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Abstract: This paper deals with the performance evaluation of a public transportation system 

in terms of waiting times at various connection points. The behaviour of a bus network is 

studied in the framework of Discrete Event Systems (DES). Two possible operating modes of 

buses can be observed at each connection stop: periodic and nonperiodic mode. Two 

complementary tools, Petri nets and (max, +) algebra, are used to describe the network by a 

non stationary linear state model. This one can be solved after solving the structural conflicts 

associated to the graphical representation. From the characteristic matrix of the mathematical 

model, we determine eigenvalues and eigenvectors that we use to evaluate the connection 

times of passengers. This work is finally illustrated with a numerical example. 

 

Keywords: Transportation Network, Petri Nets, (max, +) Algebra, Spectral theory, 

Performance evaluation.  

 

1. Introduction 

Transportation is an essential component of contemporary economics (Commission, 

2001). It has to face with two contradictions: a society that expects always more mobility and 

a public opinion that cannot bear any more chronic delays and the poor quality of the 

performance of some services. Indeed, the flexibility of individual transportation modes grew 

for some years whereas the public transport offer is not sometimes up to the demand. This 



 2

partially explains the great rise of urban traffic involving more pollution and more risks of 

accidents. 

To improve urban quality of life, one solution consists in making more attractive the 

collective transportation modes. It may also be promising to provide more security or more 

information to users or to ensure a better synchronisation between public transport vehicles 

(bus-bus, train-train, bus-train) so as to reduce passengers waiting times and make the 

displacements as fast as possible. Nevertheless, before trying to improve any performance of a 

collective transportation mode, it is necessary to evaluate and analyse the strength and 

weakness of the existing offer, so as to identify critical points of the network (connection 

stops on a bus network for example). Then a comparison between supply and demand will 

allow operators to concentrate their efforts on those critical points, and will lead to specific 

and more efficient actions. This second phase may be performed in a predictive planning of 

the system (timetabling or resources assignment), or in a real time control of the network (re-

scheduling in case of perturbations). 

This paper deals with this first evaluation and analysis step with the purpose to improve 

service quality of public transport in urban centres. More precisely we consider the 

connection management of a bus network for which we study two possible operating modes 

of vehicles on the lines: in one hand, all buses perform their rounds according to a periodic 

timetable. On the other hand, an extension to the nonperiodic working mode is worked out. 

Moreover, we consider a general non synchronized behaviour of the buses which do not wait 

for each other at common interchange points. 

Modelling, performance analysis and control of collective transportation networks are 

issues arousing an ever-increasing interest in many researches Olsder et al. (1998); Nait et al 

(2003); Houssin et al. (2006). There exist many research activities in the same field based on 

various modelling and analysis approaches. But most of existing works about planning and/or 

performance evaluation of transportation systems mainly concern railway networks in a 

periodic working case (Braker, 1991); Bussieck et al. (1997); De Vries et al. (1998); Olsder et 

al. (1998) ; Böcker et al. (2001). Such systems are synchronized ones as trains have to wait 

for each other so as to prevent passengers from missing their connection. Moreover, all these 

studies consider various criteria like punctuality and real time control rather than connection 

time minimization. For example De Vries et al. (1998) search for waiting times and propose 

robustness solutions in case of weak perturbations with the aim to evaluate consequences of 

delays on future connections. Olsder et al. (1998) study the improvement of initial periodic 

timetable for an existing network with a fixed number of trains. Some studies about bus 
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networks have also been carried out. For example, Karlaftis et al. (2006) propose a decision 

support system for planning bus operations using mathematical programming. Houssin et al. 

(2006) develop a timetable synthesis using (max, +) algebra. 

The work reported in this paper is a part of  a more general study that aims at evaluating 

and controlling public transportation systems by transposing, via dioid algebra, some classical 

analysis and control methods from systems theory using (max, +) algebra. (Max, +) algebra is 

well known to be rather adapted to problems which can be modelled with event graphs, and 

then which suppose the absence of conflicts. Nevertheless, as it can be seen for manufacturing 

systems, problems related with transportation networks often come from the occurrence of 

phenomena like synchronization between resources and conflicts that occur when sharing of 

resources is necessary. Then modelling and solving the studied problem in particular involves 

to apply an a priori arbitrating of those ones Nait et al. (2002), or an a posteriori approach 

Spacek et al. (1999). 

To model the studied system, we first use a subclass of Petri nets which is known as the 

Dynamic Timed Event Graph with Withdrawal of Tokens (DTEGWT) (David and Alla, 1992; 

Lahaye, 2000). It represents an adequate tool which enables one to describe the real working 

of the network. Indeed, this class allows us to model conflicts and synchronization, for the 

two considered operating modes. Then we describe the obtained model by a state 

representation in (max, +) algebra, in spite of structural conflicts associated with the Petri net 

model. In spite of the complexity of this system, the use of dioid algebra allows us, on one 

hand, to obtain a linear state model and, on the other hand, to derive some properties quite 

easily. Besides, structural conflicts involve that the state model is expressed with a max- time-

invariant system. 

In order to analyse the system and to evaluate the connection times of each passenger, 

we can use two approaches from the (max, +) state representation. The first one classically 

consists in solving this state model Nait et al. (2005). In this paper we propose an alternative 

approach which avoids solving this system, and is based on spectral theory of the 

characteristic matrix of the (max, +) model. It consists in determining eigenvalues and 

eigenvectors that enable us to evaluate the passengers waiting times. 

This paper is organised as follows: in section 2, we describe the studied transportation 

network. In section 3, we propose a modelling of the considered bus network. In section 4, we 

propose a routing policy adapted to the periodic operating mode; this policy aims at 

arbitrating a priori the identified structural conflicts. Section 5 deals with the system 

performance analysis using spectral theory in dioid algebra. In section 6, we extend our study 
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to the nonperiodic operating mode. In this case, another routing policy is provided to solve 

conflicts and spectral theory is also applied. To illustrate obtained results, a numerical 

example is worked out in section 7. Last section gives some conclusions and suggestions for 

further researches. 

