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We describe the influence of the initial phase profile on the convergence towards 
asymptotic self-similar parabolic shape. More precisely, based on numerical simulations, 
we discuss the impact of an initial linear chirp and a π phase shift. If the parabolic shape 
has been found to describe accurately the pulse envelope, dark structures can appear and 
evolve also self-similarly on the parabolic background. 
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1. Introduction 
 
Since their first experimental demonstration in 2000 in normally dispersive fiber 

amplifiers [1], the unique properties of optical parabolic pulses have generated a great 

deal of attention. Indeed, under the combined influence of optical gain, dispersion and 

Kerr nonlinearity, any pulse progressively evolves towards a parabolic intensity 

profile combined with a strictly linear chirp [1-3]. This typical shape experiences then a 

self-similar evolution, with exponential spectral and temporal broadenings and remarkably 

resists to the deleterious effects of the optical wave-breaking [4, 5]. Such features have 

already stimulated various applications [6], in the fields of ultra-short high-power 

pulse generation [1, 3, 7, 8] and optical telecommunications [5, 9, 10]. Experimental 

demonstrations based on rare earth doped fibers (with ytterbium [1, 7] or erbium [3, 

8] dopants) or on Raman distributed amplifiers [9-11] have indeed been successfully 

achieved. 

 



One the most fascinating features that the theoretical and experimental works 

have reported is that any pulse, irrespective to its initial shape, progressively reshapes 

into an asymptotic profile [1-3, 12] only determined by the initial pulse energy. In 

other words, the parabolic profile behaves as an attractor of the system, which is very 

attractive for practical applications such as pulse shaping [9] or optical regeneration 

[10]. The observation of such a behavior has also been recently extended to other 

nonlinear optical systems that support asymptotic parabolic propagation such as 

graded-index waveguide amplifiers [13] or  (3D+1) spatio-temporal light bullets [14]. 

To date, the study of this remarkable property in fibers has essentially been focused 

on the impact of the temporal intensity profile, with theoretical works investigating 

the consequences of various symmetric initial pulse shapes [15] or temporal durations 

[1-3, 12]. The influence of the initial phase profile has never been specifically 

investigated, even if it has already been suggested that an initial linear chirp could 

change the dynamics experienced in an erbium-doped fiber amplifier [8]. In this 

article, we try to address this lack by considering successively the impact of a linear 

chirp and a π phase shift on a Gaussian pulse evolving in a fiber amplifier. We will 

show that the transient evolution towards the asymptotic parabolic profile strongly 

depends on the initial phase profile and we will check that the envelope of the 

amplified pulse is well described by the asymptotic self-similar solution. However, 

we will also highlight that dark structures can exist and evolve on the parabolic 

background. 

 
This article is thus organized as follows. We first describe the model we use, 

the asymptotic pulse properties and the various parameters chosen to characterize the 

convergence towards the asymptotic state. In order to illustrate this section, we first 

base our discussion on the influence of the initial temporal width. We then focus on 



the dynamics of an initial linearly-chirped pulse and we outline the role of the initial 

chirp coefficient value. Finally, the consequences of an initial π phase shift are 

discussed. 

 
 
 
 

2. Numerical Model and parameters used to describe the pulse dynamics 

2.1 NLSE with gain and asymptotic solution 

The evolution of the complex electrical field ψ(z,T) of a pulse propagating in a fiber 

amplifier can be described by the well-known scalar nonlinear Schrödinger equation 

(NLSE) with gain  [16] : 
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with  z  the propagation distance and  T  the time in a copropagating frame. γ is the 

nonlinear Kerr coefficient, β2 is the second order dispersion and g is the gain that is 

here assumed to be constant. For the sake of simplicity, we do not include in the 

present discussion the effects of higher-order linear and nonlinear effects such as third 

order dispersion, linear attenuation or intrapulse Raman scattering. 

