
HAL Id: hal-00470003
https://hal.science/hal-00470003

Submitted on 3 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Critical Analysis of Middleware Architectures for Large
Scale Distributed Systems

Florin Pop, Ciprian Mihai Dobre, Alexandru Costan, Mugurel Ionut Andreica,
Eliana-Dina Tirsa, Corina Stratan, Valentin Cristea

To cite this version:
Florin Pop, Ciprian Mihai Dobre, Alexandru Costan, Mugurel Ionut Andreica, Eliana-Dina Tirsa, et
al.. Critical Analysis of Middleware Architectures for Large Scale Distributed Systems. Proceedings
of the 17th International Conference on Control Systems and Computer Science (CSCS) (ISSN: 2066-
4451), May 2009, Bucharest, Romania. pp.29-36. �hal-00470003�

https://hal.science/hal-00470003
https://hal.archives-ouvertes.fr

Critical Analysis of Middleware Architectures for Large Scale Distributed
Systems

Florin Pop*, Ciprian Dobre*, Alexandru Costan*, Mugurel Ionut Andreica*, Eliana Tirsa*,

Corina Stratan*, Valentin Cristea*

*Computer Science Department, Faculty of Automatic Control and Computer Science,
University Politehnica of Bucharest

(e-mails: {florin.pop, ciprian.dobre, alexandru.costan, mugurel.andreica, eliana.tirsa, corina.stratan,
valentin.cristea}@cs.pub.ro)

Abstract: Distributed computing is increasingly being viewed as the next phase of Large Scale Distributed
Systems (LSDSs). However, the vision of large scale resource sharing is not yet a reality in many areas –
Grid computing is an evolving area of computing, where standards and technology are still being
developed to enable this new paradigm. Hence, in this paper we analyze the current development of
middleware tools for LSDS, from multiple perspectives: architecture, applications and market research.
For each perspective we are interested in relevant technologies used in undergoing projects, existing
products or services and useful design issues. In the end, based on this approach, we draw some
conclusions regarding the future research directions in this area.

1. INTRODUCTION

Distributed Systems have become very useful, especially in
the case of scientific applications, where the processing of
very large data volumes is necessary in a very short amount
of time, as well as the storage of this data. Taking into
account the tremendous popularity of complex distributed
systems, favored by the rapid development of computing
systems, the high speed networks and the Internet, it is clear
that it is imperative, in order to achieve performances as high
as possible in the utilization of these systems, to pick an
optimal structure and architecture, but also scheduling and
data replications algorithms for the distributed systems. This
thing is particularly difficult, and even impossible, to be done
by somebody without the help of a specialized program,
because the prediction of the functioning of a distributed
system without the aid of the mentioned program is only
approximate and there may appear functioning errors in that
distributed system.

In the world of distributed computing, Grid computing has
emerged as an important new field, distinguished from
conventional distributed computing by its focus on large-
scale resource sharing, innovative applications, and, in some
cases, high-performance orientation. Grids are semantically
different from other distributed systems and therefore
performance analysis through simulation techniques requires
careful reconsideration.

The concept of Grid appeared in the 1990’s and is best
defined by Ian Foster, one of its initiators, as coordinated
resource sharing and problem solving in dynamic, multi-
institutional Virtual Organizations (VOs). Grid computing
has gained an increasing importance since the 1990’s,
especially in the academic environments, offering the
possibility to rapidly solve complex scientific problems.

Nevertheless, in the last years Grid computing has also begun
to gain ground in the commercial environments, with the aid
of some important investments made by the world’s leading
IT companies. As the investments in Grid technologies are
expected to increase dramatically and the complexity of the
computing resources is evolving, the research in this field
will be a subject of interest for the computer science
community in the next years.

Different examples of distributed systems are: clusters (as a
part in a Grid), Grids, P2P System, Web based Systems.

We shall start this paper by introducing some fundamental
architecture concepts. Section 3 presents the achievements in
the two main categories of specific software for LSDS:
middleware (which consists of services that provide resource
management, information registration and discovery, remote
process management, monitoring etc.) and applications
(developed on top of the middleware). Section 4 presents the
critical analysis of presented middleware. In Section 5 we
will present some remarks and open issues for LSDS
middleware tools.

