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We describe the influence of the initial phase ipgobn the convergence towards
asymptotic self-similar parabolic shape. More pelyi, based on numerical simulations,
we discuss the impact of an initial linear chirg @t phase shift. If the parabolic shape
has been found to describe accurately the pulsel@pw, dark structures can appear and
evolve also self-similarly on the parabolic backgrd.
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1. Introduction

Since their first experimental demonstration in @48 normally dispersive fiber
amplifiers [1], the unique properties of opticatgdaolic pulses have generated a great
deal of attention. Indeed, under the combined erfte of optical gain, dispersion and
Kerr nonlinearity, any pulse progressively evoluwesvards a parabolic intensity
profile combined with a strictly linear chirp [1-3fhis typical shape experiences then a
self-similar evolution, with exponential spectraidatemporal broadenings and remarkably

resists to the deleterious effects of the opticalvavbreaking [4, 5]Such features have
already stimulated various applications [6], in fields of ultra-short high-power
pulse generation [1, 3, 7, 8] and optical telecomications [5, 9, 10]. Experimental
demonstrations based on rare earth doped fibeth gtterbium [1, 7] or erbium [3,
8] dopants) or on Raman distributed amplifiers {9-iave indeed been successfully

achieved.



One the most fascinating features that the thexaleéind experimental works
have reported is that any pulse, irrespectivestanitial shape, progressively reshapes
into an asymptotic profile [1-3, 12] only determihby the initial pulse energy. In
other words, the parabolic profile behaves as aacbr of the system, which is very
attractive for practical applications such as pulsaping [9] or optical regeneration
[10]. The observation of such a behavior has aksenbrecently extended to other
nonlinear optical systems that support asymptoaicalpolic propagation such as
graded-index waveguide amplifiers [13] or (3D+pao-temporal light bullets [14].
To date, the study of this remarkable propertyiliers has essentially been focused
on the impact of the temporal intensity profile ttwtheoretical works investigating
the consequences of various symmetric initial patsgpes [15] or temporal durations
[1-3, 12]. The influence of the initial phase phefihas never been specifically
investigated, even if it has already been suggetadan initial linear chirp could
change the dynamics experienced in an erbium-ddibed amplifier [8]. In this
article, we try to address this lack by considesngcessively the impact of a linear
chirp and art phase shift on a Gaussian pulse evolving in a faveplifier. We will
show that the transient evolution towards the agsgtigpparabolic profile strongly
depends on the initial phase profile and we wileah that the envelope of the
amplified pulse is well described by the asymptaidf-similar solution. However,
we will also highlight that dark structures canséxand evolve on the parabolic

background.

This article is thus organized as follows. We falstscribe the model we use,
the asymptotic pulse properties and the variouarpaters chosen to characterize the
convergence towards the asymptotic state. In adtustrate this section, we first

base our discussion on the influence of the inteahporal width. We then focus on



the dynamics of an initial linearly-chirped pulsedave outline the role of the initial
chirp coefficient value. Finally, the consequenadsan initial T phase shift are

discussed.

2. Numerical Model and parameters used to describe pulse dynamics

2.1 NLSE with gain and asymptotic solution
The evolution of the complex electrical fiel{z,T) of a pulse propagating in a fiber

amplifier can be described by the well-known scalanlinear Schrodinger equation

(NLSE) with gain [16] :

- viw|'w . (1)

with z the propagation distance and the time in a copropagating frameis the
nonlinear Kerr coefficient, is the second order dispersion ani the gain that is
here assumed to be constant. For the sake of sitgple do not include in the
present discussion the effects of higher-ordemlirad nonlinear effects such as third

order dispersion, linear attenuation or intraplsenan scattering.

