system [19]. In the second phase, a client agent enters into the
negotiation with one or more of these potential server agents,
to see if they can agree mutually acceptable terms of the
required service, i.e., the provider with the highest offer. More
precisely, the client agent seeking to use the service must
negotiate with the server agents offering the service matching
its needs. The outcome of this phase is an agreement
specifying the terms that both the client agent and the server
agent consider acceptable such as the price, the delivery date,
etc. In other words, the client agent and the server agent
establish binding contract that provides both principals agree
to their terms. All participants must agree and examine the
contract in advance. This agreement could be expressed using
digital signatures to prove contract acceptance.

The fourth phase permits to the client agent and the server
agent to sign the contract; a copy of the contract together with
both signatures proves that it was accepted. In other words,
the server agent can express its authorization as an explicit
contract to supply services. Conversely, the client agent
should also enter into the contract, promising to abide by the
service access, and eventually to provide payment or other
services in exchange for those of the server agent [4]. This
contact represents the granted permissions for accessing the
required service. It defines an exchange of services between
the server agent and the client agent. Thus a contract specifies
the server agent promises to offer services through the
contract and service requirements that specify the minimum
levels of services the server will offer. It specifies also that the
client agent will be responsible for paying the server agent for
services used under the contract. For example, the following
example presents a contract between a client agent desired a
video service described above. There are three main parts: 1)
Contract Information, 2) Server Information and 3) client
Information. Contract information part includes all
information that concerns the contract such as the identifier,

the type of the contract, etc. For example, the contract-id is the
identifier of the contract in order to distinguish the case where
there are multiple contracts for the same service. The Server
Information part includes information concerning the server
such as the identifier of the server agent, the location, etc.
Provider-Identifier and client-Identifier represent the actors
who are part in the contract. Duration represents the maximum
time the server agent can take to finish the service. Start-time
and end-time represent the time during which the contract is
valid.
Contract Information
Contract-id= Cont-10
Contract-type: on-demand
Duration: 60 minutes
Start-time=9h:00
End-time=10h:00
Server Information
service-identifier = " Video-1-12";
type = "software";
description = "Video service";
provider-identifier = " Video-1";
input-parameters = { Type of film, Name of film, etc };
output-parameters = { XML Doc video Details};
price = 5;
location = " video-domain.com";
protocol = https;
port = 80;
Client information
Client-identifier=Id-client

In the fifth phase, the contract is eventually regulated
through payment messages and the transaction process of
using the resource or the service can start running. The
discovery server expects that the client agent will not attempt
to access other services than those it required, and expects that
the server agent will provide the required service. In addition,
the transaction may be automatically monitored by the
discovery server, and parties would be warned if any behavior
outside the agreed terms of the contract takes place. It should
be noted that the contract can also be modified on the fly, to
rectify a contract violation such as a resource loss, with a new
contract exchange. More precisely, when a client agent
attempts to use the corresponding service, the permission for
accessing the service is granted accordingly. If the client agent
tries to perform an action that is not performed by the contract
the access is denied.

The final phase consists of an optional termination of the
request or a final termination of the contract. In addition, the
contract that ensures the service is reserved from the time the
contract is signed until its expiration. Once the contract is
expired, it is not valid and a new contract must be signed
between the client agent and the server agent. All these phases
are controlled by asynchronous messages for requesting
actions and exchanging signatures between the client agent
and the server agent.

Electronic signature and associated processes are issues
arousing an ever-increasing interest in many researches in the
field of security in information systems [5, 6, 7, 8]. They

become a vital component of the emerging electronic business
infrastructures. The main goal is to provide users with time
management and signed- electronic content protection. In the
rest of this paper, we address the purpose and the usage of
signature and time-stamps on negotiated electronic contracts
between server agents and client agents in service discovery
systems. The specification and modeling of electronic
signature process using Petri net together with the validation
of some properties are presented.

IV. ELECTRONIC SIGNATURE PROCESS MODELING
Electronic signature and associated processes are managed

with synchronization, parallelism and concurrency phenomena
[15]. So, variety of these phenomena makes the study of such
protocols difficult and requires the use of several
complementary theories for their description and analysis. As
it can be performed for telecommunication networks,
computer systems or transportation systems, we show how the
Petri net tool can be used to model electronic signatures and
associated processes. Such tool has attracted the attention of
many researchers [13, 14, 16, and 17]. Petri net model enables
us to obtain some performance indices and to derive easily
some graphical properties of the studied protocol [12].

