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Modelling, performance analysis and control play a major role in the design of discrete event systems (DES). An adequate formal method to describe the behaviour of such systems is required. This paper deals with the modelling and the performance evaluation of a public transportation system. The behaviour of such system is studied in the framework of DES. Specifically, the study focuses on modelling of transportation system using the two complementary tools Petri nets (PN) and dioid algebra. In this study, we focus mainly on a logical modelling avoiding temporal synchronization phenomena of resources. The performance analysis of the considered network is made by solving and analysing the (max, +) state model which describes the analytical behaviour of the network. Journey times of passengers and calculation of shortest path from an origin to a destination will be considered in the stage of performance evaluation.

INTRODUCTION

The conception and the planning (timetabling or resources assignment) of transport systems are essential tasks to ensure an optimized management of bus networks. Modelling, performance analysis and control of transportation networks are issues arousing an everincreasing interest in many researches [START_REF] Olsder | 26 ème école de printemps d'informatique, Algèbre Max-Plus et applications en informatique: On large scale max-plus algebra model in raillway systems[END_REF][START_REF] Nait-Sidi-Moh | Spectral analysis for performance evaluation in a bus network[END_REF][START_REF] Nait-Sidi-Moh | Modélisation et commande de systèmes de transport avec l'algèbre des dioïdes[END_REF][START_REF] Bussieck | Discrete optimization in public rail transport[END_REF]. These networks can be considered as complex largescale systems which require dedicated tools for their study. In particular, the development of collective transportation mode is one key to improve urban quality of life, by significantly reducing various problems like traffic jams, pollution, and risks of accidents. To improve the performance of a public transportation mode, it is first necessary to evaluate and analyse the strength and weakness of the existing offer, so as to identify critical points of the network.

Transport systems can be considered as a discrete event system where the dynamic evolves in a space of discrete state, states changes are conditioned by events. The study of DES was the subject of several researches and developments [START_REF] Baccelli | Synchronisation and linearity, Algebra for discrete Event Systems[END_REF][START_REF] Cohen | A linearsystem-theoretic view of discrete-event process and its use for performance evaluation in manufacturing[END_REF][START_REF] Gaubert | Systèmes dynamiques à événements discrets[END_REF][START_REF] Schutter | Max-Algebra system theory for discrete event systems[END_REF].

In this paper, we focus on modelling and evaluation analysis of a public transport network using two complementary tools Petri nets and (max, +) algebra. Our contribution is to propose a graphic-based model wherein temporal synchronization phenomena of buses in the connection stops are avoided. This hypothesis will not be considered in our modelling in order to avoid delays of buses on the lines and then enormous waiting times of passengers. By removing this hypothesis, the buses don't have to wait for each other to exchange passengers. They can thus work independently. Another objective of our study is to propose a calculus method allowing the passengers to move from a given stop to a destination, with exchange of bus, with minimal waiting times and by using the shortest itinerary.

The strength and the feasibility of Petri nets, especially its class Timed Event Graph (TEG) [START_REF] David | Du grafcet aux réseaux de pétri[END_REF][START_REF] Petri | Komminukation mit automaten[END_REF] for modelling and analysis of various class of DES (transportation systems, production systems, information systems,...) were proved in several researches [START_REF] Nait-Sidi-Moh | Modélisation et commande de systèmes de transport avec l'algèbre des dioïdes[END_REF][START_REF] Houssin | Timetable synthesis using (max, +) algebra[END_REF][START_REF] Karlaftis | Decision Support Systems For Planning Bus Operations During Mega Events: The Athens 2004 Summer Olympics[END_REF] for planning bus operations in transportation network; and [START_REF] Proth | Les réseaux de Petri pour la conception et la gestion des systèmes de production[END_REF] to study a manufacturing system. To model and analyse thoroughly both the structural and analytical behaviour of DES, Petri nets are complemented by (max, +) equations in dioid algebra. The efficiency and the simplicity of this algebra in modelling, analysis, and performance evaluation were proved in several researches [START_REF] Baccelli | Synchronisation and linearity, Algebra for discrete Event Systems[END_REF][START_REF] Cohen | A linearsystem-theoretic view of discrete-event process and its use for performance evaluation in manufacturing[END_REF][START_REF] Olsder | 26 ème école de printemps d'informatique, Algèbre Max-Plus et applications en informatique: On large scale max-plus algebra model in raillway systems[END_REF][START_REF] Nait-Sidi-Moh | Spectral analysis for performance evaluation in a bus network[END_REF]. For all these reasons our choice to study a bus network is based on these two complementary tools. This paper is organised as follows: in section 2, we describe the studied transportation network. In section 3, we propose a graphic and (max, +)-based models of the network. An analytical study of network performances of this system by solving the (max, +) model is given in section 4. Last section gives some conclusions and suggestions for further researches.