Techniques based on the asymptotic self-similalyaizaof this equation have
outlined that, in the normal regime of dispersithre evolution of any pulse can be

accurately described in the lingt. c by the following asymptotic complex solution

wr(z,T) [1]
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This solution corresponds to a compactly-suppopetse with a parabolic
intensity profile whose zero-crossing points aneegibyTp(z). Ar(z), G and ¢ are
the amplitude of the pulse, the linear chirp slapel a constant phase offset,
respectively. Their longitudinal evolution are agjply given by the following set of

equations [1, 17, 18]:
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with E, being the initial pulse energyn the frequency domain, the corresponding
asymptotic power spectrum is also parabolic withoz®ossing points of t(z)
where v.(=G, T.(3. The corresponding root-mean square (rms) temparal

spectral widths are respectively [12] :

T, =2T 4 2 Ve 4)

V, =
Prms \/g Prms \/_5

Let us note that a physical gain is not a mandatequirement and that a
similar dynamics can also be observed in passbardiwhere a continuously tapered
dispersion profile mimics the consequences of thie §19]. Our conclusions could
therefore be straightforwardly extended from fiberplifiers to passive devices using

such dispersion management [20-22].

In order to illustrate those analytical predictioasd our discussions, we
numerically solve Eq. (1) by symmetric split-stepuRer method [16]. We consider

the propagation in an existing Raman amplifier [bdked on a normally dispersive



fiber with £ = 16.6 10° ps/m andy=4 W km'. The gain of the device is
1.8 dB/km. The initial pulseg,(T) are Gaussian pulses with an enelggyf 6 pJ, an
initial rms temporal widthl (which corresponds to a full-width at half-maximu

(FWHM) of /2 In2 T, ) and with an initial phase profilg (T) :

1

Yo (0.T)= T% (ZT exp[ TZJ exti 4T ) (5)

m _TGZ
In the present work, we specifically investigateesal initial phase profiles

@0 (T) corresponding to linear chirps andrighase shifts. More explicitly, the linear

chirp (Figure 1(al)) is described by an initialgdaolic phase :

g = -2 (6)
with Cy being the chirp coefficient, i.e. the slope af timear chirp. We will test both
positive and negative values @, (leading to normal and anomalous chirps
respectively). Regarding the profiles having a phstsft of P rad centered &t = Tc,

in order to have realistic parameters, we haventak® account a transition having

an hyperbolic-tangent profile with a charactecistirationTs (Figure 1(b1)) :

$,(T) = '2 [1 —tanI{T_I__STC D (7)

2.2 Parameters used to investigate the pulse dynamics

In order to introduce different useful parametées,us first recall, as a pedagogical
example, the already-studied problem of the infbgeof the initial pulse duration. We
consider Fourier-limited initial pulses (i.@(T) = 0) with temporal FWHM ranging

from 5 ps to 150 ps. The longitudinal evolutiontbé rms temporal width during

amplification is plotted on a semi-logarithmic scah Figure 2(a). After a given

length of propagation in the distributed amplifiall, the pulses experience the same



exponential broadening that is found in excellegteament with the analytical
predictions of Eq. (3) [1-3, 12]. The spectral enmin of the pulses (Figure 2(b))
follows a similar expansion and despite initial peral widths varying by a factor 30,
all the pulses ultimately follow the same longinalitrends.

An interesting additional way to visualize simukansly the temporal and
spectral evolution towards the asymptotic statgufe 1(c)) is the phase portrait in
the time-frequency plane with the temporal and speavidths ( Trms and Vims
respectively) normalized with respect to the anedytpredictions given at the same
distance by Egs. (3) and (4) [3, 12, 143piral trajectories of the different pulses all
converge towards the central point, clearly hightilgg the attractive nature of the
asymptotic solution.

In order to better quantity this spectro-temporahwergence towards the
asymptotic properties, we introduce a parametecalledistance factob defined as
the separation between the normalized temporal spreattral rms widths and the
corresponding asymptotic properties defined by(B¢t). This parameter is therefore

defined as :

R ®

From Figure 3(a), all the pulses progressively exdbwardsD = 0 , which
clearly reflects that their temporal and spectratameters converge towards the
asymptotic predictions. We can also make out that gropagation distance over
which the convergence is achieved significantly eshels on the initial temporal
duration [1, 2, 12, 23, 24].

