
HAL Id: hal-00469841
https://hal.science/hal-00469841v2

Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Four states are enough!
Nicolas Ollinger, Gaétan Richard

To cite this version:
Nicolas Ollinger, Gaétan Richard. Four states are enough!. Theoretical Computer Science, 2011, 412
(1-2), pp.22-32. �10.1016/j.tcs.2010.08.018�. �hal-00469841v2�

https://hal.science/hal-00469841v2
https://hal.archives-ouvertes.fr

Four states are enough!

N. Ollingera, G. Richarda,b

aLaboratoire d’informatique fondamentale de Marseille (LIF),
Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13 013 Marseille, France
bGroupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (Greyc),

Université de Caen Basse-Normandie, CNRS,
Campus Côte de Nacre, Boulevard du Maréchal Juin, 14 000 Caen, France

Abstract

This paper presents a 1D intrinsically universal cellular automaton with four states for a first neighbors
neighborhood, improving on the previous lower bound and getting nearer to the Turing universality bound.
Intrinsic universality is discussed. Construction and proof rely on a combination of bulking techniques with
programming using particles and collisions.

Key words: Cellular automata, intrinsic universality, bulking, particles and collisions

1. Introduction

Universal machines are, in some way, the simplest type of complex machines with respect to computa-
tional aspects: the sum of all possible behaviors. Universality is also a convenient tool in computation as a
way to transform data, that can be further manipulated by the machine, into code. Therefore, computation
universality is one of the basic ingredients of self-reproducing cellular automata first introduced by von Neu-
mann [1] and in the subsequent works of Codd [2] and others1 to achieve construction universality. Since
then, universality has been studied on its own in the case of two-dimensional and one-dimensional cellular
automata. For a detailed study, see the book chapter [3].

In the 60s and 70s, universality was mainly studied for high-dimensional cellular automata (2D, 3D).
In this context, it seems natural to achieve universality by taking inspiration from real-world computers by
simulating components of boolean circuits. Wires, gates, clocks, fan-out, signal crossing, etc are embedded
into the configuration space of some local rule. Using these components, under the assumption that the
family of elements is powerful enough, one obtains a universal cellular automaton under every reasonable
hypothesis: from boolean circuits, one can wire finite state machines and memory to simulate sequential
machines like Turing machines; or, one can wire finite state machines encoding the local rule of a cellular
automaton and put infinitely many copies of that machine on a regular lattice, using wires to connect and
synchronize the grid of automata to simulate the behavior of the encoded cellular automaton. This way,
Banks [4, 5] was able to construct very small universal 2D cellular automata.

In the 70s and 80s, the study of cellular automata shifted to the one-dimensional space, motivated by
the formal study of parallel algorithmics and formal languages recognition. In 1D, boolean circuits are no
more a natural tool, but, as a configuration looks like a biinfinite tape, simulation of sequential machines
like Turing machines is straightforward and provides the basis for a notion of computational (that is Turing)
universality. This approach was developed by Smith III [6]. A major difficulty with Turing universality
is the lack of a formal precise and general definition. The problem arises from two sources. First, a good
commonly accepted formal definition of universality for Turing machines does not seem to exist. Second,

Email addresses: nicolas.ollinger@lif.univ-mrs.fr (N. Ollinger), gaetan.richard@info.unicaen.fr (G. Richard)
1although some later constructions are not universal

Preprint submitted to Elsevier August 17, 2010

encoding finitely described Turing machine configurations into infinite configurations, giving a reasonable
halting condition, and a decoding of the result, are delicate tasks. For a discussion on this formalization
problem, see the study by Durand and Róka [7] of the universality of Conway’s Game of Life [8].