 

2. The studied public transport system  

A bus network is composed of a set of lines which are connected by interchange points 

called connection stops. In a deterministic case, the evaluation of a travel performed by any 

passenger mainly consists in determining its connection times at each bus change and to add 

them to the moving times on each line from an origin point to a destination one. Then we 

study a part of such a bus network, which corresponds to one of such travels. It is composed 

of n lines (n ≥ 2) (figure 1.). Each line Li is linked with two other lines Li-1 and Li+1 (except L1 

and Ln which only have one connection stop). Li is represented by a departure stop (Dsi), two 

connection stops Csi-1,i (with Li-1) and Csi,i+1 (with Li+1), and eventually an arrival terminus 

(Asi). Also, each line contains other simple stops that we do not consider here. Indeed, we 

focus on the interchange points (connection stops) that enable passengers, coming from the 

departure stop of line L1, to reach another stop of the line Ln. Let us note that we consider the 

passengers who take only one direction in their journey. Nevertheless the same study may be 

made for the passengers who take the opposite direction, and for any travel in the network. 

The considered sub-network is itself composed of a set of elementary networks. Each of 

them contains two lines Li and Li+1 connected by a common point Csi,i+1. 

 

 

 

 

Figure 1. The physical structure of studied bus network 

 

For each line Li (1�i�n), the following data are supposed to be fixed: 

• the necessary time λi for a bus to perform one turn; it is the period of L i in a periodic 

operating mode; 

• the number of buses circulating on Li; 

• the travel times of each bus of line Li respectively between Dsi and Csi,i+1, and between 

Csi,i+1 and Dsi. Those times are respectively labelled τi,1 and τi,2. They include the time 

Cs1,2 Cs2,3 Csi-1,i 

Dsi Asi Ds2 Ds1 Dsn 

Csi,i+1 Csn-1,n 

Asn As2 As1 

line L1 line L2 line Li line Ln 
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needed for passengers to go up and/or get off the bus and also the time spent at 

intermediate stops. 

We assume that the departure of buses may be scheduled according to a periodic or 

nonperiodic timetable and the first starting time of each bus Bi (bus of line Li) from its 

departure stop Dsi is planned. 

We finally suppose that all buses work independently, i.e. without synchronisation. It 

involves that buses of different lines do not wait for each other. Each of them leaves the 

connection stop just after the passengers got on/off it. It is not the same working in railway 

networks where synchronization is required as a train that arrives first at the connection 

station often has to wait for a connecting train to carry out the connection Olsder et al. (1998); 

De Vries et al. (1998). 

In this paper, we show how spectral theory in dioid algebra may help us to evaluate 

travelling times. For this goal we first give graphical and mathematical formulations of the 

studied problem. 

 

3. Modelling  

3.1. State of art 

Transportation systems can be considered as discrete event dynamic systems (DEDS) in 

the same level as manufacturing systems. The dynamic aspect of these systems is described 

by the evolution of their behaviour during a given period of time (Gaubert, 1999; Gaujal, 

1994). Several studies have been made about modelling and analysis of such discrete event 

systems. Among the modelling tools used for these studies there are: Petri nets (David and 

Alla, 1992), (max, +) algebra Olsder et al. (1998); De Vries et al. (1998); Baccelli et al. 

(1992), Markov processes and Genetic algorithm Wang et al. (1999a, 1999b) and multi-agent 

approaches Böcker et al. (2005).  

Transportation systems dynamics is managed with synchronization, parallelism and 

concurrency phenomena. So, variety of these phenomena makes the study of such systems 

difficult and requires the use of several complementary theories for their description and 

analysis. As it can be performed for flexible manufacturing systems, telecommunication 

networks or computer systems, we show how to adapt a Petri net and (max, +) algebra tools to 

model a public transport system. Such tools have attracted the attention of many researchers: 

for example (Olsder et al. (1998) for planning of railway timetable using (max, +) algebra, or 

(Braker, 1991); De Vries et al. (1998) for performance evaluation using the same tool. 
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(Gaubert, 1992) deal with the control of a transportation system by using the technique of 

residuation theory in (max, +) algebra; (Di Febbraro and Sacone, 1998; Castelain and 

Mesghouni, 2002); Dridi et al. (2005) propose Petri nets models for transportation systems. 

 

3.2. Petri net model 

The behaviour of the considered network (figure 1) is represented in figure 2 by a 

Dynamic Timed Event Graph with Withdrawal of Tokens (DTEGWT) (Nait et al, 2005). This 

subclass of Petri net was first proposed in (Lahaye, 2000). In this figure, we identify n 

circuits; each of them models one line Li (1≤i≤n). Each circuit is composed of the sequence of 

transitions (xi,1, xi,2 or xi,3, xi,4, xi,1). For line Li, those transitions represent specified stops: xi,1 

is associated with the departure stop Dsi; xi,2 or xi,3 are associated with the connection stop 

Csi-1,i; whereas xi,4 is associated with the connection stop Csi,i+1. The places between those 

transitions represent the displacements between the associated stops. A token available on one 

place of a circuit represents a bus moving on the associated line. If several buses are assigned 

to a same line, the same number of tokens will be available on the various places of the 

associated circuit (this case will be more detailed in section 7). Temporisations τi,j (1≤j≤3) 

represent the moving times of buses on the circuit (λi = τi,1 + τi,2 + τi,3). Places labelled Pi link 

lines Li and Li+1. They enable us to model passengers who want to carry out a connection 

between those two lines. Finally well transitions oi enable us to gather in a single batch all the 

passengers waiting for the same bus. Indeed such downstream transitions were added to each 

place Pi to avoid finding several tokens in those places. Each transition oi allows a dynamic 

withdrawal of tokens from Pi: a firing of the well transition oi is made as soon as Pi contains 

more than one token and involves the withdrawal of these tokens. The remaining token 

characterizes all the passengers waiting at the connection bus stop. Adding such a 

downstream transition involves a structural conflict. 
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Figure 2. Petri net model of the considered bus network. 