Despite their interest, neither the Distance faEtaror the plots of Figure (2)
are fully sufficient to definitively conclude ondhconvergence towards a parabolic

asymptotic state. Indeed, those elemeat®nly provide insights of the temporal and



spectral widths of the pulse and do not provide iafgrmation on its actual shape. It
is therefore required to use an additional paramnteteharacterize more precisely the
temporal intensity profile. Potential solutionsyr@in higher-order moments such as
kurtosis [25], or on other dimensionless functienalb]. We prefer to choose a misfit
parameter defined as the difference between tle@siiy profile of the pulse and the

intensity profile of a compact parabolic intengtpfile 1 [24, 27, 28] :

M? = [l - Ip]zdt /j|z//|4 dt 9)

This misfit parameter enables the direct comparisiothe pulse shape with
the parabolic ideal shape. We can therefore chackigure 3(b) that irrespective to
their initial duration, all the pulses converge &ds a misfit parameter with a null
value, which is synonym of a parabolic intensitgfje. We can however note here,
that compared to the evolution of tbefactor which decreases nearly monotonously
down to zero, the misfit factor evolution can becmdess monotonous with local
minima, which has already been shown previously. [t us finally note that we
could have included both th& andM factors in a single indicator which would have
been a misfit factor relative to a parabolic intgnprofile having the parameters as
defined by Eq. (3). We have however preferred tndicators, in order to discuss
separately the influence of the shape and the anfla of the temporal/spectral

evolution.

3. Influence of an initial linear chirp

We now study the influence of the initial phase amate specifically, the influence of
an initial linear chirp as described by Eq. (6). \8@nsider initial 80-ps Gaussian
pulses with a chirp coefficier®, ranging from -0.01 rad.fsto 0.01 rad.ps (Figure

1(al)) The longitudinal temporal and spectral ettohs plotted on Figure 4(a-b)



confirm the role of attractor played by the setfigar solution. Indeed, whatever the
initial chirp coefficient value or sign are, thelgel properties quantatively converge
towards the evolution predicted by Eq. (4-5). Hoerevthe paths towards the
asymptotic sink differ markedly depending on thiéiahsign of the chirp coefficient,
as can be noticed in Figure 4(c) : whereas theirggapoint does not depend on the
chirp sign, the trajectory is fundamentally diffete

Pulses with an initial normal chirp (i.€y > 0 ) undergo a continuous increase
of their temporal and spectral widths and folloviraditional spiral trajectory. By
contrast, the evolution of pulses having an anoosalchirp is a bit more complex.
Indeed, those pulses undergo an initial stage mpteal compression linked to the
compensation of the initial chirp by normal dispeng16]. But this stage of temporal
compression is not a purely linear chirp compensatias highlighted by the
simultaneous changes observed in the spectruneqgiulses. To be more precise, the
pulses also experience a spectral compressionhwitypical of pulses with initial
anomalous chirp propagating in a nonlinear Kerriomad24, 30, 31]. Remark that at
a given stage of propagation (points A or B), tlhises are close from transform-
limited pulses (time-bandwidth product of 0.6).

If now we consider the evolutions of tBeandM factors, we can notice that
the evolution of pulses having an anomalous indrafp is more complex than pulses
with a normal chirp. We can once again see theicpdat points A and B
corresponding to turning points in the evolution tbhe pulse. We could have
anticipated from a somewhat naive approach thaniéial normal chirp being closer
from the asymptotic solution would converge fastavards the asymptotic solution.
However, quite counterintuitively, pulses with iaitanomalous chirp converge faster

that their normal counterpart.