DESCRIPTION OF STUDIED SYSTEM

First of all, we describe the system we will study in this paper. It is about a public transport network wherein several bus lines are connected. These connections, called connection stops allow every user of this means of transport to move from his departure stop to a desired destination.

In this study, we limit ourselves to a network consisting of four bus lines (Figure 1). We underline that the network considered in this paper is just an application example; the proposed modelling methodology can be generalized to other infrastructures and other transportation mode. In the considered infrastructure, each line contains several stops among which the connection and simple stops. On each line, buses circulate according to a defined timetable. Considering our objective which concerns the connections management of the network, we are only going to represent, in the modelling stage, the bus terminals (departure stops and terminuses) and connection stops. Other stops (simple stops) are integrated into the bus line (Figure 1). With each portion of itinerary, we associate a travelling time, which represents the necessary average time for a bus to move on the portion. For every line the following data are supposed to be fixed:

• The required time for a bus to perform a trip, • The number of buses circulating on the line, • Journey time between each two successive stops. Furthermore, we suppose that the synchronization of buses is not considered. Every bus arriving in a stop leaves this last when passengers go up and/or get off the bus. 

Legend:

Sdi (1 ≤ i ≤ 4) : Departure stop of the line Li ; Sc12 : connection stop between L1 and L2; Sc13 : connection stop between L1 and L3; Sc23 : connection stop between L2 and L3; Sc34 : connection stop between L3 and L4.

GRAPHICAL AND MATHEMATICAL MODELING 3.1 Motivation

To model the considered system, we choose a timed event graph which is a significant class of PN. As we already underlined, the choice of this graphical tool is justified by its powerful modelling of DES. It is also chosen for its helpful to facilitate the description of the behaviour of these systems by linear equations in dioid algebra.

In our study, we are interested in the management of passenger connections on the network. At each connection stop between two lines Li and Lj, we are interested at the same time in the passengers making the connection from Li to Lj and from Lj to Li. This situation can be expressed by a synchronization phenomenon in the stop. However this phenomenon represents a strong constraint in the modelling of the concrete functioning of buses on the network. In the railways networks, this problem is less present. Indeed, the trains are generally expected to be able to exchange the passengers. Their expectations are taken into account during the planning of their timetables. This situation produces the synchronization of trains at the railway station. Whereas, buses don't wait each other, at the connection stops to exchange passengers.

Two manners to model a connection stop in a bus network are given in figure 2. Let us note that in the graphic-based model that represents the network, transitions represent stops, places model portions of road between stops and tokens represent the buses Our initiative is to manage the synchronization phenomenon of buses without imposing any undesirable waiting of vehicles. According to the firing rules of Petri net transitions, the firing of the transition Sc_i,j cannot be done except when all its upstream places contain each one at least one token. Knowing that tokens represents buses, the departure of a bus from this stop can be done only if another bus circulating on the other line arrives at the same stop. This functioning mode is caused by the temporal synchronization phenomenon between buses.