 

The concrete operating of buses on the network (a passenger gets/does not get on a bus 

at the connection stop) leads us to associate two downstream transitions (xi,2 and xi,3) to some 

places. This situation also causes some conflicts on the Petri net model. The way to solve 

those conflicts depends on the operating mode of buses. In one case, we use the periodicity 

assumption to a priori determine a relation between the firings of upstream transitions and 

downstream transitions of each place Nait et al. (2002); if the buses have not a periodic 

operating mode we use another conflict solving method which relaxes the periodicity 

constraint Nait et al. (2006). In the following sections, we first study the periodic case, giving 

the associated (max, +) model and its analysis based on spectral theory in order to evaluate 

the network performance. Then we extend our work to the nonperiodic mode. 

 

3.3. (Max, +) formulation 

One of the mathematical approaches that we use to model our transportation system is 

(max, +) algebra. All operations will be done in the dioid (�max, ⊕, ⊗) where “⊕  = max”, 

“⊗ = +”. The neutral elements of operators ⊕, ⊗ are denoted respectively  ε = - ∞  and  e = 0. 

More details about this algebra can be found in Baccelli et al. (1992); (Gaubert, 1992). First of 

all we associate the state variable xi,j(k), called dater, with each transition xi,j. It represents the 

date of the kth firing of transition xi,j. By using these daters, we obtain various equations that 

model the system. Because of the conflicts which appear the Petri net model, the associated 

(max, +) model is a non stationary system. This means that, at a given time, the firing 

numbers of the downstream and upstream transitions of some places may be different from 

each others. 

τn,3 

τn,1 τn,2 
xn,3 

xn,1 

on-1 

xn,2 

xn,4 

Pn-1 

line Ln 

τ1,3 τ2,3 

τ2,2 τ2,1 τ1,2 τ1,1 

x2,1 

x2,2 

x2,3 

o1 

x2,4 

x1,3 

x1,2 

x1,1 x1,4

P1 

line L2 line L1 line Li 

τi,3 

τi,2 τi,1 
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xi,1 
xi,4 
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The equations that model the considered system may be expressed in two manners 

according to the considered operating mode of buses and then to the associated Petri net. 

System (1) represents the network in the periodic case. 

∀ k≥2, (Line L1) x1,1(k) = τ1,3 ⊗ x1,4(k-1) 

  x1,2(k) = ε 

  x1,3(k) = τ1,1 ⊗ x1,1(k) 

  x1,4(k) = τ1,2 ⊗ x1,3(k) 

∀ 2≤i≤n, xi,1(k) = τi,3 ⊗ xi,4(k-1)      (1) 

(Line Li) xi,2(k) = τi,1 ⊗ xi,1(ki,3) ⊕ xi-1,4(ki,4) 

  xi,3(k) = τi,1 ⊗ xi,1(ki,6) 

  xi,4(k) = τi,2 ⊗ xi,2(ki,7) ⊕ τi,2 ⊗ xi,3(ki,8) 

 and ∀ k≥1, and ∀ 1≤i≤n-1, 

  oi(k) = xi,4(ki,5) 

 

where: for 2≤i≤n  for j∈{3, 4, 6}  ki,j≥k 

for 7≤j≤8  ki,j≤k 

for 1≤i≤n-1  ki,5≥k 

 

Our aim is now to put system (1) in the form of a recurring equation in order to solve it. 

For this objective, we consider that each bus working is a periodic one. This allows us to 

express the firing times of any transition xi,j by its anterior firing times (xi,j(k)=λi⊗xi,j(k-1)). 

By using this characteristic, system (1) becomes: ∀ k ≥ 2, 

X(k) = A(k-1) ⊗ X(k-1)      (2) 

X(k) is the state vector whose components are the state variables xi,j(k). X(1) is the initial 

condition whose components are times of the first firing of each model transition (deduced 

from the first start time from each departure stop). A(k-1) is given by: 

 

A(k-1) = 

[ ]

[ ]

[ ]�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

nA
..

A
..

A

i

1
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A(k-1) ∈ � )4()4(
max

nn ×  is the characteristic matrix of the system whose elements are: 

 

[Ai]=

�
�
�
�

�

�

�
�
�
�

�

�

i

i,6

i,3

i,3

����

����

����

����

,  for 1≤i≤n, and ([Ai])u,v = A4i+u-4,4i+v-i(k-1) with  1≤u,v≤4 

A4i-2,4i-4(k-1) = αi-1,4,  for 2≤i≤n 

Ai,j(k-1) = ε  otherwise 

 

where: for 2≤i≤n, αi,3 = αi,3(k) = τi,1 ⊗ λi
(ki,3/k)⊗1, α1,3 = α1,3(k)= ε, 

αi-1,4 = αi-1,4(k) = λi-1
(ki,4/k)⊗1, 

αi,6 = αi,6(k) = τi,1 ⊗ λi
(ki,6/k)⊗1. 

 

Parameters ki,3, ki,4 and ki,6 (2≤i≤n) are non-constant coefficients. This characteristic is 

involved by the structural conflicts we have identified in the Petri net model. To solve the 

associated (max, +) model, we first have to arbitrate those conflicts. It consists in expressing 

the above non–constant coefficients according to the variable k. 

 
4. Routing equations 

To solve the conflicts associated to the PN model, we a priori determine the various 

relations, called routing equations, between the transition firings. We apply a periodic routing 

policy because of the given periodic timetable of buses. It allows us to express all the 

coefficients of the matrix A(k-1) and then to solve the state representation and evaluate the 

various arrival times of the buses at each stop. In what follows, we give only the expression of 

one routing equation ki+1,3 = fi+1,3(k). Other routing equations and details about their 

demonstrations are given in (Nait, 2003). 