In 1D, one can also consider simulating the cells of a simulated cellular automaton by blocks of cells
of a simulator cellular automaton, leading to a notion of intrinsic universality. This notion, that coincides
with the notion of boolean circuit universality in the case of 2D cellular automata [7, 3], was first pointed
out in the one-dimensional case by Banks [4, 5] in the conclusion of his 2D construction, then rediscovered
by Albert and Čulik II [9]. An attempt of a formal definition was given in Durand and Róka [7]. Whereas
intrinsic universality implies Turing universality, one can prove that the converse is false, see Ollinger [10].
The main topic of this paper is to prove that four states are enough to achieve intrinsic universality in 1D
with first neighbors neighborhood.

The paper continues as follows. In section 2, proper definitions of cellular automata and two definitions
of intrinsic universality are proposed together with the main structural results. In section 3, the construc-
tion of small universal cellular automata is discussed. In section 4, the details of the construction of a 4
states intrinsically universal cellular automaton are given. In section 5, the more difficult question of non
universality is considered.

2. Definitions and Properties

A d-dimensional cellular automaton is a tuple (d, S,N, f) where S is the finite set of states, N ⊆finite Zd

is the finite neighborhood, and f : SN → S is the local rule of the cellular automaton. A configuration

c ∈ SZd

is a coloring of the space Zd by S. The global function G : SZd → SZd

maps a configuration c to
its image G(c) by applying the local rule synchronously and uniformly according to N , i.e., for all z ∈ Zd,

G(c)(z) = f(c|z+N). The set of configurations SZd

is endowed with the Cantor topology, i.e., the product

topology over Zd of the discrete topology on S. This topology is metric, compact, and perfect. Under this
topology, continuity corresponds to locality, as clopen sets correspond to sets of all configurations having

a finite pattern in a given finite set, i.e., if C ⊆ SZd

is a clopen, there exists M ⊆finite Zd such that for

all c ∈ C,
{
c′ ∈ SZd

∣∣∣c|M = c′|M

}
⊆ C. Adding invariance by translation, one can enforce uniformity and

characterize cellular automata. The translation, or shift, over S with translation vector p ∈ Zd, is the map

σp : SZd → SZd

, satisfying, for all c ∈ SZd

and z ∈ Zd, σp(c)(z + p) = c(z).

Theorem 1 (Hedlund [11], Richardson [12]). A map is the global function of a cellular automaton if and
only if it is a continuous map commuting with translations.

This theorem allows us to manipulate cellular automata by their global function, composing them,
inverting bijective ones, taking cartesian products, etc being sure that the result is still the global function
of a cellular automaton. For a proper study of cellular automata and their properties, one can read the
survey of Kari [13].

A cellular automaton A is a subautomaton of a cellular automaton B, denoted as A v B, if there exists

an injective map ϕ : SA → SB such that ϕ ◦GA = GB ◦ ϕ, where ϕ(c) = ϕ ◦ c for all configurations c ∈ SZd

A .

For all m ∈ (Z+)
d
, n ∈ Z+ and k ∈ Zd, the 〈m,n, k〉-rescaling of a cellular automaton (d, S,N, f) is the

cellular automaton with global function

G〈m,n,k〉 = bm ◦ σk ◦Gn ◦ b−m

where bm : SZd →
(
S
∏

m
)Zd

is the bijective m-packing map satisfying, for all c ∈ SZd

, z ∈ Zd and α ∈
∏
m,

the equation bm(c)(z)(α) = c(mz + α), b−m is the inverse of bm, and
∏
m ⊆ Zd is the m-block satisfying

z ∈
∏
m if and only if for all i ∈ {1, . . . , d}, 0 6 zi 6 mi.

The injective bulking quasi-order 6i on cellular automata is defined thanks to subautomaton and rescal-
ing. A cellular automaton A is simulated by a cellular automaton B, denoted A 6i B, if there exists two

rescalings 〈m,n, k〉 and 〈m′, n′, k′〉 such that A〈m,n,k〉 v B〈m
′,n′,k′〉. This relation is a quasi-order with

2

interesting structural properties, see [10]. It admits a maximal equivalence class that captures the notion of
intrinsic universality used in most constructions of the literature. Moreover, the maximal class Ui admits a
stronger characterization.