In Figure b), we relax the synchronization constraint of buses. To avoid this constraint, the stop is represented by the couple of two transitions (Sc_i j, Sc_j i), called composed transition. The transition Sc_i j (resp. Sc_j i) model the connection from the line Li to Lj (resp. the line Lj to Li). In this situation, even if both transitions Sc_i j and Sc_j i represent the same stop, their firings are independent. If a bus of the line Li (resp. line Lj) arrives at the stop Sc_i j (resp. Sc_j i), it can leave this last one just when passengers go up and/or get off the bus without having to wait the arrival of a bus of the line Lj (resp. Li). This modeling approach allows insuring a non-synchronized functioning of buses.

Using this approach, it is possible to model all connection stops of the network, avoiding the synchronization constraint of buses.

Graphic-based model

In this section, we give the event graph model that represents the behaviour network of the figure 1. Each line is represented by the departure stop, connection stop (s) and terminus.

P4 P7 P11 P8 P5 P1 P9 P2 P6 P10 P12 Sc2-->1 Sc3-->1 Sd3 Sd4 Sc4-->3 Sc3-->2 Sc1-->2 Sc2-->3 Sc3-->4 Sa2 Sa3 Sa4 Sa1 Sd1 Sd2 Sc1-->3 P3 Figure 3: Event Graph Model of bus network.
As shown in figure 3, the four lines are represented as follows:

• The line L1 : Sd1, Sc1 2, Sc1 3, Sa1 ;

• The line L2 : Sd2, Sc2 1, Sc2 3, Sa2 ;

• The line L3 : Sd3, Sc3 1, Sc3 2, Sc3 4, Sa3 ;

• The line L4 : Sd4, Sc4 3, Sa4.

• Different places Pi (1≤ i ≤12) represent the portions of road between connection stops.

In the graphic-based model of figure 3, various connection stops are represented as follows: Sc12 = (Sc1 2, Sc2 1) ; Sc13 = (Sc1 3, Sc3 1) ; Sc23 = (Sc2 3, Sc3 2) ; Sc34 = (Sc3 4, Sc4 3).

(Max, +)-based model

Let us start this section by giving some basic elements of (max, +) algebra. Let us denote max , called dioid, the set ∪{-∞} associated with the two laws ⊕ and ⊗. These we come down to the same resolution but in the dioid matrix nxn max , (a* = Id ⊕a⊕a 2 ⊕ … ⊕a n ⊕…) with Id ∈ nxn max is the identity matrix. More details about this algebra can be found in [START_REF] Baccelli | Synchronisation and linearity, Algebra for discrete Event Systems[END_REF].

With assigning variables to various transitions and temporisations to various places of the model, we can describe its behaviour by mathematical equations in (max, +) algebra. To do this, we assign to every transition one variable (Table 1).

The temporization ti associated with the place Pi represents the time needed to move between two stops (these stops are represented by both upstream and downstream transition of the place Pi).

In the stage of the mathematical modelling, the figure 3 is replaced by the figure 4 In order to describe the behaviour of the graphic-based model by (max, +) equations, we associate with each variable xi, for 1≤ i ≤8 (resp. ui and yi, for 1 ≤ i ≤ 4), the parameter xi(k) (resp. ui(k) and yi(k)). These parameters, called daters, represent the dates of k th firing of the associated transition.

The (max, +)-based model describing the analytical behaviour of the studied network, is given by [START_REF] Baccelli | Synchronisation and linearity, Algebra for discrete Event Systems[END_REF].