2. MIDDLEWARE ARCHITECTURES

An important aspect of the LSDS is the architecture that
defines the system components, specifying the purpose and
function of these components, and indicates their interactions.
LSDSs are based on one or a combination of two
architectures: a protocol oriented architecture, and a service-
oriented architecture.

Historically, the most important Grid architecture is that
proposed by Ian Foster, Carl Kesselman and Steven Tuecke
(members of the Globus Alliance) and described in the very
well known paper “The Anatomy of the Grid” (Foster, 2001).
The authors started from the idea that sharing resources asks

mailto:@cs.pub.ro)

for interoperability among potential participants in a VO.
Since interoperability means protocols, the architecture they
developed for Grids is a protocol architecture "with protocols
defining the basic mechanisms by which VO users and
resources negotiate, establish, manage, and exploit sharing
relationships" (Foster, 2001). The open source reference
implementation of key Grid protocols was the Globus Toolkit
V2 (GT2) (Globus, 2009).

Fig. 1. Grid layered architecture (Foster, 2001).

This protocol architecture is a layered one (see Figure 1) and
follows the “hourglass model”, which requires the existence
of a small set of protocols and abstractions, onto which many
higher-level behaviors can be mapped, and which can
themselves be mapped onto many underlying technologies
(see the figure). The Fabric layer consists of resources (either
physical or logical) to which the shared access is provided
with the aid of the Grid protocols. Examples of such
resources are: computational resources (like a computer
cluster), storage systems (including distributed file systems),
network resources, sensors. The Connectivity layer defines
the base communication and authentication protocols
required for Grid-specific network transactions.
Communication protocols enable the exchange of data
between Fabric layer resources and authentication protocols
provide secure mechanisms for verifying the identity of users
and resources. The Resource layer defines protocols (and
APIs and SDKs) for the secure negotiation, initiation,
monitoring, control, accounting, and payment of sharing
operations on individual resources. The implementations of
these protocols call Fabric layer functions to access and
control local resources. At this level, only individual
resources are regarded, not the global state of the distributed
system. The Collective layer contains protocols and services
that are not associated with specific resources, but with the
interactions across collections of resources. The Collective
components can implement a wide variety of sharing
behaviors without placing new requirements on the resources
being shared. The last layer, Application, contains the user
applications that operate within a VO environment; the
applications may themselves define protocols, services,
and/or APIs and have a high degree of complexity ().

Later, this protocol-based architectural view of Grids has
been augmented by the authors with a service-based view. In
this view, the Grid is considered an "extensible set of services

that respond to protocol messages" (Foster, 2002). Grid
services may be aggregated to meet the requirements of
Virtual Organizations. The new proposal, which has been
termed Open Grid Services Architecture (OGSA), tries to
align the Grid technologies with Web services technologies
and to valorize the Web services properties that result from
the use of the Web Service Definition language (WSDL) and
from the separation of the neutral description of what the
service offers to its contractors and the bindings
corresponding to the actual service providers, namely: the
automatic generation of client and server code from service
descriptions in WSDL, service discovery, binding of service
descriptions to interoperable network protocols, compatibility
with emerging higher-level services (Foster, 2002). The test
bed for OGSA was Globus toolkit 3, GT3.

OGSA describes standard mechanisms for creating, naming
and discovering Grid services instances. In this model,
computational resources, networks, storage resources,
databases etc. are represented by services; a service can be
defined as a network-enabled entity that provides some
capability. A service-oriented view simplifies the
virtualization (the encapsulation behind a common interface
of diverse implementations) and addresses the need for
standard interface definition mechanisms and local/remote
transparency. In 2003, (Tuecke, 2003) provided a first
specification of the OGSA concepts, called Open Grid
Services Infrastructure (OGSI). The authors defined
approaches for creating, naming and managing service
instances, for declaring and inspecting service state data, for
the notification of service state changes etc. The definitions
are given as WSDL types, and can be used in combination in
order to create complex Grid services. The architecture,
adopted in the next version of the Globus Toolkit, GT4, is
also service oriented (OGSA) but adopts a new paradigm for
Grid services development, namely the Web Service
Resource Framework (WSRF). The new approach is better
focused on services than OGSA and provides a stronger
compatibility with the existing Web Services tools.

