
HAL Id: hal-00470117
https://hal.science/hal-00470117

Submitted on 3 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and analysis of a non-synchronized transport
network using Petri nets and (max, plus) algebra

Ahmed Nait Sidi Moh, Wafaa Ait-Cheik-Bihi, Maxime Wack

To cite this version:
Ahmed Nait Sidi Moh, Wafaa Ait-Cheik-Bihi, Maxime Wack. Modelling and analysis of a non-
synchronized transport network using Petri nets and (max, plus) algebra. International Conference
on Computers & Industrial Engineering, 2009. CIE 2009., Jul 2009, Troyes, France. pp.6 Pages,
�10.1109/ICCIE.2009.5223514�. �hal-00470117�

https://hal.science/hal-00470117
https://hal.archives-ouvertes.fr


 

1. INTRODUCTION
 
The conception and the planning (timetabling or 
resources assignment) of transport systems are essential 
tasks to ensure an optimized management of bus 
networks.  Modelling, performance analysis and control 
of transportation networks are issues arousing an ever-
increasing interest in many researches [7, 8, 9, 10]. 
These networks can be considered as complex large-
scale systems which require dedicated tools for their 
study. In particular, the development of collective 
transportation mode is one key to improve urban quality 
of life, by significantly reducing various problems like 
traffic jams, pollution, and risks of accidents. To 
improve the performance of a public transportation 
mode, it is first necessary to evaluate and analyse the 
strength and weakness of the existing offer, so as to 
identify critical points of the network. 
 
Transport systems can be considered as a discrete event 
system where the dynamic evolves in a space of discrete 
state, states changes are conditioned by events. The 
study of DES was the subject of several researches and 
developments [1, 2, 3, 4].  
 
In this paper, we focus on modelling and evaluation 
analysis of a public transport network using two 
complementary tools Petri nets and (max, +) algebra. 
Our contribution is to propose a graphic-based model 
wherein temporal synchronization phenomena of buses 
in the connection stops are avoided. This hypothesis will 
not be considered in our modelling in order to avoid 
delays of buses on the lines and then enormous waiting 
times of passengers. By removing this hypothesis, the 

buses don’t have to wait for each other to exchange 
passengers. They can thus work independently. Another 
objective of our study is to propose a calculus method 
allowing the passengers to move from a given stop to a 
destination, with exchange of bus, with minimal waiting 
times and by using the shortest itinerary. 
 
The strength and the feasibility of Petri nets, especially 
its class Timed Event Graph (TEG) [5, 6] for modelling 
and analysis of various class of DES (transportation 
systems, production systems, information systems,...) 
were proved in several researches [9, 11, 12] for 
planning bus operations in transportation network; and 
[13] to study a manufacturing system. To model and 
analyse thoroughly both the structural and analytical 
behaviour of DES, Petri nets are complemented by 
(max, +) equations in dioid algebra. The efficiency and 
the simplicity of this algebra in modelling, analysis, and 
performance evaluation were proved in several 
researches [1, 2, 7, 8]. For all these reasons our choice to 
study a bus network is based on these two 
complementary tools. 
 
This paper is organised as follows: in section 2, we 
describe the studied transportation network. In section 3, 
we propose a graphic and (max, +)-based models of the 
network. An analytical study of network performances of 
this system by solving the (max, +) model is given in 
section 4. Last section gives some conclusions and 
suggestions for further researches. 
 

2. DESCRIPTION OF STUDIED SYSTEM 
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First of all, we describe the system we will study in this 
paper. It is about a public transport network wherein 
several bus lines are connected. These connections, 
called connection stops allow every user of this means of 
transport to move from his departure stop to a desired 
destination. 
  