∀ k ≥ 1, x1(k) = t1⊗u1(k) x2(k) = t4⊗u2(k) x3(k) = t2⊗x1(k) x4(k) = t7⊗u3(k) x5(k) = t5⊗x2(k) x6(k) = t8⊗x4(k) (1) x7(k) = t9⊗x6(k) x8(k) = t11⊗u4(k) y1(k) = t3⊗x3(k) y2(k) = t6⊗x5(k) y3(k) = t10⊗x7(k) y4(k) = t12⊗x8(k)
By defining the input vectors U(k), the state vectors X(k) and the output vectors Y(k) relative to the considered system, we put the system (1) in a matrix form. Let us note:

U(k) = [u1(k), u2(k), u3(k), u4(k)] t : input vector; X(k) = [x1(k), x2(k), …, x8(k)] t : state vector ; Y(k) = [y1(k), y2(k), y3(k), y4(k)] t : output vector.
Using these three vectors, the system (1) can be written as follows:

∀ k ≥ 1, X(k) = A ⊗ X(k) ⊕ B ⊗ U(k) (2) Y(k) = C ⊗ X(k) (3) 
The characteristic matrices A, B and C (A ∈ From the equation (2) it is possible to calculate and evaluate all states of the system at any time. To do this, we proceed to solve this equation. So we replace by an iterative way the expression of X(k) by its value (right member of ( 2)). Thus, we obtain:

∀ k≥1, X(k) = A ⊗ X(k) ⊕ B ⊗ U(k) = A ⊗ (A ⊗ X(k) ⊕ B ⊗ U(k)) = … = A n X(k) ⊗ (A n-1 ⊕ A n-2 ⊕ …⊕ A⊕ Id) ⊗ B ⊗U(k) = A * ⊗ B ⊗ U(k) (4) 
Where:

• A * = ε because the TEG model of the figure 4 does not contain strong connex components. • A * (= A n-1 ⊕ A n-2 ⊕ …⊕ A⊕ Id) is the quasi-inverse of the matrix A, called also star of Kleene. Using (4), the expression of the output (equation ( 3)) is given by: ∀ k≥1,

Y(k) = C ⊗ A * ⊗ B ⊗ U(k) (5) 
From the equation ( 5), we can evaluate different arrival times of buses at each terminus.

EVALUATION AND ANALYSIS OF TRAVELING TIMES

From every couple of equations of the system (1) and by using the solution given in (4), it is possible to evaluate the journey times (connection times + travel times) of passengers on the network. From this evaluation, we try to define the shortest itinerary for a given passenger who has several possibilities to reach a desired destination.

Considering , for example, the connection stop Sc12, the waiting time for passengers who want to make a connection from L1 to L2 and L2 to L1 are given respectively by T_1,2 and T_2,1. These times are expressed as:

∀ k ≥ 1, T_1,2(k) = x2(k2) -x1(k) (6) T_2,1(k) = x1(k1) -x2(k) (7) 
With: k1 = Inf j {j∈ such as x1(j) ≥ x2(k)} k2 = Inf j {j∈ such as x2(j) ≥ x1(k)}

In the same way, we calculate the other waiting times in different connection stops.

As we have already mentioned, we try to define the shortest itinerary for a passenger who travels on the network by making one or several connections. For example, we choose a passenger who wants to move from Sd1 (departure stop of L1) to Sa4 (terminus of L4).

In this study, we are going to evaluate the travel times of this passenger on the various possible itineraries and for different departure times from Sd1. This evaluation is based on (max, +) solution given in (4) and by calculating waiting times of passengers in connections stops as in ( 6) and [START_REF] Olsder | 26 ème école de printemps d'informatique, Algèbre Max-Plus et applications en informatique: On large scale max-plus algebra model in raillway systems[END_REF]. By observing the network, the possible itineraries from Sd1 to Sa4 are:

1-Sd1 Sc12 Sc23 Sc34 Sa4 Or 2-Sd1 Sc13 Sc34 Sa4 
Therefore, we are going to evaluate the travelling time for these two itineraries for a working period of buses.

If we consider a working period of buses which corresponds to the time interval [α, β]. We suppose that the departure dates of buses from their departure stops are include in this interval.