Peer-to-peer architecture is based on a network in which
each node is considered having equivalent capabilities and
responsibilities. P2P architecture classification is based on
the network and application.

Fig. 2. Pure Peer Network (early Gnutella)

An example of a pure P2P file sharing network was the
original design of Gnutella (released March 2000) in which
the search function and content storage were totally
decentralized, meaning that each function was conducted at
the individual peer level. This design suffered from several
technical weaknesses that have diminished its role as a
competitive distribution platform (see Figure 2).

Fig. 3. Centrally Coordinated Peer Network (Napster)

One of the important aspects in P2P architecture is
Collaborative Distributed Computing. It combines the idle or
unused CPU processing power and/or free disk space of
many computers in the network. Collaborative computing is
most popular with science and biotech organizations where
intense computer processing is required. The Instant
Messaging allows users to send different types of messages
in real-time. The Affinity Communities is the group of P2P
networks that is based around file-sharing and became widely
known and talked about due to the public legal issues
surrounding the direct file sharing group, Napster (see Figure
3). Affinity Communities are based on users collaborating
and searching other user's computers for information and
files.

Fig. 4. Hierarchical Peer Network (Kazaa, Grokster)

The fault tolerant architecture for P2P systems is presented in
Figure 4. The Hierarchical Peer Network considers different

super-nodes which represents the communication point with
clients.

P2P and Grid architectures differ from Web-based systems’
architecture where some computers are dedicated to serving
the others. In the modern approach, the web applications are
based on services. An overview over standards-based web
services shows that they differ in technology and in the
applicability area. The success of the web services
technology is conditioned by the existence of general open
standards, available to any developer or user. The
development of web services and applications must satisfy
certain requirements: a web service must be able to answer to
any client, regardless of the platform on which it is
developed. A client must be able to retrieve the servers that
can respond to its request through a web service.

The web service standards were defined to improve the
interoperability and availability for users from different
domains. Serving as a base for the development of Grid
systems and applications, the Internet offers the support for
the web services functionality. The diagram below,
reproduced from (Tannenbaum 2002), describes the client-
server model which is the base for web services design.

Fig. 5. Web-based system (Tanenbaum, 2002)

The communication between the service providers and the
client’s needs a common terminology; so that the exchanged
information is understood by both of the parties in an
effective manner (the XML standard offers the solution for
this problem). Simple Object Access Protocol (SOAP) is a
common protocol for representing the messages exchanged
by web services (SOAP, 2009). The language which
describes web services is Web Services Description
Language (WSDL, 2009). Universal Description, Discovery
and Integration (UDDI) defines the way in which the
providers publish details about the services and the clients
obtain the published information (UDDI, 2009).

The current requirements in developing Grid application
impose the compliance with the standards described above.
The applications that are currently designed for an
architecture that includes support for web services are from
various domains like economy (Buyya, 2002), industry and
science (for example, simulations and data processing in
nuclear physics and complex systems physics).

3. MIDDLEWARE TOOLS

Grid computing was based from the beginning on open
standards and protocols, which were used from the first
versions of dedicated software packages (e.g. Globus,
Unicore). GT2 used, for example, the protocols from the
TCP/IP stack for communication and authentication, but also
developed new protocols, which took into account the
particularities of network dynamics in Grid environments.
Such a protocol is GridFTP, a high-performance, secure,
reliable data transfer protocol based on FTP, optimized for
high-bandwidth wide-area networks. Another Globus specific
protocols are GRAM (Grid Resource Allocation and
Management), for the remote submission of a computational
request, GSI (Grid Security Infrastructure), GARA (Globus
Architecture for Reservation and Allocation).

The next step in Grid technology was made by OGSI, which
was centered on the concept of Grid Services. Grid Services
are based on Web Services - technology that has the
advantage of standardization, relying on Internet based
standards like Simple Object Access Protocol (SOAP) and
Web Services Description Language (WSDL). A Grid service
is actually a Web service that conforms to a set of
conventions and supports standard interfaces (Foster, 2002).
The Grid services can maintain an internal state, which
distinguishes an instance of the service from others. Most of
the Grid software packages adopted the Web Services
technology.