 

fi+1,3(k) = [S3,i+1(k)⊗1max
{S 1,3 +i (k)∈ �} ⊕ E(S3,i+1(k)⊗1) 

⊗1max
{S 1,3 +i (k)∉�}]⊗1max

{λ i > λ 1+i } 

⊕ [k⊗k '
1,0 +i ]⊗1max

{λ i < λ 1+i } 

where: 

S3,i+1(k)=
1i

1i0,i1i1,1i1,1ii,4i

�

2)(k��)�(1)(x(1)xk�

+

++++ −+++−+ and with: 
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• 1max
{a ≥ b} = 

�
�
	 ≥

otherwise�

baife
 

• E(x) the integer part of x 

• k0,i+1 = 

�



�
	

+

+ =

otherwise� sup

Ø�if1

1ii,

1ii,

p

 

• k’0,i+1 = 

�



�
	

+

+ =

otherwise� sup

Ø�if0

1ii,

1ii,

p

 

Ωi,i+1 = {p ∈� / (xi+1,1(1) + τi+1,1) +λi+1 (p-1)<xi,4(1)}, ξi,i+1 = {p ∈� / xi,4(1) + λi (p-1) < 

xi+1,1(1)+τi+1,1}. 

 

From the routing equations, we calculate each state of system. Then, by using these 

equations and the initial condition of the system X(1), the solution of equation (2) is given by: 

∀ k > 1, 

X(k) = A(k-1) ⊗A(k-2) ⊗…⊗A(1) ⊗ X(1)     (3) 

 

5. Analysis and evaluation of a periodic system 

 
Our aim is to evaluate and analyse the strength and/or weakness of an existing transport 

network by using spectral theory in dioid algebra. In the same context, a similar study is 

already achieved by using the solution of the (max, +) state model in Nait et al. (2005). The 

evaluation is based on temporal criteria. In the network, the travelling times of passengers 

directly depend on the connection times at interchange stops. Those ones can be evaluated 

after determining the routing equations and arbitrating all identified structural conflicts. 

 

5.1. Spectral theory of A(k-1) 
 

In the spectral theory, the main problem is to study the existence of eigenvalues and 

eigenvectors of a square matrix. In our case, we try to find these elements for the 

characteristic matrix A(k-1) of the system (2). This means that we prove the existence of 

nonzero elements λ and V such that: 

  A(k-1) ⊗V = λ⊗V        (4) 
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For manufacturing systems, eigenvalues may be used, for example to determine the 

productivity of an assembly line in a periodic working mode Lahaye et al. (2000). In 

transportation systems, and in a periodic and synchronized case, Olsder et al. (1998); De Vries 

et al. (1998) use eigenvalues to identify the critical circuit of a railway network, and the 

associated cycle time. This one represents the minimal time between the departures of two 

consecutive trains (in the same given direction). An eigenvector associated with this 

eigenvalue corresponds to a possible vector of the first start times for trains. In the same way, 

we aim at interpreting those values for a urban collective transportation network, but without 

synchronization between vehicles. 

 

��Eigenvalues 
 

In order to find the eigenvalues of the matrix A(k-1), we use the precedence graph 

G(A(k-1)) Baccelli et al. (1992). The nodes of this graph are represented by the components 

of the state vector X(k). The weight associated with each arc j � i represents the element aij 

of A(k-1). The research method of the eigenvalues from the precedence graph is well detailed 

in (Gaubert, 1992). It can be shown that every square matrix with entries in �max has at least 

one eigenvalue. If a matrix is irreducible, it has only one eigenvalue. Otherwise the number of 

eigenvalues of a square matrix A depends on the elementary circuits Ci of the associated 

precedence graph G(A(k-1)) (De Schutter, 1996); Cohen et al. (1985). Each eigenvalue of the 

matrix ψ is calculated by: rr
l l

/wmax )( 1
ci

� = , where the circuit Ci is composed of r arcs (a1, a2, 

…, ar); wl denotes the associated weight of each arc al with 1≤l≤4.  

Figure 3 provides the precedence graph we obtained in the periodic operating mode. 

From this graph, we easily deduce the following set of n associated eigenvalues: 

Sp(A(k-1)) = {λ1, λ2, …, λn}. These eigenvalues represent the periods λi of the studied bus 

lines. They do not depend on variable k. Moreover, even if we study a matrix with non-

constant coefficients, its eigenvalues are constant.  
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Figure 3. Precedence graph of the matrix A(k-1). 

 

��Eigenvectors 

 

In this section we determine the eigenvectors V i� associated with each eigenvalue λi (1≤i≤n) 

of the characteristic matrix A(k-1). Any vector V i�  ∈ � 1)4(
max

xn  and satisfies system (5). 

A(k-1)⊗ V i� (k) = λi⊗ V i� (k)      (5) 

By developing this system, we obtain all components of the vector V i� = [v i�
1,1

, v i�
1,2

, v i�
1,3

, 

v i�
1,4

,…, v i�
n,1

, v i�
n,2

, v i�
n,3

, v i�
n,4

]t. So, we obtain for each λi ∈ Sp(A(k-1)): 

for j=1,  τ1,3 ⊗ v i�
1,4

  = λi ⊗ v i�
1,1

 

ε  = λi ⊗ v i�
1,2

 

τ1,1 ⊗ λ1⊗ v i�
1,1

= λi ⊗ v i�
1,3

 

λ1 ⊗ v i�
1,4

  = λi ⊗ v i�
1,4

 

    and for 2≤j≤n, τj,3 ⊗ v i�
j,4   = λi ⊗ v i�

j,1       (6) 

αj-1,4 ⊗ v i�
1,4-j  ⊕ αj,3 ⊗ v i�

j,1= λi ⊗ v i�
j,2  

αj,6 ⊗ v i�
j,1   = λi ⊗ v i�

j,3  

λj ⊗ v i�
j,4   = λi ⊗ v i�

j,4  

 

which gives the following eigenvectors: 

V 1� (k) = [e, ε, τ1,1, τ1,1⊗τ1,2, ε, (α1,4(k)⊗τ1,1⊗τ1,2)/λ1, ε, …, ε], 

        4n-6 

V 2� (k) = [ ε, ε, ε, ε, e, α2,3(k)/λ2, α2,6(k)/λ2, τ2,1⊗τ2,2, ε, (α2,4(k)⊗τ2,1⊗τ2,2)/λ2, ε, …, ε]. 

               4n-10 

….. 

V i� (k) = [ ε, …, ε, e, αi,3(k)/λi, αi,6(k)/λi, τi,1⊗τi,2, ε, (αi,4(k)⊗τi,1⊗τi,2)/λi, ε, …, ε]. 