 
Techniques based on the asymptotic self-similar analysis of this equation have 

outlined that, in the normal regime of dispersion, the evolution of any pulse can be 

accurately described in the limit z→∞ by the following asymptotic complex solution 

ψP(z,T)  [1] :  
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This solution corresponds to a compactly-supported pulse with a parabolic 

intensity profile whose zero-crossing points are given by TP(z). AP(z), CP and ϕP are 

the amplitude of the pulse, the linear chirp slope and a constant phase offset, 

respectively. Their longitudinal evolution are explicitly given by the following set of 

equations [1, 17, 18]:  
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with  E0  being the initial pulse energy. In the frequency domain, the corresponding 

asymptotic power spectrum is also parabolic with zero-crossing points of ±νp(z) 

where ( ) ( )P P Pz C T zν = . The corresponding root-mean square (rms) temporal and 

spectral widths are respectively [12] : 
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Let us note that a physical gain is not a mandatory requirement and that a 

similar dynamics can also be observed in passive fibers where a continuously tapered 

dispersion profile mimics the consequences of the gain [19]. Our conclusions could 

therefore be straightforwardly extended from fiber amplifiers to passive devices using 

such dispersion management [20-22]. 

 
In order to illustrate those analytical predictions and our discussions, we 

numerically solve Eq. (1) by symmetric split-step Fourier method [16]. We consider 

the propagation in an existing Raman amplifier [11] based on a normally dispersive 



fiber with β2 = 16.6 10-3 ps2/m and γ = 4 W-1.km-1. The gain of the device is 

1.8 dB/km. The initial pulses ψ0 (T) are Gaussian pulses with an energy E0 of 6 pJ, an 

initial rms temporal width TG  (which corresponds to a full-width at half-maximum 

(FWHM) of 2 ln 2 GT  ) and with an initial phase profile ϕ0 (T) :  
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In the present work, we specifically investigate several initial phase profiles 

ϕ0 (T) corresponding to linear chirps and to π-phase shifts. More explicitly, the linear 

chirp (Figure 1(a1)) is described by an initial parabolic phase : 

 20
0( )

2

C
T Tϕ = −  (6) 

with  C0  being the chirp coefficient, i.e. the slope of the linear chirp. We will test both 

positive and negative values of C0 (leading to normal and anomalous chirps 

respectively). Regarding the profiles having a phase shift of P rad centered at T = TC , 

in order to have realistic parameters, we have taken into account a transition having 

an hyperbolic-tangent  profile with a characteristic duration TS   (Figure 1(b1))  :  
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2.2 Parameters used to investigate the pulse dynamics 
 
In order to introduce different useful parameters, let us first recall, as a pedagogical 

example, the already-studied problem of the influence of the initial pulse duration. We 

consider Fourier-limited initial pulses (i.e. ϕ0(T) = 0) with temporal FWHM ranging 

from 5 ps to 150 ps. The longitudinal evolution of the rms temporal width during 

amplification is plotted on a semi-logarithmic scale in Figure 2(a). After a given 

length of propagation in the distributed amplifier, all the pulses experience the same 



exponential broadening that is found in excellent agreement with the analytical 

predictions of Eq. (3) [1-3, 12]. The spectral evolution of the pulses (Figure 2(b)) 

follows a similar expansion and despite initial temporal widths varying by a factor 30, 

all the pulses ultimately follow the same longitudinal trends. 

An interesting additional way to visualize simultaneously the temporal and 

spectral evolution towards the asymptotic state (Figure 1(c)) is the phase portrait in 

the time-frequency plane with the temporal and spectral widths ( Trms and νrms 

respectively) normalized with respect to the analytical predictions given at the same 

distance by Eqs. (3) and (4)  [3, 12, 14]  : spiral trajectories of the different pulses all 

converge towards the central point, clearly highlighting the attractive nature of the 

asymptotic solution. 

In order to better quantity this spectro-temporal convergence towards the 

asymptotic properties, we introduce a parameter we call distance factor D defined as 

the separation between the normalized temporal and spectral rms widths and the 

corresponding asymptotic properties defined by Eq. (3-4). This parameter is therefore 

defined as :  
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From Figure 3(a), all the pulses progressively evolve towards D = 0 , which 

clearly reflects that their temporal and spectral parameters converge towards the 

asymptotic predictions. We can also make out that the propagation distance over 

which the convergence is achieved significantly depends on the initial temporal 

duration [1, 2, 12, 23, 24]. 