In order to check and validate the contract signing process
described above, we represent its behavior by a graphical
model using Petri net model. In this model, transitions model
the events (e.g. signature, authenticity, hash coding, time-
stamping…) and their firings model the occurrence of these
events. Recall that a PN is a graph composed of two nodes:
places and transitions. The oriented arcs connect certain
places to certain transitions, or conversely. With each arc, we
associate a weight (non negative integer). In a formal way, a
PN is a 5-uple PN = (P, T, A, W, M0) where:

- P = {P1, …, Pn} is a finite set of places;
- T = {T1, …, Tm} is a finite set of transitions (represented
 with line segments);
- A ⊆ (P x T) ∪ (T x P) is a finite set of arcs;
- W = A → {1, 2 …} is the weight function associated with
 arcs;
- M0 = P → {0, 1, 2 …} is the initial marking of graph.
An important class of PN is timed event graphs (TEG). For

this class, each place has only one input and one output
transition. In addition, each place is associated with time
interval which means that a token may remain in a place for
this time interval. The considered protocol will be modelled
by TEG model. The aim of using this tool is to be able to
describe, in a simple and effectiveness way, the behaviour of
dynamic systems by mathematical and linear equations in
(max, plus) algebra [15] which will be the subject of our next
contribution.

The figure 1 presents the Petri net of the Electronic
signature and associated processes applied to SSDS system
described above. The graph is composed of four sub-graphs:

1- Contract with its digest: after creation and negotiation of
contract between a client agent and a server agent, the firing

of transition Contract means that the content of the contract
is valid (token in place Contract-avail). To sign this contract
electronically one can use its digest obtained using a hash-
coding function (token of place Digest). We note that
several hash-coding functions exist in the literature. Among
these functions an alternative method for generating digests
of electronic document is developed in [17, 18]. Using this
method, one can grasp the original contract ideas from its
hash-code.
2- Client agent part with its certificate authority SSDS-
Client: in this part of the model, the client agent, which
needs a service, sends its request to the certificate authority
SSDS-Client for asking a valid certificate (token in place
Clie-Req) to sign the contract with a sever token in place
(Clie-Pri-Key). The firing of transition SSDS-Client means
that the certificate authority delivers a valid certificate to the
client agent (token in place Clie-Certif). Once the three

places Clie-Certif, Clie-Pri-Key and Digest are occupied
each one by a token, then the client agent could sign (firing
of transition Clie-sign) the contract and transmit it to the
server agent to affix its signature, which means that the
client agent sends its request to the server agent and wait for
the response. This is modelled by adding a token to the
situated place between transitions Clien-Sign and Serv-Sign,
and another token in the place W-fb-Cli.
3- Server agent side with its certificate authority SSDS-
Server: like for the client agent side, the server agent asks
for a valid certificate from its certificate authority (token in
place Serv-Req). Once this certificate is obtained and the
server agent is free to sign (presence of tokens in places
Serv-Pri-Key and in Serv-Certif), the transition Serv-Sign is
validated and fired.

Legend:

Server part
SDDS-Sever: Service Discovery DS (Server
side)
Serv Req: Server request
Serv Certif: Server certificate
Serv Pri Key: Server Private Key
Serv Sign: Server signature
W-fb Serv: Server waiting feedback
TS Req: Time stamping request
TS-SDDS Serv: Time stamping SDDS server
TS-Serv: Time stamping (server side)
Serv Akno: Server Acknowledgement
V contract-Serv: Valid contract (server side)

Client part
SDDS-Client: Service Discovery DS (Client
side)
Clie Req: Client request
Clie Pri Key: Client Private Key
Clie Certif: Client certification
Clie Sign: Client signature
W-fb Clie: Client waiting feedback
TS-SDDS clie: Time stamping SDDS client
TS-Clie: Time Stamping (Client side)
Clie Ackn: Client Acknowledgement
V contract-Clie: Valid contract (client side)

Contract
Contract avail: Contract available
Hash coding: Contract hash coding
Digest: contract digest that will be signed by
private key
Contract S-T-S: Contract signed time-
stamped and stored

SDDS-Client Client Contract Server SDDS-Server

Clie
Cretif

Serv
Certif

Clie
Req

Serv
Req

Clie Sign

Serv Sign

Serv
Avail

W-fb Clie

W-fb
Serv

Clie
Pri Key

Serv
Pri Key

Contract
 avail

Hash
coding

Digest

Client Contract Server

TS-SDDS
Serv

TS-SDDS
Clie

Storage-
SDDS-Serv

Contract
S-T-S

TS Req

TS-Serv

TS-Clie Valid contract

Clie Ackn

Serv Ackn

Valid
contract
Serv

Valid
contract
Clie

Storage

Si
gn

at
ur

e
Va

lid
at

io
n

Figure 1: Petri net model of the signature protocol.