From the Figure 5(a), we can see that after 25tkenresulting misfit factor is
slightly higher for pulses with initial normal disgsion. In order to get further insight,
we have plotted the corresponding intensity prefitdtained after 25 km (Figure
6(a)). As we it can be seen, all the pulses, evéim wery different initial properties,
have acquired a parabolic envelope. But if we payenattention to the details (see
Figure 6(b)), it turns out that some ultrashortfliations on the parabolic background
can be noticed. Those non-sinusoidal oscillatioesn@arks of a stage of propagation
where the wave-breaking phenomenon initiates asiaits in the temporal wings of
the pulse [29, 32]. Previous works have indeedssa@ that an initial chirp could
strengthen the wake-breaking impact [33]. Theneutde combined influence of the
adiabatic gain and the nonlinearity, those strestiavolve towards dark solitons [34-
36], as confirmed by the excellent agreement betwke shape of one of this dip of

light and the typical shape of a grey soliton [38] (Figure 6(b)).

4. Evolution of an initial phase defect

We now examine the evolution of a pulse exhibitnghase shift such as described
by Eq. (7) (Figure. 1(b)). This phase shift isdted aflc = 30 ps. From Figure 7(a),
we can make out that the rms temporal width evotutf the pulse is not very
sensitive to the initial pulse shift. On the congrahe spectral evolution is much more
affected (Figure 7(b)), with an initial pulse hayia much broader spectral extension.
We can also note that a phase shifrtadr — T does not lead to identical evolutions.
However, in both cases, the phase portrait exhibis signature of a rapid
convergence toward the asymptotic features.

From the evolution of the distance facir it could appear that the initial

phase shift has only a moderate influence on thpawgation (Figure 8(a)). However,



the misfit factoM (Figure 8(b)) stresses that the initial phasedafeeply influences
the pulse shape evolution. Indeed, the associatsfit fiactor is much higher than
those obtained in the case of a chirp-free pulégs Tan be better understood when
looking at the intermediate pulse temporal intgngibfile atL = 5 km where we can
clearly visualize that the initial phase shifts @aseverely impaired the pulse
dynamics, leading to deeply asymmetric profileg(iFé 8(c)). This arises from the
fact that during the propagation, the phase ddfest translated into an intensity
change through the action of dispersion. Despite fighly distorted profile, the
misfit factor ultimately decreases down to a lowuea confirming the evolution

towards a parabolic profile.

From the analysis d¥1 andD factors, one may have concluded that the output
pulse is fully described by Egs. (3-5). Figure 9(akpicts the output amplified
intensity profile after 20 km : the global shapecisarly in good agreement with a
compact parabolic function. However, if we look matosely into the details, we can
also make out the presence of several dips of lighthe parabolic background.
Those dark structures are spontaneously formedgluhie propagation and result
directly from the initial phase shift (similar explas have also been outlined in other
fields such as Bose-Einstein condensate [38, &jke again, their intensity profile
has been found in excellent agreement with theyioal expression of a grey soliton
(Figure 9(a2)) and we have carefully checked thay tdo not constitute a transient
state : once formed, they evolve on the parabolckfground, experiencing a
progressive temporal narrowing when the peak pouwereases. Analytical
approximate but highly accurate formula predictthg evolution of those systems

have already been proposed in the context of geifes dark similaritons evolving in



nonlinear index graded waveguide amplifiers [40] d4 in fibers with a precise
longitudinally dispersion varying profile [42].

From Figure 9(b), we can also make out that the eighe initial phase shift
influences the evolution. Indeed, for thephase shift, the temporal chirp resulting
from the finite transition time is of opposite si@s the intensity gradient and
therefore is of the same sign as the chirp indungedelf-phase modulation. As a
result, the resulting dark structure will be fingpulsed (Figure 9(b1l)). On the
contrary, for a A phase shift, the first stage of propagation wdlditractive towards

the center of the pulse (Figure 9(b2)).