As the Web Services architecture evolved, the Web services
community pointed out some shortcomings of OGSI, which
are underlined in (Czajkowski, 2004): there are too many
functions in a single specification, it does not work well with
the existing Web services and XML tools (for example, JAX-
RPC), it has too many similarities with the object oriented
model (like the existence of instances and of an internal
state), and it uses features from WSDL 2.0 which are not
supported in WSDL 1.1.

These issues were addressed with the introduction of the WS-
Resource framework, which aims to exploit the new Web
services standards, especially WS-Addressing (standard that
describes transport neutral mechanisms to address Web
services). This refactoring has been done in three steps
(Czajkowski, 2004):

- The introduction of the WS-Resource concept

- A better separation of function and exploitation of
other Web services specifications

- A broader view of notification (for the state
changes appearing in Web services)

In the WS-Resource Framework, the state is no longer stored
within the service, but within the so-called resources. The
composition of a stateful resource and a Web service is called
a WSResource. WSRF and Grid services offer equivalent
functionality, but WSRF has several advantages, like being
easier to implement and exploit with the current Web services
tools, and making a clearer separation between the service

(which can be a simple message processor, both in WSRF
and OGSI) and the resource, which stores the internal state.

The current state of the art in Grid architecture technologies
is represented by the WSRF framework, which is being
adopted in some of the most important Grid software toolkits
and has reached sufficient maturity to be included in
enterprise products (e.g., Univa Globus Enterprise).

3.1. Resource Management

Resource management in Grid implies a quite large number
of functionalities, from resource discovery to scheduling,
execution management, status monitoring and accounting. In
this section, we shall focus on scheduling systems, and we
shall present the monitoring functionalities and the Grid
information systems in a further section. We shall introduce
here some general issues, and then we shall present taxonomy
of the scheduling systems and some details regarding the
scheduling mechanisms used in the most important current
Grid projects.

Wieder (2005) distinguishes between two cases of Grid
systems with respect to their requirements on resource
management capabilities: Case 1 is Specialized Grids for
dedicated purposes, which are centered on a single or limited
application domain and require high efficiency in execution.
The Resource Management System (RMS) is adapted to the
application, its workow and the available resource
description. Thus, the interfaces to the resources and the
middleware are built according to the given requirements
caused by the application scenario. While the Grid RMS is
highly specialized, the handling for the user is often easier as
the know-how of the application domain has been built into
the system.

Case 2 is a Generic Grid Middleware, which has to cope with
the complete set of the requirements to support applicability.
Here, the Grid RMS is open for many different application
scenarios. In comparison to the specialized Grids, generic
interfaces that can be adapted to many frontend backend are
required. However, the generic nature of this approach comes
at the price of additionally overhead for providing
information about the application. For instance, more
information about a particular job has to be provided to the
middleware, such as a workow description, scheduling
objectives, policies and constraints. The application
knowledge cannot be built into the middleware, and therefore
must be provided at the frontend level. In this case, the
consideration of security requirements is an integral aspect,
which is more difficult to solve. It is possible to hide the
additional RMS complexity of generic Grid infrastructures
from the users or their applications by specialized
components, which might be built on top of a generic
middleware. Nevertheless, it can be concluded that in general
a generic Grid middleware will carry additional overhead
with less efficiency at the expense of broader applicability.

Current research is mostly focusing on Case 1 in which
solutions are built for a dedicated Grid scenario in mind. As
mentioned before, these systems are usually more efficient

and will therefore remain the favorite solution for many
application domains. That is, Case 1 will not become
obsolete if corresponding requirements and conditions exist.
However, for creating future generation Grids suitable
solutions are required for Case 2.

One of the most important components of a RMS is the
scheduler, which distributes the applications on the Grid
resources and usually also handles the execution
management. We shall present as follows a brief taxonomy
for scheduling systems.

3.2. Data Management

The Globus Toolkit provides several data management
components, which can be classified in two categories: data
movement services and data replication services.