         4i-4            4(n-i)-2 

…... 
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V n� (k) = [ ε, …, ε, e, αn,3(k)/λn, αn,6(k)/λn, τn,1⊗τn,2].     (7) 

         4n-4 

 

A first analyse leads us to the following remark: for each V i� , all components are null (equal 

to ε) except v i�

i,1
, v i�

i,2
, v i�

i,3
, v i�

i,4
 and v i�

1,2i+
. In the state vector, those ones correspond to the 

positions of xi,1, xi,2, xi,3, xi,4 (transitions associated with the line Li) and xi+1,2 (transition 

associated with the connection stop Csi,i+1). 

In what follows, we analyse the components of these eigenvectors. 

 

5.2. Identification of the eigenvectors V i�  
 

We give below other equivalent expressions of components v i�

i,1
, v i�

i,2
, v i�

i,3
, v i�

i,4
 and v i�

1,2i+
, 

∀ V i� . They depend on the components of the state vector. 

 

xj,r(k) – xj,1(k),   if j = i and 1≤r≤4 

v i�

rj,
(k)=  (xi+1,2(k)-xi,1(k))-(xi+1,2(k)-xi,4(m)) if j=i+1, and r = 2 (with i<n)  (8) 

  ε    otherwise 

with m = 
j

sup {j∈ � / xi+1,2(k) ≥  xi,4(j)}. 

If i=n, the second equation of (8) will not be considered, because the network is only 

composed of n lines (i.e. there exists no connection Csn,n+1). The components of system (8) 

depend on the arrival times of buses at various stops of the line Li. Indeed they are expressed 

according to the firing times of transitions xi,1, xi,2, xi,3, xi,4, and even xi+1,2 associated with the 

common stop Csi,i+1. In the second equation of system (8) the expression “xi+1,2(k)-xi,4(m)” 

represents exactly the waiting time of passengers coming on the mth bus Bi that arrives at the 

connection stop Csi,i+1 at time xi,4(m), just before the arrival of the kth bus Bi+1 at time xi+1,2(k). 

We put then: for 1≤i≤n, 

Ti,i+1(m, k) = xi+1,2(k) – xi,4(m)  in the usual algebra 

= xi+1,2(k) / xi,4(m)  in the (max, +) algebra   (9) 

 

By introducing this expression in the second equation of the system (8) we can write: 
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v i�
1,2i+

(k) = (xi+1,2(k) – xi,1(k)) –  (xi+1,2(k) – xi,4(m)) 

  = xi+1,2(k) – xi+1,1(k) + xi+1,1(k) – xi,1(k) –Ti,i+1(m,k) 

  = v 1i�
1,2i
+

+
(k) + xi+1,1(k) – xi,1(k) – Ti,i+1(m,k) 

This implies that:  

Ti,i+1(m,k)=[v 1i�
1,2i
+

+
(k) – v i�

1,2i+
(k)] + [xi+1,1(k) – xi,1(k)]    (10) 

 

In this expression, the parameter k is calculated according to m in the following way: 

k = 
l

inf {l∈� / xi+1,2(l) ≥ xi,4(m)} 

Then a relation has been established between the waiting time of some passengers and the 

components of the eigenvectors. Nevertheless, in particular cases, some waiting times cannot 

be calculated with the spectral theory. These cases occur both if λi < λi+1 and if b batches of 

passengers successively arrive on buses Bi of line Li (the jth, j+1th ,… j+b-1th arrivals) between 

two arrivals of buses of line Li+1 (k-1th and kth ones). Then the parameter m defined in (8) 

equals j+b-1 (last arrival of passengers aiming at boarding the kth bus Bi+1). Then the 

expression (8) of the associated eigenvector only considers this batch among the b ones. 

Consequently the proposed method only enables us to define the waiting time of the last batch 

arriving at the connection stop. In the other cases (if λi ≥ λi+1), the spectral theory enables us 

to calculate the waiting times of all passengers who make a connection at stop Csi,i+1. 

In general case, the waiting time for a passenger who arrives at time t at the stop Dsi and who 

wants to reach a stop of the line Lj is given by: 

For 1≤i<j≤n, Twait(i,j,t) =
1−

=
�
j

il
Tl,l+1(kl, kl+1)       (11) 

   =
1−

=
⊗
j

il
[v 1�

1,2
+

+
l

l (kl+1)-v l
l

�

1,2+ (kl+1)]+[xl+1,1(kl+1)-xl,1(kl+1)] 

where kl = 
h

inf {h∈� / xl,1(h) ≥ t}, and kl+1 = 
h

inf {h∈� / xl+1,2(h) ≥ xl,4(kl)} 

Besides the moving time of a passenger from Dsi to Asj is given by: for 1≤i<j≤n, 

 Tmoving(i,j,t) = τi,1⊗τi,2⊗ τi+1,2 ⊗ τi+2,2 ⊗…⊗ τj-1,2⊗ dj 

= τi,1 ⊗(
1−

=
⊗
j

il
τl,2) ⊗ dj       (12) 

   Tmoving(i,i,t) = di  

 

where:  
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- τi,1 ⊗τi,2 is the time necessary to join Csi,i+1 from the departure stop Dsi; 

- τu,2 (i<u<j) is the moving time between the two connection stops Csu-1,u and Csu,u+1 of the 

line Lu (1<u<n); 

- dj (1≤j≤n) is the moving time between: 

- the stop where the passenger boards the bus Bj (if i<j, it is the connection stop Csj-1,j; if 

i=j, it is the departure stop Dsj), 

- and the stop Asj of the line Lj that represents the destination of the passenger. 

 

The total time spent by the considered passenger on travelling from Li to Lj, while making the 

connections Csi,i+1, …, Csj-1,j, is then : for 1≤i<j≤n, 

 Tjourney(i,j,t) = Twait(i,j,t) ⊗ Tmoving(i,j,t) 

=
1−

=
⊗
j

il
Tl,l+1(kl, kl+1)⊗τi,1⊗(

1−

=
⊗
j

il
τl,2) ⊗ dj 

   Tjourney(i,i,t) = e ⊗ Tmoving(i,i,t) = e ⊗ di = di      (13) 

 

These results depend on the ki
th bus on which passengers will get at the stop Dsi of the line Li. 