Definition 1. A cellular automaton A is intrinsically universal with respect to injective bulking if, for all
cellular automata B, there exists a rescaling 〈m,n, k〉 such that B v A〈m,n,k〉.

A cellular automaton A is a mixautomaton of a cellular automaton B, denoted as AE B, if there exists
a map φ : SA → 2SB with disjoint images, i.e., such that for all s, s′ ∈ SA, φ(s) ∩ φ(s′) = ∅, such that
φ ◦GA ⊇ GB ◦ φ.

The mixed bulking quasi-order 6m on cellular automata is defined thanks to mixautomaton and rescaling.
A cellular automaton A is simulated by a cellular automaton B, denoted A 6m B, if there exists two

rescalings 〈m,n, k〉 and 〈m′, n′, k′〉 such that A〈m,n,k〉 E B〈m
′,n′,k′〉. This relation is a quasi-order with

interesting structural properties, see Theyssier [14]. As injective bulking is a refinement of mixed bulking,
mixed bulking admits a maximal equivalence class that captures the notion of intrinsic universality used in
most constructions of the literature. Moreover, the maximal class Um admits a stronger characterization.

Definition 2. A cellular automaton A is intrinsically universal with respect to mixed bulking if, for all
cellular automaton B, there exists a rescaling 〈m,n, k〉 such that B EA〈m,n,k〉.

Until now, all cellular automata known to be universal for mixed bulking can be shown universal for
injective bulking (even if it is sometimes technical and painful).

Open Problem 1. Does Ui = Um?

For a proper study of bulkings, their motivation and structural properties, see Delorme et al. [15, 16].
In the following, we will always consider injective bulking and the class Ui unless explicitly specified.

A nice property of intrinsic universality is that its formal definition captures constructions of the literature
and provides a tool to prove non universality. A first natural question is to discuss decidability. Given a
cellular automaton, can we decide if it is universal?

Theorem 2 (Ollinger [17]). The problem of deciding whether an arbitrary cellular automata is intrinsically
universal is undecidable.

This theorem is proved by reducing the nilpotency problem of cellular automata on periodic configura-
tions, obtained by Mazoyer and Rapaport [18]. This reduction works for both definitions of universality. As
expected, there is no automatic method to test whether a cellular automaton is intrinsically universal.

3. Constructing Small Universal Cellular Automata

3.1. History

Intrinsic universality is a recursively enumerable property. To prove that a given cellular automaton
is universal, it is sufficient to prove that it simulates a fixed intrinsically universal cellular automaton.
The undecidability comes from the fact that the size of the blocks needed to simulate one cell can grow
unrecursively large with respect to the given cellular automaton.

An intrinsically universal cellular automaton has to simulate cells: an entity computing a local rule
and transmitting information to its neighbors. It is a straightforward exercise to construct an intrinsically
universal cellular automaton with a small neighborhood and less than twenty states. For a general technique
and examples, see [3]. How does one optimize the number of states with respect to a fixed neighborhood?

In dimension 2, with von Neumann neighborhood {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)}, encoding boolean
circuits, Banks was able to construct a 2 states universal automaton. Notice that finite configurations are
encoded into ultimately periodic configurations by intrinsically universal cellular automata.

3

Theorem 3 (Banks [4, 5]). There exists an intrinsically universal 2D cellular automaton with von Neumann
neighborhood and 2 states.

In dimension 1, a first technique, by Banks, consists of transforming a given universal cellular automaton
of dimension 2 by having it simulating one dimensional cellular automata on a torus. The price to pay is
either an extended neighborhood (neighbors are far from each other) or an extended set of states.

Corollary 4 (Banks [4, 5]). There exists an intrinsically universal 1D cellular automaton with 2 states and
a neighborhood of size 5.

Even though boolean circuits simulation is difficult, it can still be achieve in dimension 1. By a careful
design, we were able in [19] to construct a universal automaton with 6 states and first neighbors neighborhood
{−1, 0, 1}. In this paper, we shall improve this result and give a universal automaton with first neighbors
and only 4 states.