For data movement, two main components are available: the
GridFTP tools and the Reliable File Transfer (RFT) service.

The GridFTP protocol provides secure, robust, and fast data
transfer. It is generally used for bulk data and it was defined
by Global Grid Forum Recommendation GFD.020, RFC 959,
RFC 2228 and RFC 2389. The GridFTP components are a
powerful set of tools, but they have some weak points. For
example, the client must have an open socket connection to
the server during the transfer, who may not be interrupted;
this makes the transfer of very large files difficult. The client
is able to recover from remote failures (network outages,
server failures, etc), but if the client itself or the client host
fails, the recovery is not possible because the information
needed for recovery is held in the client's memory.

These issues were solved in a new service included in the
Globus Toolkit, called RFT (Reliable File Transfer). RFT is a
Web Services Resource Framework (WSRF) compliant web
service able to schedule intelligently the data movement
operations. The user provides a list of source and destination
URLs, and the service writes the information about the given
transfer jobs into a database and starts moving the files. Once
the service has taken your job request, interactions with it are
similar to any job scheduler.

The Globus Toolkit provides two data replication services:
the Replica Location Service (RLS), which is a basic data
replication component, and the Data Replication Service
(DRS), a higher-level service based on RLS and RFT
(Reliable File Transfer).

3.3. Systems Monitoring

Operating a successful LSDS, network or computing facility
requires vast amounts of monitoring information. Projects
and organizations worldwide that need to track resource
usage, network traffic, job distribution and many other
quantities rely on monitoring systems to collect the
information and present it in a way that allows them to make
effective decisions. The systems also have to automatically
troubleshoot and optimize very large grid and network
systems.

While the initial target field of these applications were
networks and Grid systems supporting data processing and
analysis for global high energy and nuclear physics
collaborations, monitoring tools are broadly applicable to
many fields of data intensive science, and to the monitoring
and management of major research and education networks.

An essential part of managing a global Data Grid is a
monitoring system that is able to monitor and track the many
site facilities, networks, and the many tasks in progress, in
real time. The monitoring information gathered also is
essential for developing the required higher level services,
and components of the Grid system that provide decision
support, and eventually some degree of automated decisions,
to help maintain and optimize workflow through the Grid.

The relevant efforts invested in this domain are gathered in
some major projects:

GridICE (GridICE 2009) is a distributed monitoring tool
designed for Grid systems. It promotes the adoption of de-
facto standard Grid Information Service interfaces, protocols
and data models. Further, different aggregations and
partitions of monitoring data are provided based on the
specific needs of different user categories, each of them
dealing with a different abstraction level of a Grid: the
Virtual Organization level, the Grid Operation Center level,
the Site Administration level and the End-User level. Being
able to start from summary views and to drill down to details,
it is possible to verify the composition of virtual pools or to
sketch the sources of problems. A complete history of
monitoring data is also maintained to deal with the need for
retrospective analysis.

R-GMA. The Grid Monitoring Architecture (RGMA, 2009)
consists of three components: Consumers, Producers and a
directory service, (which we prefer to call a Registry). In the
GMA Producers register themselves with the Registry and
describe the type and structure of information they want to
make available to the Grid. Consumers can query the
Registry to find out what type of information is available and
locate Producers that provide such information. Once this
information is known the Consumer can contact the Producer
directly to obtain the relevant data. The Registry
communication is shown by a dotted line and the main flow
of data by a solid line. The GMA architecture was devised for
monitoring but it also makes an excellent basis for a
combined information and monitoring system.

Ganglia (Ganglia, 2009) is a scalable distributed monitoring
system for high-performance computing systems such as
clusters and Grids. It is based on a hierarchical design
targeted at federations of clusters. It leverages widely used
technologies such as XML for data representation, XDR for
compact, portable data transport, and RRDtool for data
storage and visualization. It uses carefully engineered data
structures and algorithms to achieve very low per-node
overheads and high concurrency. The implementation is
robust, has been ported to an extensive set of operating
systems and processor architectures, and is currently in use
on over 500 clusters around the world. It has been used to

link clusters across university campuses and around the world
and can scale to handle clusters with 2000 nodes.