Indeed the waiting time of a passenger travelling on one part of a network depends on the 

departure time of the buses, number of buses, frequencies … 

 

6. Extension to nonperiodic operating mode  

6.1. Modelling 

If we relax the periodicity constraint, solving the model (1) is not feasible any more. So 

to study the system in a non periodic working mode and to solve the identified structural 

conflicts, we propose a state representation that can be deduced from a new Petri net model. 

In this case a conflict solving semantics must be found which prevents the deadlock in the 

graphical representation, and which allows a detailed analysis so as to optimize the network 

dynamics. 

Let us consider again an elementary network composed of two lines Li and Li+1. The 

modelling technique that we use for this network is detailed in Nait et al. (2006). For each 

place P ∈ Pconf (set of places in conflict situation, |P•| > 1) and with each transition t ∈ P•, we 

associate a routing function defined by:  

�t : �* → {e, ε} 
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 k  � �t(k) 

���t(k) = e, implies that the transition t is fired by the kth token arriving in P. 

 

���t(k) = ε,  implies that the transition t will not be fired by the kth token arriving in P.  

This token takes part in the firing of another transition t’∈P•. 

 

This technique allows each model transition t ∈ P• to be fired effectively (if �t(k) = e) or 

virtually (if �t(k) = ε) if a token is present in P•. It can be seen like another technique to solve 

the identified structural conflicts. In the graph of figure 2, it consists in associating two 

routing functions �xi,2(k) and �xi,3(k) respectively to transitions xi,2 and xi,3 of each circuit. 

Also, we associate to some arcs a weight m(P) (number of tokens presented in P) which may 

be different from 1. This means that all batches of passengers waiting at a connection stop 

represented by place P get on the same bus and carry out the connection. The weight m(Pi) on 

the connecting arc replaces the output transition oi in figure 2. By applying this technique to 

an elementary network (Li, Li+1), the obtained Petri net model is given by figure 4. To model 

the non periodic working mode of network we also add input transitions ui and ui+1 to this 

Petri net. So it is possible to act on these inputs to advance or delay a bus departure.     

 

 

 

 

 

 

 

Figure 4. Petri net model of an elementary network for a non periodic mode. 

 

Hereafter we give the expression of each dater xi,j(k). For example we consider xi,2(k). 

For all k	1, 

xi,2(k) = xi-1,4(k1) ⊗ �xi,2(k) ⊕ τi,1 ⊗ xi,1(k) ⊗ �xi,2(k) 

   = xi,1(k) ⊗ �xi,2(k)  

where k1 = f(m(Pi)). 

line Li line Li+1 

xi+1,3, �xi+1,3 xi,3, �xi,3 

Pi 

τi,3 

τi,2 τi,1 

τi+1,3 

τi+1,2 τi+1,1 

xi+1,1 

m(Pi) 

xi+1,4 

xi,2, �xi,2 
xi,1 xi,4 

Pi-1 m(Pi-1) 
xi+1,2, �xi+1,2 

ui ui+1 
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The connection will be done just when a bus Bi+1 arrives at the connection stop Csi,i+1. So the 

arrival time of this bus is larger than the arrival times of all passengers who board it. Then one 

can deduce, for all k	1, xi,1(k) 	 xi-1,4(k1). In the same way, we obtain all equations of the 

model: 

∀k>1, ∀ j,  1 ≤j≤ n, 

    xj,1(k) = τj,3 ⊗ xj,4(k-1) ⊕ uj(k) 

    xj,2(k) = τj,1 ⊗ xj,1(k) ⊗ �xj,2(k) 

    xj,3(k) = τj,1 ⊗ xj,1(k) ⊗ �xj,3(k)     (14) 

   xj,4(k) = τj,1 ⊗ τj,2 ⊗ xj,1(k) 

(14) is an implicit system. The explicit matrix form of (14) can be expressed by: ∀ k>1, 

X(k) = A0 �(k) X(k) ⊕ A1 X(k-1) ⊕ B U(k) 

= (A0 �(k))* A1 X(k-1) ⊕ (A0 �)* B U(k) 

= M X(k-1) ⊕ N U(k)      (15) 

where X(k)∈� n4
max , M = (A0 �(k))* A1 ∈� nnx44

max  and N = (A0 �(k))* B ∈� 24
max

nx . �(k) = � nnx44
max  is 

the routing matrix whose components are the routing functions �xi,j(k) for all k. (A0 �(k))* is 

the Kleene star of [A0 �(k)] which is defined by (A0 �(k))* = Id ⊕ A0 �(k) ⊕ (A0 �(k))² ⊕ 

…., Matrix M is made of blocs [Mi] on diagonal and ε elsewhere. [Mi] is defined by:  

[Mi] = 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

∆
∆

i

iii

iii

i

x

x

λεεε
ττεεε
ττεεε
τεεε

3,3,1,

2,3,1,

3,

 

 

Like in the periodic case, the network evaluation (in terms of connection times) may be 

performed by solving this (max, +) model (15). For this goal, we use an iterative algorithm to 

arbitrate the identified conflicts on the model Nait et al, (2006). For each iteration, the 

algorithm principle consists in firing each transition xi,j in conflict situation and for which all 

upstream places (∀ P ∈ •xi,j) contain at least one token; in this case, xi,j is said to be really 

fired (xi,j(k) ≠ ε). Otherwise, if the marking of at least one of these places is empty, xi,j will not 

be fired; we say that the transition is virtually fired (xi,j(k) = ε). The routing policy proposed 

ensures the model liveliness.  The algorithm used enables us to find various values of routing 

functions �xi,j(k) for all k≥ 1. 
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The following section shows that the analysis of this model based on spectral theory also may 

provide interesting results, in the form of the expression of eigenvalues and eigenvectors 

according to the problem parameters. Nevertheless, the relaxation of the periodicity constraint 

makes the interpretation difficult for the performance evaluation. 