In this study, we limit ourselves to a network consisting 
of four bus lines (Figure 1). We underline that the 
network considered in this paper is just an application 
example; the proposed modelling methodology can be 
generalized to other infrastructures and other 
transportation mode. In the considered infrastructure, 
each line contains several stops among which the 
connection and simple stops. On each line, buses 
circulate according to a defined timetable. Considering 
our objective which concerns the connections 
management of the network, we are only going to 
represent, in the modelling stage, the bus terminals 
(departure stops and terminuses) and connection stops. 
Other stops (simple stops) are integrated into the bus line 
(Figure 1). With each portion of itinerary, we associate a 
travelling time, which represents the necessary average 
time for a bus to move on the portion. For every line the 
following data are supposed to be fixed: 
 
• The required time for a bus to perform a trip, 
• The number of buses circulating on the line, 
• Journey time between each two successive stops. 
 
Furthermore, we suppose that the synchronization of 
buses is not considered. Every bus arriving in a stop 
leaves this last when passengers go up and/or get off the 
bus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The considered network structure. 

 
 
Legend:  
Sdi (1 ≤ i ≤ 4) : Departure stop of the line Li ; 
Sc12 : connection stop between L1 and L2; 
Sc13 : connection stop between L1 and L3; 
Sc23 : connection stop between L2 and L3; 
Sc34 : connection stop between L3 and L4. 

 
3.  GRAPHICAL AND MATHEMATICAL 

MODELING 
 
3.1 Motivation 
 
To model the considered system, we choose a timed 
event graph which is a significant class of PN. As we 
already underlined, the choice of this graphical tool is 
justified by its powerful modelling of DES. It is also 
chosen for its helpful to facilitate the description of the 
behaviour of these systems by linear equations in dioid 
algebra. 
In our study, we are interested in the management of 
passenger connections on the network. At each 
connection stop between two lines Li and Lj, we are 
interested at the same time in the passengers making the 
connection from Li to Lj and from Lj to Li. This 
situation can be expressed by a synchronization 
phenomenon in the stop. However this phenomenon 
represents a strong constraint in the modelling of the 
concrete functioning of buses on the network.  In the 
railways networks, this problem is less present. Indeed, 
the trains are generally expected to be able to exchange 
the passengers. Their expectations are taken into account 
during the planning of their timetables. This situation 
produces the synchronization of trains at the railway 
station. Whereas, buses don’t wait each other, at the 
connection stops to exchange passengers.  
 
Two manners to model a connection stop in a bus 
network are given in figure 2. Let us note that in the 
graphic-based model that represents the network, 
transitions represent stops, places model portions of road 
between stops and tokens represent the buses 
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Figure 2: Modelling of a connection stop between two 
liens Li and Lj. 

 
Our initiative is to manage the synchronization 
phenomenon of buses without imposing any undesirable 
waiting of vehicles. Figure 2 represents a portion of two 
lines related by a connection stop. In this figure, we 
represent, in two different ways, a connection stop 
between two lines.  
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Figure a) represents the connection stop renowned Sc_i,j 
between the line Li and the line Lj. According to the 
firing rules of Petri net transitions, the firing of the 
transition Sc_i,j cannot be done except when all its 
upstream places contain each one at least one token. 
Knowing that tokens represents buses, the departure of a 
bus from this stop can be done only if another bus 
circulating on the other line arrives at the same stop. 
This functioning mode is caused by the temporal 
synchronization phenomenon between buses. 
In Figure b), we relax the synchronization constraint of 
buses. To avoid this constraint, the stop is represented by 
the couple of two transitions (Sc_i�j, Sc_j�i), called 
composed transition. The transition Sc_i�j (resp. 
Sc_j�i) model the connection from the line Li to Lj 
(resp. the line Lj to Li). In this situation, even if both 
transitions Sc_i�j and Sc_j�i represent the same stop, 
their firings are independent. If a bus of the line Li (resp. 
line Lj) arrives at the stop Sc_i�j (resp. Sc_j�i), it can 
leave this last one just when passengers go up and/or get 
off the bus without having to wait the arrival of a bus of 
the line Lj (resp. Li). This modeling approach allows 
insuring a non-synchronized functioning of buses. 
 