The MonALISA (MonALISA, 2009) system is designed as an
ensemble of autonomous multi-threaded, self-describing
agent-based subsystems which are registered as dynamic
services, and are able to collaborate and cooperate in
performing a wide range of information gathering and
processing tasks. These agents can analyze and process the
information, in a distributed way, to provide optimization
decisions in large scale distributed applications. An agent-
based architecture provides the ability to invest the system
with increasing degrees of intelligence, to reduce complexity
and make global systems manageable in real time. The
scalability of the system derives from the use of
multithreaded execution engine to host a variety of loosely
coupled self-describing dynamic services or agents and the
ability of each service to register itself and then to be
discovered and used by any other services, or clients that
require such information. The system is designed to easily
integrate existing monitoring tools and procedures and to
provide this information in a dynamic, customized, self
describing way to any other services or clients.

The scalability of the system derives from the use of a multi
threaded engine to host a variety of loosely coupled self-
describing dynamic services, the ability of each service to
register itself and then to be discovered and used by any other
services, or clients that require such information. The
framework integrates many existing monitoring tools and
procedures to collect parameters describing computational
nodes, applications and network performance. Specialized
mobile agents are used in the MonALISA framework to
perform global optimization tasks or help and improve the
operation of large distributed system by performing
supervising tasks for different applications or real time
parameters.

3.4. Security

Security Infrastructure has been motivated by the need of
secure communication between entities over the Grid. It has
to provide:

Authentication - allowing entities to interact knowing each
other identities (on top of authenticated identities,
authorization, logging and pricing schemes can be
implemented).

• Privacy - guaranteeing protection of data exchanged
both against tampering and unwanted access.

• Authorization - establishing and enforcing policies
under which clients and services can interact.

• Delegation - enabling entities/resources to act on
behalf of other entities/ resources/ clients.

• Single Sign-on - assuring that once an identity is
authenticated/authorized, access can be obtained
anywhere the entity is entitled to.

3.5. Applications

Applications can use registered services and tools (query,
monitoring, discovery, factory, notification, security,
registration, management, scheduling) along with grid
infrastructure (Pearlman, 2003). We can define an application
like a collection of work items or jobs that carry out a
complex computing task by using grid resources. So,
according with this definition, designing an application for
grid computing is much easier if you know what to expect
and which are the main work items. You should plan to use a
development environment or toolkit specifically designed for
grid applications, such as the Globus Toolkit and MonALISA
or Ganglia.

Designing a grid application must consider three aspects:

• Jobs: flow, type of job, number of difficult jobs,
depth of sub-jobs, redundant jobs execution,
scavenging grid and job topology.

• Data: topology, data type – character sets and
multimedia formats, amount of data, data separable
per jobs, job data I/O, shared data access, temporary
data space, time-sensitive data, data encryption.

• Environment: dependence of the OS, memory
needed per job, compiler settings, library needed,
runtime environment, application server, external
application, hardware dependency, network
bandwidth and scalability, security policy, single
user interface, time constrains.

A running application in a grid system is called grid-enabled.
For making an application grid-enabled, there are six
strategies, according to (Kra, 2005). These strategies are:

• Batch anywhere. In this strategy, only the grid (not
the application, the client, the user, or anything else)
decides which node to use for the job.

• Independent Concurrent Batch. This supports
multiple independent instances of the same
application running concurrently.

• Parallel Batch. In this case, takes each user's batch
work, subdivides it, disperses it out to multiple
nodes, collects it, and then aggregates the results.

• Service. Service is follow-on to Independent
Concurrent Batch, not follow-on to Parallel Batch.
Service, it is not assumed that each client subdivides
its work and spreads it over multiple service
instances.

• Parallel Service. This strategy combines the service-
oriented architecture of Service with the subdivided
work model of Parallel Batch.

• Tightly Coupled Parallel Programs. This is the
domain of specialized applications in engineering,
physics, and biological modeling, such as finite state
analysis.

It is important in this generation of LSDS applications to
establish what type of strategies to use in the design process.
For example, the run stage for your job must consider the
first three strategies. The adapt process for job consider
parallel batch, service and parallel service to be important
and the last aspect exploit the cluster infrastructure
considered the last one strategy.