 

6.2. Eigenvalues and eigenvectors 

To find these elements we follow the same method used in the periodic working mode. 

So we consider the precedence graph G(M) (figure 5) from which we obtain all eigenvalues. 

 

 

 

 

 

For i=1 to n,  wi1 = a4i-3,4i = τi,3; wi2 = a4i-2,4i = τi,1τi,3�xi,2; wi3 = a4i-1,4i = τi,1τi,3�xi,3; and wi4 = a4i,4i = λi 

  (where aij is the weight associated with each arc j � i). 

Figure 5. Precedence graph of the matrix M: non periodic working mode. 

 

Like in figure 3, the matrix associated with this graph contains n eigenvalues 

Sp(M) = {λ1, λ2, ….λn}. For the elementary network given by figure 4, we obtain the 

eigenvalues (λi, λi+1) = (Sp([Mi]), Sp([Mi+1])). 

To obtain the eigenvector associated with [Mi+1], we follow the same method given in 

the previous paragraph. We try to solve the equation:  

[Mi+1] ⊗ V 1i� + (k) =  λ i+1 ⊗ V 1i� + (k)      (16) 

where (λi+1, V) ≠ (ε, ε) and V is the associated eigenvector to λ i+1.  

Let us put V = [vi+1,1, vi+1,2, vi+1,3, vi+1,4]. Developing the equation (16) enables us to obtain the 

following system (without loss of generality, we consider only the connection between the 

two lines Li and Li+1):  

vi+1,1 =   (e / τi+1,1 τi+1,2) ⊗ vi+1,4 

vi+1,2 = (�xi+1,2(k) / τi+1,2) ⊗ vi+1,4      (17) 

vi+1,3  = (�xi+1,3(k) / τi+1,2) ⊗ vi+1,4    

 

where  “ / ” represents the subtraction in (max, +) algebra (a / b = a – b in usual algebra). 

From these equations the associated eigenvector V to eigenvalue λi+1 can be expressed by:  

1 

3 2 

4 wi1 

wi4 

4i-3 

4i-1 4i+2 4i-2 

4i 

4n-2 4n-1 

4n-3 4n 

10 6 

5 

7 10 6 

8 

w24 w14 wn4 

wn1 w21 w11 

wi2 wn2 w22 w12 wi3 wn3 w23 w13 
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V 1i� + (k)= <Vect(λi+1)>  

= [(e / τi+1,1 τi+1,2) vi+1,4, (�xi+1,2(k) / τi+1,2) vi+1,4, (�xi+1,3(k) / τi+1,2) vi+1,4, vi+1,4] 

   =  v i+1,4 ⊗ [(e / τi+1,1 τi+1,2), (�xi+1,2(k) / τi+1,2), (�xi+1,3(k) / τi+1,2), e] (18) 

with v i+1,4∈�max.  

From the expression (18) we remark that <Vect(λi+1)> depends on the two cases : connection 

or not between Li and Li+1. We now describe these two possible cases and we try to identify 

<Vect(λi+1)>. 

• Case N° 1 : a connection is really carried out  

Using the expression of the routing functions �xi+1,2(k) and �xi+1,3(k) when a connection 

k (∀ k>1) is carried out between Li and Li+1, we can write �xi+1,2 (k) = e and �xi+1,3 (k) = ε. So 

we obtain:  

<Vect(λi+1)> = vi+1,4 ⊗ [(e / τi+1,1 τi+1,2), (e/ τi+1,2), ε, e] 

         = vi+1,4 [-(τi+1,1 + τi+1,2), -τi+1,2, ε, e] 

If we choose vi+1,4 = λi+1, then:  <Vect(λi+1)> = [τi+1,3, τi+1,1 +τi+1,3, ε, λi+1] 

• Case N° 2 : no connection is carried out 

For this case we write �xi+1,2 (k) = ε and �xi+1,3 (k) = e. So with vi+1,4 = λi+1, eigenvector will 

be:  <Vect(λi+1)> = [τi+1,3, ε, τi+1,1 + τi+1,3, λi+1]. 

 

V 1i� +  depends on routing equations, then its general expression is initially given 

according to the parameter k. But in each considered case, the instantiation of the routing 

functions with constant values, involves that the obtained eigenvector V 1i� +  does not evolve 

with time. So, in practice, this prevents us from evaluating the waiting times of passengers in 

connection stops using theory spectral elements. Nevertheless, the proposed routing policy for 

the non periodic working mode allows us to easily solve and arbitrate identified conflicts. 

And a classical solving of the associated state model leads to determine the connection times 

Nait et al. (2006). Finally this first study could lead to further researches about the expression 

and interpretation of eigenvectors. 

 

7. Numerical example 

 
In this example, we generalise the obtained results in the periodic working mode 

considering several buses circulating on each network line. We consider a public 
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transportation network composed of three lines and two connection stops. The second line 

(L2) has two common connection stops respectively with the line L1 (Cs1,2) and the line L3 

(Cs2,3). The actual moving times between two stops τi,1, τi,2 and τi,3 , the necessary time to 

perform a round of each line λi = τi,1 + τi,2 + τi,3 (period) and the number of buses circulating 

of each line are given in Table I. 

 

Table I: Network data 
 

line Li number of buses  data (min)   
for N(B1) buses  λ1 = 15 τ1,1 = 3 τ1,2 = 3 τ1,3 = 9 L1 N(B1) = 3 
for one bus  β1 = 5 ρ1,1 = 1 ρ1,2 = 1 ρ1,3 = 3 
for N(B2) buses  λ2 = 35 τ2,1 = 5 τ2,2 = 10 τ2,3 = 20 L2 N(B2) = 5 
for one bus  β2 = 7 ρ2,1 = 1 ρ2,2 = 2 ρ2,3 = 4 
for N(B3) buses  λ3 = 24 τ3,1 = 6 τ3,2 = 6 τ3,3 = 12 L3 N(B3) = 3 
for one bus  β3 = 8 ρ3,1 = 2 ρ3,2 = 2 ρ3,3 = 4 

 
 

The time reference equals to zero (t=0), which corresponds to 6h00min. Buses of L1 

(respectively of L2 and L3) make their departures from Ds1 (respectively from Ds2, Ds3) at 

each 5 min (respectively each 7 min and 8 min). The first departures of the three buses from 

their departure stops Dsi respectively occur at times t = 9 (6h09min), t = 15 (6h15min) and 

t = 12 (6h12min). Besides we consider three possible destinations on each line As1, As2, As3. 