Using this approach, it is possible to model all 
connection stops of the network, avoiding the 
synchronization constraint of buses. 
 
3.2 Graphic-based model  
 
In this section, we give the event graph model that 
represents the behaviour network of the figure 1. Each 
line is represented by the departure stop, connection stop 
(s) and terminus.  
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Figure 3: Event Graph Model of bus network. 

 

As shown in figure 3, the four lines are represented as 
follows: 
• The line L1 : Sd1, Sc1�2, Sc1�3, Sa1 ; 
• The line L2 : Sd2, Sc2�1, Sc2�3, Sa2 ; 
• The line L3 : Sd3, Sc3�1, Sc3�2, Sc3�4, Sa3 ; 
• The line L4 : Sd4, Sc4�3, Sa4. 
• Different places Pi (1≤ i ≤12) represent the portions 

of road between connection stops. 
 
In the graphic-based model of figure 3, various 
connection stops are represented as follows:  
Sc12 = (Sc1�2, Sc2�1) ; Sc13 = (Sc1�3, Sc3�1) ; 
Sc23 = (Sc2�3, Sc3�2) ; Sc34 = (Sc3�4, Sc4�3). 
 
3.3 (Max, +)-based model 
 
Let us start this section by giving some basic elements of 
(max, +) algebra. Let us denote �max, called dioid, the set 
�∪{- ∞} associated with the two laws ⊕ and ⊗. These 
laws are defined by: ∀ a, b ∈ �max we have: 
 
� a ⊕ b = max (a, b) 
� a ⊗ b = a + b  (often we write “ab” instead of a⊗b) 

 
The law ⊕ (resp. ⊗) has a neutral element, denoted 
ε (resp. e), for addition (resp. multiplication) : 
a ⊕ ε = ε ⊕ a = a (resp. a ⊗ e =e ⊗ a = a). The element ε 
is absorbing for the law ⊗ (a ⊗ ε =ε ⊗ a = ε). The laws 
⊕ and ⊗ have several properties and characteristics such 
as: associativity,   distributivity, neutral elements, etc... 

Solving (max, +) equations is perfectly possible. Let us 
consider for example this type of equation: a ⊗ x ⊕  b = 
x, this implicit equation has as solution: x = a*⊗b, with 
a* = e ⊕ a ⊕ a2 ⊕ … ⊕ an ⊕ …. (Kleene star). When a 
and b are matrices of orders respectively (nxn) and (nx1) 
we come down to the same resolution but in the dioid 

matrix � nxn
max

, (a* = Id ⊕a⊕a2 ⊕  … ⊕an ⊕…) with 

Id ∈ � nxn
max

 is the identity matrix. More details about this 

algebra can be found in [1]. 
 
With assigning variables to various transitions and 
temporisations to various places of the model, we can 
describe its behaviour by mathematical equations in 
(max, +) algebra. To do this, we assign to every 
transition one variable (Table 1). 
 
The temporization ti associated with the place Pi 
represents the time needed to move between two stops 
(these stops are represented by both upstream and 
downstream transition of the place Pi). 
 
In the stage of the mathematical modelling, the figure 3 
is replaced by the figure 4 wherein different variables 
and temporisations are presented.  
 
 
 



 

 Transitions Variables 
 
Input  system 

Sd1 u1 
Sd2 u2 
Sd3 u3 
Sd4 u4 

 
 
 
Internal 
state of 
the 
system 

connection  
L1 - L2 

Sc1�2 x1 
Sc2�1 x2 

Connection  
L1 - L3 

Sc1�3 x3 
Sc3�1 x4 

Connection  
L2 -L3 

Sc2�3 x5 
Sc3�2 x6 

Connection  
L3 - L4 

Sc3�4 x7 
Sc4�3 x8 

 
Output system 
 

Sc1 y1 
Sc2 y2 
Sc3 y3 
Sc4 y4 

Table 1: Definition of model variables. 
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Figure 4: TEG model: definition of variables and 

temporization. 
 