4- Signature validation with other security operations (time
stamping, storage and validation). Once the signature is
made by the client agent and the server agent (presence of a
token in the place situated between Serv-Sign and Ts-Req),

other security operations will be done on the contract. The
sub-model “signature validation” represents the three steps
by which the contract transits before its validation. These
steps are: time-stamping (firing of transitions TS-SSDS-

Serv, TS-Serv for the server, and TS-SSDS-Clie and TS-
Clie for the client), storage which is only done by the server
agent certificate authority (firing of transitions Storage-
SSDS-Serve and Storage). Finally, the validation of the
contract is done by both the server agent (firing of transition
Valid-contract-Serv) and the client agent (firing of transition
Valid-contract-clie) and Valid-contract.
In the legend (figure 1), significances of Petri net model

elements are mentioned.
By analyzing the Petri net model presented in the figure 1,

the following properties that concern the evolution of the
signature process between client agents and a server agent are
verified to validate the contract signature process:

a- Existence of a marking enabling to fire any sequence
of transitions

b- Monotony: which means that the growing of number of
tokens in model places of a marking preserve the firing
possibility of a sequence of transitions

c- Boundness: a place P is called k-bounded if for all
marking M reachable from M0 (initial marking),
M(p) ≤ k. To ensure this property in our model, we
suppose that the holding time of a token in certain
places (W-fb Serv and W-fb Clie, see figure 1) is
bounded by a fixed limit. If this constraint is respected
the contract will be valid. Otherwise, the client request
can not be satisfied.

d- Livness: this means that the firing of each transition,
independently of the net evolution from its initial
marking, is possible. We say that the transition is alive
and each process event can be reached.

e- Absence of blocking: this property means that there is
no marking from which a transition is not fired.

V. CONCLUSION
 In this paper an access control model based on negotiation
and establishing contract is presented. Contract links
computations to the resource model, by expressing agreements
between clients and provides as promises to exchange
resources, and binding them to the underlying computations
that use the resources. The resource description allows
efficient assessment and prediction of contracts’ impact. The
second part of the paper addresses the modeling and proves
formally the proposed process, using Petri net. This model
enables to have appropriate properties of safety, liveness and
absence of blocking of the considered contract signature
protocol. More precisely, contract signing schemes should be
analyzed in more detail to establish efficient contract
transformations that participants can use to establish a
mutually satisfactory contract. Future research addresses the
enhancement of this model by using a (max, plus) algebra.

VI. REFERENCES
[1] Y. Gidron, I. Ben-Shaul, O. Holder, and Y. Arior, "Dynamic

Configuration of Access Control for Mobile Components in FARGO".
Concurency and Computation, V 13, N° 1, pp. 5-21, January 2001.

[2] M. Bakhouya, J. Gaber, "Adaptive Approaches for Ubiquitous
computing". In Mobile networks and wireless sensor networks. Eds.
Hermes Science, ISBN 2-7462-1292-7, pp. 129-163, 2006.

[3] B. Firozabadi, M. Sergot, "Contractual access control". In Procs. of 10th
International Workshop of Security Protocols, Cambridge (UK), 2002,
citeseer.ist.psu.edu/firozabadi02contractual.html.

[4] B. Ninham Shand, "Trust for Resource Control: Self-enforcing
Automatic Rational Contracts between Computers", UCAM-CL-TR-600,
ISSN 1476-2986.

[5] B. Preneel, A. Bosselaers, H. Dobbertin, "The Cryptographic Hash
Function RIPEMD-160". CryptoBytes, vol. 3, No. 2, pp. 9-14. 1997.

[6] D. Rieupet, M. Wack, N. Cottin, D. Assossou, "Signature Electronique
Multiple". Atelier Sécurité des Systèmes d'Information, XXIIème
Congrès INFORSID, Mai 2004.