The moving times di between the stops Csi i+1 and Asi (for 1≤i≤2) are respectively: d1 = 2, d2 

=5 and d3 =3 min.  

Studying a line whose period equals to λi and which is served by N(Bi) buses (N(Bi) ≠ 

1) is equivalent to studying a line whose period equals λi divided by N(Bi) (λi ÷ N(Bi)) and 

which is served with a single bus. In this case, the real period, called βi, of line Li becomes 

βi = λi ÷ N(Bi), and the actual moving times of buses become: ρi,1 = τi,1 ÷ N(Bi), ρi,2 = τi,2 ÷ 

N(Bi) and ρi,3 = τi,3 ÷ N(Bi). Then we write βi = ρi,1+ρi,2+ρi,3.  

 

Serving each network line with several buses changes the graph marking of figure 2, 

which changes the expression of the associated state model. Nevertheless, if we replace the 

old data (λi , τi,1 , τi,2 , τi,3) with the new data (βi , ρi,1, ρi,2, ρi,3), the system study remains the 

same given previously. So, the system (2) describing the considered elementary network 

(three lines) remains the same one. 
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Using the spectral theory of the characteristic matrix developed previously (system (2) 

with n = 3 lines), the three eigenvalues of the matrix A(k-1) are {15 ÷ 3 = 5, 35 ÷ 5 = 7, 

24 ÷ 3 = 8}. These values represent the new periods of lines L1, L2 and L3 respectively; the 

eigenvectors associated with these eigenvalues are the following ones: 

V 5 (k) = [e, ε, 2, 3, ε, 2⊗5(f2,4(k)/k), ε, ε, ε, ε, ε, ε]t; 

V 7 (k) = [ε, ε, ε, ε, e, 1⊗7 (f2,3(k)/k), 1⊗7(f2,6(k)/k), 3, ε, 3⊗7(f3,4(k)/k), ε, ε,]t; 

V 8 (k) = [ε, ε, ε, ε, ε, ε, ε, ε, e, 2⊗8(f3,3(k)/k), 2⊗8(f3,6(k)/k), 4]t. 

where the routing functions are expressed as: ∀ k≥ 1, with E(x) is the integer part of x. 

f2,3(k) = k ;   f2,4(k) = E(
5

37 +k
); f2,6(k) = ε;  

f3,3(k) = k+1; f3,4(k) = E(
7

38 −k
);  f3,6(k) = 

�
�
	 =

othewise�

1kif1
  

 

These vectors enable us to provide the waiting time and the journey time of passengers 

who arrive at the departure stops Dsi for 1≤i≤3 at various times T. We consider several 

passengers who want to make a travel from Ds1 to As3 for different times T. In table II we 

expose the obtained results about waiting times at each connection stop (equation (10)) and 

different travel times (equation (12)) of passengers coming from Ds1 to As3. 

 

Table II: Waiting times and travel times of some passengers obtained using spectral theory. 
 

Connection 

L1 to L2 

Connection 

L2 to L3 

Departure time from 

Ds1 

mth bus 

B1 

kth bus B2 T1,2(m, k) k’th bus B3 T2,3(m, k’) 

Tjourney(1,3,T) = 

T1,2 + T2,3 +   ρ1,1  +   
ρ1,2 +   ρ2,2 + d3   

T=14 (≈6h14min) m = 2 1 1 2 5 13 

T=109 (≈7h49min) m = 21 15 4 14 3 14 

T=154 (≈8h34min) m = 30 21 1 19 1 9 

T=169 (≈8h49min) m = 33 23 0 21 3 10 

T=184 (≈9h04min) m = 36 26 1 24 6 14 

T=189 (≈9h09min) m = 37 26 1 24 6 14 

T=244 (≈10h04min) m = 48 34 2 31 6 15 
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The results obtained with spectral theory are similar to those obtained by solving the 

state model, but with a small restriction already detailed in section 5.2, that can be extended 

with parameters βi (instead of λi): if βi < βi+1 and if several batches of passengers successively 

arrive on buses of line Li between two arrivals of buses of line Li+1, the proposed method only 

enables us to define the waiting time of the last batch arriving at the connection stop. The 

waiting times of other batches are supposed to be similar to the calculated one. For example, 

in table II and for T = 184: T1,2(184,36, 26) = T1,2(189,37, 26) = 1 min. But we should find 

T1,2(184,36, 26) = 6 min. 

 

8. Conclusion 

 
In this paper we described the modelling and the evaluation of a public transport 

network, in a first time, with a subclass of Petri Nets called dynamic timed event graph with 

withdrawal of tokens, and in a second time with the mathematical approach (max, +) algebra. 

Those tools enabled us to model our transportation network, whatever the working mode of 

the bus lines is: synchronized or not at the connection stops, periodic or not. The obtained 

mathematical formulation corresponding to the Petri net model was given as a non-stationary 

(max, +) linear state representation, due to structural conflicts appearing in the graph. Those 

conflicts were arbitrated by different methods according to the operating mode. 

For each considered mode, we discussed some properties of the spectral theory of a 

matrix in (max, +) algebra. We showed that our analysis approach with spectral theory is 

adapted for performance evaluation of bus networks (in terms of connection times), especially 

in the periodic mode. One of its advantages is that it does not require to solve the (max, +) 

model. This approach certainly may be improved to obtain similar results for the non periodic 

working mode. This last aspect is the first prospect of this work. Another prospect is the 

extension of the obtained results to more complex transport systems (for example multimodal 

networks). We also aim at developing the spectral theory to propose a control that ensures a 

good management of buses on the network and minimum waiting times of passengers. 
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