4. CRITICAL ANALYSIS OF LSDS MIDDLEWARE

We present in the following table some characteristics for
different type of LSDS middleware for Cluster, Grids, Web-
based systems, Cloud Computing, P2P. The characteristics
are presented from the applications side and include scope of
the system, architecture, development models and
technologies, supported platform.

 Cluster Grid Web-based system Cloud Computing P2P

Scope
High
Performance
Computing

Workflow
execution

Client-Server
Application SOA Applications File sharing

Applications

Architecture Centralized Decentralized Hierarchical Hierarchical, Decentralized
Centralized,
Hierarchical,
Decentralized

Development
model

Execution Job
Object

Abstract Job
Object

RPC based Object
(RMI, Corba) Web Services Object Component

Object

Development
technology

Java, C/C++,
Perl, Python

Java, C/C++,
Perl, Python Java, C/C++, C# J2EE, .NET, WebSpere,

Azure Java, C++, C#

Supported
platform Unix, MacOS Unix, MacOS Unix, Windows,

MacOS Platform independent Platform
independent

Users and
applications

SEE-GRID,
EuroGrid, Grid
Interoperability
Project (GRIP)

EGEE,
AppLeS, Ninf,
Nimrod-G,
NASA IPG,
Gridbus
Broker,
eScience
(UK), EU
Data Grid.

Web 2.0 & 3.0
Applications (CSS,
DHTML, JSP,
Servlets, EJB,
SaaS)

Identity (OAuth, OpenID),
Integration (Amazon Simple
Queue Service), Payments
(Amazon Flexible Payments,
Google Checkout, PayPal),
Mapping (Google Maps,
Yahoo! Maps), Search
(Google Custom Search,
Yahoo! BOSS), Others
(Amazon Mechanical Turk)

Kazza, Napster,
Gnutela

5. CONCLUSIONS AND OPEN ISSUES

In this paper we present a critical analysis of middleware
architectures for large scale distributed systems. We
described the middleware architectures having different
components with important role in the system’s and
application’s life cycle. The open issues regarding the
middleware tools are presented in the following.

In resource management, one of the most important research
subjects is Service-Level Agreements (SLAs), with the aid of
which the demands of the users and those of the resource
owners can be better balanced. Some variants of SLAs have
already been implemented within different research projects
and they are about to be used on a wide scale.

Another aspect that will be considered in future LSDSs is the
economic one – the users will be charged for the resources
that they consume, and the schedulers will take this aspect
into account, trying to obtain an optimal combination
between the execution time for a job and the associated cost.

In the domain of information systems and monitoring, we
observe as a main characteristic, the distribution of their
architecture (in different forms, following each model –
relational for RGMA, agent based and distributed services in
MonALISA). This distribution implies, as a main direction in
future research, the development of synchronization tools (for
replicated data repositories containing monitoring
information, for example), fault toleration, no single point of
failure, prediction tools.

These developments have a broader range of applications, to
the LSDS required for major experiments, and other data-
intensive projects. The real time systems presented (such as
MonALISA) also include much of the functionality required
of the OGSA standardized services planned by the Global
Grid Forum in the future.

Effective and robust integrated applications require higher
level service components able to adapt to a wide range of
requests, and changes in the state of the system (such as
changes in the available resources, for example). These
services should be capable of “learning” from previous
experience, and apply “self-organizing neural network” or

other heuristic algorithms to the information gathered, to
optimize dynamically the system, by minimizing a set of
“cost functions”.

In what concerns LSDS security, the objectives concern
seamless access for the clients entitled to use the addressed
resources. The long time objective is to place in the Grid
environment the ability to store, retrieve and manipulate
client and service rights in order for the applications to meet
autonomously authorization requirements. As we have seen,
the authorization schemes are mainly identity based, being
effective in small to middle size Grids. When it comes to
interconnecting several Grids or accommodating a larger
Grid, the mapping of identities to user accounts (as in the grid
map file authorization scheme) does not scale. Nevertheless
the identity of a user gives little or no information concerning
user attributes, roles or associations with projects and
institutions.