In order to describe the behaviour of the graphic-based 
model by (max, +) equations, we associate with each 
variable xi, for 1≤ i ≤8 (resp. ui and yi, for 1 ≤ i ≤ 4), the 
parameter xi(k) (resp. ui(k) and yi(k)). These parameters, 
called daters, represent the dates of kth firing of the 
associated transition. 
 
The (max, +)-based model describing the analytical 
behaviour of the studied network, is given by (1). 
 

∀ k ≥ 1, 
x1(k) = t1⊗u1(k) 
x2(k) = t4⊗u2(k) 
 
x3(k) = t2⊗x1(k) 
x4(k) = t7⊗u3(k) 
 
x5(k) = t5⊗x2(k) 
x6(k) = t8⊗x4(k) 
 (1) 
x7(k) = t9⊗x6(k) 
x8(k) = t11⊗u4(k) 
 
y1(k) = t3⊗x3(k) 
y2(k) = t6⊗x5(k) 
y3(k) = t10⊗x7(k) 
y4(k) = t12⊗x8(k) 

 
By defining the input vectors U(k), the state vectors X(k) 
and the output vectors Y(k) relative to the considered 
system, we put the system (1) in a matrix form.  
Let us note: 
U(k) = [u1(k), u2(k), u3(k), u4(k)]t : input vector; 
X(k) = [x1(k), x2(k), …, x8(k)]t : state vector ; 
Y(k) = [y1(k), y2(k), y3(k), y4(k)]t : output vector. 
 
Using these three vectors, the system (1) can be written 
as follows: 
∀ k ≥ 1, 

X(k) = A ⊗ X(k) ⊕ B ⊗ U(k) (2) 
Y(k) = C ⊗ X(k) (3) 

 

The characteristic matrices A, B and C (A ∈ � 8x8
max , 

B ∈ � 8x4
max  and C ∈ � 4x8

max ) are expressed according to 

the system data. 
 
From the equation (2) it is possible to calculate and 
evaluate all states of the system at any time. To do this, 
we proceed to solve this equation. So we replace by an 
iterative way the expression of X(k) by its value (right 
member of (2)). Thus, we obtain:  
∀ k≥1, 

X(k) = A ⊗ X(k) ⊕ B ⊗ U(k) 
= A ⊗ (A ⊗ X(k) ⊕ B ⊗ U(k)) 
= … 
= An X(k) ⊗ (An-1⊕ An-2⊕ …⊕ A⊕ Id) ⊗ B ⊗U(k) 
= A* ⊗ B ⊗ U(k) (4) 

 
Where: 
• A* = ε because the TEG model of the figure 4 does 

not contain strong connex components. 
• A* (= An-1⊕ An-2⊕ …⊕ A⊕ Id) is the quasi-inverse 

of the matrix A, called also star of Kleene.  
Using (4), the expression of the output (equation (3)) is 
given by: ∀ k≥1, 
 

Y(k) = C ⊗ A* ⊗ B ⊗ U(k) (5) 



 

 
From the equation (5), we can evaluate different arrival 
times of buses at each terminus. 
 

4. EVALUATION AND ANALYSIS  
OF TRAVELING TIMES 

 
From every couple of equations of the system (1) and by 
using the solution given in (4), it is possible to evaluate 
the journey times (connection times + travel times) of 
passengers on the network. From this evaluation, we try 
to define the shortest itinerary for a given passenger who 
has several possibilities to reach a desired destination. 
 
Considering , for example, the connection stop Sc12, the 
waiting time for passengers who want to make a 
connection from L1 to L2 and L2 to L1 are given 
respectively by T_1,2 and T_2,1. These times are 
expressed as: ∀ k ≥ 1, 
 

T_1,2(k) = x2(k2) – x1(k) (6) 
T_2,1(k) = x1(k1) – x2(k) (7) 

 
With:  

k1 = Infj {j ∈� such as x1(j) ≥ x2(k)} 
k2 = Infj {j ∈� such as x2(j) ≥ x1(k)} 

 
In the same way, we calculate the other waiting times in 
different connection stops. 
 