[7] J. Linn, "RFC 1421: Privacy Enhancement for Internet Electronic Mail:
Part I: Message Encryption and Authentication Procedures", IAB IRTF
PSRG, IETF PEM WG, February 1993.

[8] National Institute of Standards and Technology: Digital Signature
Standard (DSS). Federal Information Processing Standards Publication,
FIPS PUB 186-2, January 2000.

[9] Z. Maamar, Q. Z Zheng, and B. Benatallah, "On Composite Web
Services Provisioning in an Environment of Fixed and Mobile".
Information Technology and Management Journal, Special Issue on
Workflow and e-Business, Kluwer Academic Publishers, 2004

[10] P. Kellert, F. Toumani, "Les Web Services Sémantiques". Research
Report LIMOS/RR 03-15, 11 Juillet 2003.

[11] S. Higels, D. Lewis, "State of art: Service composition". M-Zones
Deliverable 1, pages 88-136, www.m-
zones.org/deliverables/d1_1/papers/

[12] A. Nait-Sidi-Moh, M. Wack, "Modelling of Process of Electronic
Signature with Petri Nets and (max, plus) Algebra". Computer science
and its applications (LNCS), Editeur Springer, Vol. 3483, Issue IV,
pp. 792-801, ISBN: 3-540-25863-9. 2005.

[13] A. Di Febbraro, S. Sacone, "Hybrid Modelling of Transportation
Systems by means of Petri Nets". IEEE International Conference on
Systems, Man and Cybernetics (SMC’98) 1998; Vol.°1; 131-135.

[14] E. Castelain, K. Mesghouni, "Regulation of a Public Transport Network
with consideration of the passenger flow: modeling of the system with
High-level Petri Nets". IEEE International Conference on Systems, Man
and Cybernetics (IEEE SMC’02). Tunisia: Hammamet; 2002; Vol. 6;
250-254.

[15] F. Baccelli, G. Cohen, G-J. Olsder, J-P. Quadrat, "Synchronisation and
linearity. Algebra for discrete Event Systems". John wiley et sons; 1992.

[16] R. David, H. Alla, "Du grafcet aux réseaux de Petri". Book, France :
Paris; 1992.

[17] M. Wack, A. Nait-Sidi-Moh, S. Lamrous, N. Cottin, "Meaningful
Electronic Signatures and Associated Processes Formalization
Proposals’’. Journal of Artificial Intelligence and Law, Editeur Springer.
ISSN 0924-8463 (Print) 1572-8382 (Online), URL:
http://www.springerlink.com/content/0626g21x25634128/

[18] M. Wack, A. Nait-Sidi-Moh, S. Lamrous, N. Cottin, J. Gaber, "Procédé
de Signatures Signifiantes à Base de Mots Clefs", Office européen des
brevets, Patentlaan 22280 HV Rijswiijk (ZH), N° 07 00847.

[19] E. Guttman, "Service Location Protocol: Automatic Discovery of IP
Network Services". IEEE Internet Computing, 3(4), 71-80, ISSN: 1089-
7801, 1999.

[20] D. Xu, K. Nahrstedt, D. Wichadakul, "Qos-aware Discovery of Wide-
area Distributed Services”. In First IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid), Brisbane, Australia, pp.
92–99, 2001.

[21] R. Robert, "Discovery and Its Discontents : Discovery Protocols for
Ubiquitous Computing". UIUCDCS-R-99-2132, March 25 2000.

[22] Gaber J. “New paradigms for ubiquitous and pervasive computing”.
White paper. Universite de Technologie de Belfort-Montbéliard, France,
2000.

[23] Gaber J. “New paradigms for ubiquitous and pervasive applications”.
Proc. of First Workshop on Software Engineering Challenges for
Ubiquitous Computing. Lancaster, UK, 2006.

[24] Bakhouya, M., Gaber, J., “Ubiquitous and Pervasive Application
Design”. Encyclopedia of Mobile Computing & Commerce, Eds. D.
Taniar, Idea Group Pub, Fb. 2007.

http://www.m-zones.org/deliverables/d1_1/papers/
http://www.m-zones.org/deliverables/d1_1/papers/
http://www.springerlink.com/content/0626g21x25634128/

	INTRODUCTION
	Secure service discovery system
	Access control model
	Service description
	Negotiation process

	Electronic signature process modeling
	Conclusion
	References