Current efforts are undergone in order to allow policy based
access mechanisms, retrieval at interaction time of user
attributes, rights and policies, and their combination to infer
authorization decisions. Another area of research concerns
fine grained authorization policy enforcement, advertisement
and understanding, but, in the same time, provisioning of
dynamic addressing and usage of Grid resources.

The new issues for LSDS resource are oriented to the
development of WSRF-compliant architectures and the
creation of new models that include Semantic Web
technologies; in LSDS middleware, future research can be
done in the domains of service-level agreements, market-
based resource management, seamless and secure access for
the users to LSDS resources. In what concerns the
applications, most of the research efforts are directed to
making as many scientific applications as possible “LSDS-
enabled”, so that they can benefit of the advantages of Grid
technology.

REFERENCES

Badia R. M., Olav Beckmann, Marian Bubak, Denis
Caromel, Vladimir Getov, Ludovic Henrio, Stavros
Isaiadis, Vladimir Lazarov, Maciek Malawski, Sofia
Panagiotidi, Nikos Parlavantzas, Jeyarajan
Thiyagalingam. Lightweight Grid Platform: Design
Methodology, CoreGRID Technical Report, January
2006

Buyya R. Economic-based Distributed Resource
Management and Scheduling for Grid Computing, Ph.D.
Thesis, Monash University, Melbourne, Australia, 2002

Czajkowski K., Don Ferguson, Ian Foster, Jeff Frey, Steve
Graham, Tom Maguire, David Snelling, Steve Tuecke.
From Open Grid Services Infrastructure to WSResource
Framework: Refactoring & Evolution, 2004.

Foster I., C. Kesselman, S. Tuecke (2001). The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing
Applications, 15 (3) pp 200-222, 2001.

Foster I., C. Kesselman, J. Nick, S. Tuecke (2002). The
Physiology of the Grid - An Open Grid Services
Architecture for Distributed Systems Integration

(extended version of Grid Services Architecture for
Distributed Systems Integration. IEEE Computer 35(6),
pp 37-46). Open Grid Service Infrastructure WG, Global
Grid Forum. 2002

Globus Project - http://www.globus.org [Accessed 19th
January 2009]

Ganglia project homepage - http://ganglia.sourceforge.net/
[Accessed 19th January 2009]

GridICE project - http://infnforge.cnaf.infn.it/gridice/
[Accessed 19th January 2009]

Homayounfar H., Wang F., Areibi S., (2002). An Advanced
Peer-to-Peer Architecture using Autonomous Agents,
International Journal of Computers, Systems and
Signals, Vol.4 , No.2, 2002.

Kra D., Six strategies for grid application enablement.
Retrieved from www.ibm.com on 18th January 2009.

Pearlman L., C. Kesselman, V. Welch, I. Foster, and S.
Tuecke (2003). The community authorization service:
Status and future. In Proceedings of the Conference for
Computing in High Energy and Nuclear Physics, La
Jolla, California, USA, Mar. 2003.

RGMA project homepage - http://www.r-gma.org/ [Accessed
19th January 2009]

SOAP: http://www.w3.org/TR/soap/, Accessed in January
2009

Tanenbaum A. S., van Steen M., (2002). Distributed Systems.
Principles and paradigms, Prentice Hall 2002

Tuecke S., K. Czajkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, T. Maquire, T. Sandholm, D. Snelling, P.
Vanderbilt. Open Grid services infrastructure (OGSI)
version 1.0, 2003.

UDDI: http://www.uddi.org/specification.html, Accessed in
January 2009

Wieder P., U. Schwiegelsholn, R. Yahyapour. Resource
Management for Future Generation Grids. CEI,
Dortmund, Germany, 2005.

WSDL: http://www.w3.org/TR/wsdl, Accessed in January
2009

http://www.globus.org
http://ganglia.sourceforge.net/
http://infnforge.cnaf.infn.it/gridice/
http://www.ibm.com
http://www.r-gma.org/
http://www.w3.org/TR/soap/
http://www.uddi.org/specification.html
http://www.w3.org/TR/wsdl