5. Conclusions

We have investigated in this work for the first &iraf our knowledge the influence of
the initial phase profile on the convergence towdhg asymptotic parabolic state in a
distributed fiber amplifier with normal dispersioie have shown that the asymptotic
solution describes accurately the evolution of tims temporal and spectral widths
and that the temporal intensity profile is asymipgtdly in good agreement with the
expected parabolic profile, irrespective to thetiahiphase profile of the pulse.

However, the details of the asymptotically obtaipedses reveal some sensitivity to
phase defects with the existence of dark ultrasbkolitonic structures that are not
predicted by the asymptotic solution and that camthér maintain during

amplification. Their central position evolves oretharabolic background and they

experience temporal narrowing during the amplifarat
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Figure Caption

Figure 1 : Temporal phase and intensity profileshef initial pulses under study (subplots 1
and 2 respectively). The initial pulses are Gawmsgialses with a FWHM width of 80 ps.
(a) Pulses with a linear chirp. Chirp coefficiemi 0, -0.005, -0.01, 0.005, 0.01 rad.ps
(solid black line, dark grey solid line, light greplid line, dark grey dashed line, light grey
dashed line respectively) (b) Pulséhvei phase shife of tand 7t centered at
Tc=30 ps with a characteristic timg = 7 ps  (solid black line and solid grey line

respectively). The grey dotted line is the phasa wansformed limited pulse.

Figure 2 : Longitudinal evolution of the tempora) @nd spectral (b) rms widths of an initial
chirp-free Gaussian pulse evolving in a distribuRainan amplifier. Different initial pulses
widths ranging from 5ps to 150ps are studied amdrésults are compared with analytical
evolution predicted by Eqgs. (3-4). (solid blackckis) (c) Phase portrait in the time-

frequency plane.

Figure 3 : Longitudinal evolutions of the DistarfaetorD (a) and the Misfit parameter M (b)

for different initial pulse durations.

Figure 4 : Longitudinal evolution of the tempora) énd spectral (b) rms widths of an initial
Gaussian pulse evolving in a distributed Raman #iepl Different initial chirps (same

convention as for Figure 1(a)) are studied and rémults are compared with analytical
evolution predicted by Egs. (3-4) (solid black tEg). (c) Phase portrait in the time-

frequency plane.

Figure 5 : Longitudinal evolutions of the DistarfaetorD (a) and the Misfit parameter M (b)

for different initial chirp coefficients (same ogntion as for Figure 1(a)).

Figure 6 : Temporal intensity profiles after propagn in 25-km of the Raman amplifier for
different initial chirp coefficients (same convemti as for Figure 1(a)). Subplot (b) is a
magnification of the falling edge of the parabdiimfile plotted on subplot (a). Intensity

profile of a grey soliton is plotted with filledrcies.



Figure 7 : Longitudinal evolution of the tempora) @nd spectral (b) rms widths of an initial
Gaussian pulse evolving in a distributed Raman #iepl Different initial phase profiles

(same convention as for Figure 1(b1)) are studmebthe results are compared with analytical
evolution predicted by Egs. (3-4) (solid black =g). (c) Phase portrait in the time-

frequency plane.

Figure 8 : Longitudinal evolutions of the DistarfaetorD (a) and the Misfit parameter M (b)
for different initial phase profiles (same conventas for Figure 1(b)). (c) Temporal

intensity profiles obtained after a propagatiorgtérof 5 km in the Raman amplifier.

Figure 9 : (a) Temporal intensity profiles afteopagation in 20-km of the Raman amplifier
for different phase profiles (same convention as Fagure 1(b)). Subplot (a2) is a
magnification of the falling edge of the parabgtimfile plotted on subplot (a). Intensity
profile of a grey soliton is plotted with filledddk circles. (b) Longitudinal evolution of the
temporal intensity profile for pulse havingtand 1t initial phase shifts (subplots (b1) and

(b2) respectively). The trajectory of the main gseliton is highlighted by a dashed line.
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