• First itinerary: The various connection times of a passenger arriving at Sd1 at the time "t" are given by:

∀ k ∈ {j∈ such as u1(j) ∈ [α, β]}, T 1 _1,2(k, t) = x2(k2) -x1(k) T 1 _2,3(k, t) = x6(k3) -x5(k2) T 1 _3,4(k, t) = x8(k4) -x7(k3) With: k2 = Inf j {j∈ such as x2(j) ≥ x1(k)} k3 = Inf j {j∈ such as x6(j) ≥ x5(k2)} k4 = Inf j {j∈ such as x8(j) ≥ x7(k3)}
The sum of these waiting times gives the global waiting time of the passenger, noted T 1 waiting (k, t) to go from Sd1 to Sa4. So we obtain:

T 1 waiting (k, t) = T 1 _1,2(k, t) + T 1 _2,3(k, t) + T 1 _3,4(k, t) (8) 
• Second itinerary: The connection times in this case are given by : ∀ k ∈ {j∈ such as u1(j) ∈ [α, β]}, As a result, the sum of waiting times for this second itinerary is: T 2 waiting (k, t) = T 2 _2,3(k, t) + T 2 _3,4(k, t)

By comparing the two results in ( 8) and ( 9), we choose, for each date "t", the shortest itinerary that must be taken by passengers.

CONCLUSION

In this paper we described the modelling and the evaluation of a public transport network, in a first time, with a subclass of Petri Nets called dynamic timed event graph, and in a second time with the mathematical approach (max, +) algebra. Those tools enabled us to model our transportation network. A modelling approach is proposed to avoid synchronised working mode of buses. Without considering this working mode, the buses can be circulating without enormous waiting times at the connections stops. Buses are not constrained to wait each other at the connection stops.

By solving and analysing the (max, +) model, we evaluated some performance of bus network (in terms of connection and travelling times of passengers). We showed also, how to calculate a shortest itinerary on the network basing on these analytical evaluations. The prospect of this work is the extension of the obtained results to more complex transport systems, for example multimodal networks.
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 2 Figure 2: Modelling of a connection stop between two liens Li and Lj.
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 2 Figure a) represents the connection stop renowned Sc_i,j between the line Li and the line Lj. According to the firing rules of Petri net transitions, the firing of the transition Sc_i,j cannot be done except when all its upstream places contain each one at least one token. Knowing that tokens represents buses, the departure of a bus from this stop can be done only if another bus circulating on the other line arrives at the same stop. This functioning mode is caused by the temporal synchronization phenomenon between buses. In Figureb), we relax the synchronization constraint of buses. To avoid this constraint, the stop is represented by the couple of two transitions (Sc_i j, Sc_j i), called composed transition. The transition Sc_i j (resp. Sc_j i) model the connection from the line Li to Lj (resp. the line Lj to Li). In this situation, even if both transitions Sc_i j and Sc_j i represent the same stop, their firings are independent. If a bus of the line Li (resp. line Lj) arrives at the stop Sc_i j (resp. Sc_j i), it can leave this last one just when passengers go up and/or get off the bus without having to wait the arrival of a bus of the line Lj (resp. Li). This modeling approach allows insuring a non-synchronized functioning of buses.
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 4 Figure 4: TEG model: definition of variables and temporization.
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 2 _1,3(k, t) = x4(k'3) -x3(k) T 2 _3,4(k, t) = x8(k'4) -x7(k'3) With: k'3 = Inf j {j∈ such as x4(j) ≥ x3(k)} ; k'4 = Inf j {j∈ such as x8(j) ≥ x7(k'3)} ;

Table 1 :

 1 wherein different variables and temporisations are presented. Definition of model variables.

			Transitions Variables
			Sd1	u1
	Input system	Sd2	u2
			Sd3	u3
			Sd4	u4
		connection	Sc1 2	x1
		L1 -L2	Sc2 1	x2
		Connection	Sc1 3	x3
	Internal	L1 -L3	Sc3 1	x4
	state of	Connection	Sc2 3	x5
	the	L2 -L3	Sc3 2	x6
	system	Connection	Sc3 4	x7
		L3 -L4	Sc4 3	x8
			Sc1	y1
	Output system	Sc2	y2
			Sc3	y3
			Sc4	y4