As we have already mentioned, we try to define the 
shortest itinerary for a passenger who travels on the 
network by making one or several connections. For 
example, we choose a passenger who wants to move 
from Sd1 (departure stop of L1) to Sa4 (terminus of L4). 
In this study, we are going to evaluate the travel times of 
this passenger on the various possible itineraries and for 
different departure times from Sd1. This evaluation is 
based on (max, +) solution given in (4) and by 
calculating waiting times of passengers in connections 
stops as in (6) and (7).  By observing the network, the 
possible itineraries from Sd1 to Sa4 are: 
 

1- Sd1  �  Sc12  �  Sc23  �  Sc34  �  Sa4 
Or 

2- Sd1  �  Sc13  �  Sc34  �  Sa4 
 
Therefore, we are going to evaluate the travelling time 
for these two itineraries for a working period of buses. 
 
If we consider a working period of buses which 
corresponds to the time interval [α, β]. We suppose that 
the departure dates of buses from their departure stops 
are include in this interval. 
 
• First itinerary:  
The various connection times of a passenger arriving at 
Sd1 at the time “t” are given by: 
 
∀ k ∈ {j ∈� such as u1(j) ∈ [α, β]}, 

 
T1_1,2(k, t) = x2(k2) – x1(k) 
T1_2,3(k, t) = x6(k3) – x5(k2) 
T1_3,4(k, t) = x8(k4) – x7(k3) 

 
With:  

k2 = Infj {j ∈� such as x2(j) ≥ x1(k)} 
k3 = Infj {j ∈� such as x6(j) ≥ x5(k2)} 
k4 = Infj {j ∈� such as x8(j) ≥ x7(k3)} 

 
The sum of these waiting times gives the global waiting 
time of the passenger, noted T1

waiting(k, t) to go from Sd1 
to Sa4. So we obtain: 

T1
waiting(k, t) = T1_1,2(k, t) + T1_2,3(k, t) 

+ T1_3,4(k, t) (8) 
 
• Second itinerary: 
The connection times in this case are given by : 
∀ k ∈ {j ∈� such as u1(j) ∈ [α, β]}, 
 

T2_1,3(k, t) = x4(k’3) – x3(k) 
T2_3,4(k, t) = x8(k’4) – x7(k’3) 
 

With:  
k’3 = Infj {j ∈� such as x4(j) ≥ x3(k)} ; 
k’4 = Infj {j ∈� such as x8(j) ≥ x7(k’3)} ; 

 
As a result, the sum of waiting times for this second 
itinerary is: 
       T2

waiting(k, t) = T2_2,3(k, t) + T2_3,4(k, t) (9) 
 
By comparing the two results in (8) and (9), we choose, 
for each date “t”, the shortest itinerary that must be taken 
by passengers. 
 

5. CONCLUSION 
 
In this paper we described the modelling and the 
evaluation of a public transport network, in a first time, 
with a subclass of Petri Nets called dynamic timed event 
graph, and in a second time with the mathematical 
approach (max, +) algebra. Those tools enabled us to 
model our transportation network. A modelling approach 
is proposed to avoid synchronised working mode of 
buses. Without considering this working mode, the buses 
can be circulating without enormous waiting times at the 
connections stops. Buses are not constrained to wait each 
other at the connection stops.  
 
By solving and analysing the (max, +) model, we 
evaluated some performance of bus network (in terms of 
connection and travelling times of passengers). We 
showed also, how to calculate a shortest itinerary on the 
network basing on these analytical evaluations. The 
prospect of this work is the extension of the obtained 
results to more complex transport systems, for example 
multimodal networks.  
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