Despite their interest, neither the Distance factor D nor the plots of Figure (2) 

are fully sufficient to definitively conclude on the convergence towards a parabolic 

asymptotic state. Indeed, those elements do only provide insights of the temporal and 



spectral widths of the pulse and do not provide any information on its actual shape. It 

is therefore required to use an additional parameter to characterize more precisely the 

temporal intensity profile. Potential solutions rely on higher-order moments such as 

kurtosis [25], or on other dimensionless functionals [26]. We prefer to choose a misfit 

parameter defined as the difference between the intensity profile of the pulse and the 

intensity profile of a compact parabolic intensity profile  IP  [24, 27, 28] : 
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This misfit parameter enables the direct comparison of the pulse shape with 

the parabolic ideal shape. We can therefore check on Figure 3(b) that irrespective to 

their initial duration, all the pulses converge towards a misfit parameter with a null 

value, which is synonym of a parabolic intensity profile. We can however note here, 

that compared to the evolution of the D factor which decreases nearly monotonously 

down to zero, the misfit factor evolution can be much less monotonous with local 

minima, which has already been shown previously [29] . Let us finally note that we 

could have included both the D and M factors in a single indicator which would have 

been a misfit factor relative to a parabolic intensity profile having the parameters as 

defined by Eq. (3). We have however preferred two indicators, in order to discuss 

separately the influence of the shape and the influence of the temporal/spectral 

evolution. 

3. Influence of an initial linear chirp 
 
We now study the influence of the initial phase and more specifically, the influence of 

an initial linear chirp as described by Eq. (6). We consider initial 80-ps Gaussian 

pulses with a chirp coefficient C0 ranging from -0.01 rad.ps-2 to 0.01 rad.ps-2 (Figure 

1(a1)) The longitudinal temporal and spectral evolutions plotted on Figure 4(a-b) 



confirm the role of attractor played by the self-similar solution. Indeed, whatever the 

initial chirp coefficient value or sign are, the pulse properties quantatively converge 

towards the evolution predicted by Eq. (4-5). However, the paths towards the 

asymptotic sink differ markedly depending on the initial sign of the chirp coefficient, 

as can be noticed in Figure 4(c) : whereas the starting point does not depend on the 

chirp sign, the trajectory is fundamentally different. 

Pulses with an initial normal chirp (i.e. C0 > 0 ) undergo a continuous increase 

of their temporal and spectral widths and follow a traditional spiral trajectory. By 

contrast, the evolution of pulses having an anomalous chirp is a bit more complex. 

Indeed, those pulses undergo an initial stage of temporal compression linked to the 

compensation of the initial chirp by normal dispersion [16]. But this stage of temporal 

compression is not a purely linear chirp compensation, as highlighted by the 

simultaneous changes observed in the spectrum of the pulses. To be more precise, the 

pulses also experience a spectral compression, which is typical of pulses with initial 

anomalous chirp propagating in a nonlinear Kerr medium [24, 30, 31]. Remark that at 

a given stage of propagation (points A or B), the pulses are close from transform-

limited pulses  (time-bandwidth product of 0.6). 

If now we consider the evolutions of the D and M factors, we can notice that 

the evolution of pulses having an anomalous initial chirp is more complex than pulses 

with a normal chirp. We can once again see the particular points A and B 

corresponding to turning points in the evolution of the pulse. We could have 

anticipated from a somewhat naive approach that an initial normal chirp being closer 

from the asymptotic solution would converge faster towards the asymptotic solution. 

However, quite counterintuitively, pulses with initial anomalous chirp converge faster 

that their normal counterpart. 



From the Figure 5(a), we can see that after 25 km, the resulting misfit factor is 

slightly higher for pulses with initial normal dispersion. In order to get further insight, 

we have plotted the corresponding intensity profiles obtained after 25 km (Figure 

6(a)). As we it can be seen, all the pulses, even with very different initial properties, 

have acquired a parabolic envelope. But if we pay more attention to the details (see 

Figure 6(b)), it turns out that some ultrashort fluctuations on the parabolic background 

can be noticed. Those non-sinusoidal oscillations are marks of a stage of propagation 

where the wave-breaking phenomenon initiates oscillations in the temporal wings of 

the pulse [29, 32]. Previous works have indeed stressed that an initial chirp could 

strengthen the wake-breaking impact [33]. Then, under the combined influence of the 

adiabatic gain and the nonlinearity, those structures evolve towards dark solitons [34-

36], as confirmed by the excellent agreement between the shape of one of this dip of 

light and the typical shape of a grey soliton [16, 37] (Figure 6(b)). 

 

4. Evolution of an initial phase defect 
 

We now examine the evolution of a pulse exhibiting a phase shift such as described 

by Eq. (7)   (Figure. 1(b)). This phase shift is located at TC = 30 ps. From Figure 7(a), 

we can make out that the rms temporal width evolution of the pulse is not very 

sensitive to the initial pulse shift. On the contrary, the spectral evolution is much more 

affected (Figure 7(b)), with an initial pulse having a much broader spectral extension. 

We can also note that a phase shift of π or – π does not lead to identical evolutions. 

However, in both cases, the phase portrait exhibits the signature of a rapid 

convergence toward the asymptotic features. 

From the evolution of the distance factor D, it could appear that the initial 

phase shift has only a moderate influence on the propagation (Figure 8(a)). However, 



the misfit factor M (Figure 8(b)) stresses that the initial phase defect deeply influences 

the pulse shape evolution. Indeed, the associated misfit factor is much higher than 

those obtained in the case of a chirp-free pulse. This can be better understood when 

looking at the intermediate pulse temporal intensity profile at L = 5 km where we can 

clearly visualize that the initial phase shifts have severely impaired the pulse 

dynamics, leading to deeply asymmetric profiles (Figure 8(c)). This arises from the 

fact that during the propagation, the phase defect has translated into an intensity 

change through the action of dispersion. Despite this highly distorted profile, the 

misfit factor ultimately decreases down to a low value, confirming the evolution 

towards a parabolic profile. 

 
From the analysis of M and D factors, one may have concluded that the output 

pulse is fully described by Eqs. (3-5). Figure 9(a1) depicts the output amplified 

intensity profile after 20 km : the global shape is clearly in good agreement with a 

compact parabolic function. However, if we look more closely into the details, we can 

also make out the presence of several dips of light on the parabolic background. 

Those dark structures are spontaneously formed during the propagation and result 

directly from the initial phase shift (similar examples have also been outlined in other 

fields such as Bose-Einstein condensate [38, 39]). Once again, their intensity profile 

has been found in excellent agreement with the analytical expression of a grey soliton 

(Figure 9(a2)) and we have carefully checked that they do not constitute a transient 

state : once formed, they evolve on the parabolic background, experiencing a 

progressive temporal narrowing when the peak power increases. Analytical 

approximate but highly accurate formula predicting the evolution of those systems 

have already been proposed in the context of self-similar dark similaritons evolving in 



nonlinear index graded waveguide amplifiers [40, 41] or in fibers with a precise 

longitudinally dispersion varying profile [42]. 

From Figure 9(b), we can also make out that the sign of the initial phase shift 

influences the evolution. Indeed, for the π phase shift, the temporal chirp resulting 

from the finite transition time is of opposite sign as the intensity gradient and 

therefore is of the same sign as the chirp induced by self-phase modulation. As a 

result, the resulting dark structure will be first repulsed (Figure 9(b1)). On the 

contrary, for a -π phase shift, the first stage of propagation will be attractive towards 

the center of the pulse (Figure 9(b2)). 

 
 

5. Conclusions 
 
We have investigated in this work for the first time of our knowledge the influence of 

the initial phase profile on the convergence towards the asymptotic parabolic state in a 

distributed fiber amplifier with normal dispersion. We have shown that the asymptotic 

solution describes accurately the evolution of the rms temporal and spectral widths 

and that the temporal intensity profile is asymptotically in good agreement with the 

expected parabolic profile, irrespective to the initial phase profile of the pulse. 

However, the details of the asymptotically obtained pulses reveal some sensitivity to 

phase defects with the existence of dark ultrashort solitonic structures that are not 

predicted by the asymptotic solution and that can further maintain during 

amplification. Their central position evolves on the parabolic background and they 

experience temporal narrowing during the amplification. 
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Figure Caption 
 
Figure 1 : Temporal phase and intensity profiles of the initial pulses under study (subplots 1 

and 2 respectively). The initial pulses are Gaussian pulses with a FWHM width of 80 ps.                  

(a) Pulses with a linear chirp. Chirp coefficients are 0, -0.005, -0.01, 0.005, 0.01 rad.ps-2  

(solid black line, dark grey solid line, light grey solid line, dark grey dashed line, light grey 

dashed line respectively)              (b) Pulse with a phase shift P of π and  -π centered at 

TC = 30 ps with a characteristic time TS = 7 ps   (solid black line and solid grey line 

respectively). The grey dotted line is the phase of a transformed limited pulse. 

 

Figure 2 : Longitudinal evolution of the temporal (a) and spectral (b) rms widths of an initial 

chirp-free Gaussian pulse evolving in a distributed Raman amplifier. Different initial pulses 

widths ranging from 5ps to 150ps are studied and the results are compared with analytical 

evolution predicted by Eqs. (3-4).  (solid black circles)     (c) Phase portrait in the time-

frequency plane. 

 

Figure 3 : Longitudinal evolutions of the Distance factor D (a) and the Misfit parameter M (b) 

for different initial pulse durations. 

 

Figure 4 : Longitudinal evolution of the temporal (a) and spectral (b) rms widths of an initial 

Gaussian pulse evolving in a distributed Raman amplifier. Different initial chirps (same 

convention as for Figure 1(a)) are studied and the results are compared with analytical 

evolution predicted by Eqs. (3-4) (solid black circles).       (c) Phase portrait in the time-

frequency plane. 

 

Figure 5 : Longitudinal evolutions of the Distance factor D (a) and the Misfit parameter M (b) 

for different initial chirp coefficients  (same convention as for Figure 1(a)). 

 

Figure 6 : Temporal intensity profiles after propagation in 25-km of the Raman amplifier for 

different initial chirp coefficients (same convention as for Figure 1(a)). Subplot (b) is a 

magnification of the falling edge of the parabolic profile plotted on subplot (a). Intensity 

profile of a grey soliton is plotted with filled circles. 



 

Figure 7 : Longitudinal evolution of the temporal (a) and spectral (b) rms widths of an initial 

Gaussian pulse evolving in a distributed Raman amplifier. Different initial phase profiles  

(same convention as for Figure 1(b1)) are studied and the results are compared with analytical 

evolution predicted by Eqs. (3-4) (solid black circles).       (c) Phase portrait in the time-

frequency plane. 

 

Figure 8 : Longitudinal evolutions of the Distance factor D (a) and the Misfit parameter M (b) 

for different initial phase profiles  (same convention as for Figure 1(b)).    (c) Temporal 

intensity profiles obtained after a propagation length of 5 km in the Raman amplifier. 

 
Figure 9 :   (a) Temporal intensity profiles after propagation in 20-km of the Raman amplifier 

for different phase profiles (same convention as for Figure 1(b)). Subplot (a2) is a 

magnification of the falling edge of the parabolic profile plotted on subplot (a). Intensity 

profile of a grey soliton is plotted with filled black circles.     (b) Longitudinal evolution of the 

temporal intensity profile for pulse having a π and -π  initial phase shifts  (subplots (b1)  and 

(b2) respectively). The trajectory of the main grey soliton is highlighted by a dashed line. 
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