In the realm of Turing universality, the smallest universal automaton in dimension 1 has 2 states:

Theorem 5 (Cook [20]). Rule 110 is Turing universal.

The construction makes heavy use of particles and collisions to simulate special variation of tag systems,
see Richard [21] for a formal proof using bidimensional tools for particles and collisions (as used for the 4
states automaton). Unfortunately, a careful study of the set of collisions used show that, contrary to what
is claimed by Wolfram [22], the construction cannot be used to prove intrinsic universality of rule 110.

Open Problem 2. Is rule 110 intrinsically universal?

3.2. Particles and collisions

Many of previous constructions can be described using the analogy of particles and collisions to encode
and compute information. To define these objects, we use the approach developed in [23] considering space-

time diagrams as tilings of SZ2

with local constraints. Therefore, we need to introduce some concepts from
discrete geometry: a coloring C is an application from a subset Sup(C) ⊂ Z2 to S. Such coloring is finite if
Sup(C) is finite. Three natural operations on colorings are translation of a coloring C by a vector u ∈ Z2

defined by (u · C)(z + u) = C(z); disjoint union of two colorings C and C′ with Sup(C)∩ Sup(C′) = ∅ defined
by C ⊕ C′(z) = C(z)(resp. C′(z)) for all z ∈ Sup(C′)(resp. Sup(C′)); at last, restriction of a coloring C to
D ⊂ Z2 is denoted by C|D.

(a) A background (b) A particle (c) A collision

Figure 1: Base elements of constructions

Backgrounds (see Fig. 1a) are triplets B = (C, u, v) where: C is a finite coloring and u, v two non-collinear
vectors ensuring that

⊕
i,j∈Z2(iu + jv) · C is a space-time diagram (this space-time diagram is often also

referred as B when no confusion is possible). Particles (see Fig. 1b) are quadruplets P = (C, u,B,B′) where
C is a finite coloring, u a vector, Bl and Br two backgrounds ensuring that I =

⊕
k∈Z ku · C separates the

plane in two 4-connected domains L and R (L being the left-one according to u) so that B|L⊕I ⊕B′|R is a

space-time diagram, where B|L denotes the restriction of the coloring induced by B on L. A collision (see
Fig. 1c) is a pair (C, L) where C is a finite coloring, L is a finite sequence of n particles Pi = (Bi, Ci, ui,B′i),
satisfying the following conditions:

• consecutive particles on the list agree on their common background (for all i ∈ Zn, B
′
i = Bi+1);

• particles and finite perturbation form a star (I = C⊕
⊕

i∈Zn,k∈N kui ·Ci cuts the plane in n 4-connected
zones and for all i ∈ Zn, C ⊕

⊕
k∈N (kui · Ci ⊕ kui+1 · Ci+1) cuts the plane in two 4-connected zones.

Let Pi be the one right of Pi);
4

• C = I ⊕
⊕

i Bi|Pi
is a space-time diagram.

To describe easily complex space-time diagrams, one idea is to symbolize particles as lines and collisions
as points, giving birth to a planar map called catenation scheme as the one in upper-left corner of Fig. 3.
Formally, a catenation scheme is a planar map whose vertices are labeled by collisions and edges by particles
which are coherent with regards to collisions. Since catenation schemes are symbolic representations, it is
not clear that there exist associated space-time diagrams. In fact, to go back from a catenation scheme to a
“real” space-time diagram, one must give explicit relative positions of collisions as, for example, by giving
the number of repetitions for each particle (edge) of the scheme. Such a set of integers is called affectation
and is valid if the resulting object is a space-time diagram. The main result given for catenation schemes is
that set of valid affectations can be computed from finite catenation schemes.

Theorem 6 ([23]). Given a finite catenation scheme, the set of valid affectations is a computable semi-linear
set.

In this paper, the constructed automaton is based on particles and collisions and thus, heavily relies
on the methodology used for catenation scheme. However, since the particles and collisions are explicitly
constructed, they are very small and posses many good combinatorial properties. Therefore we do not need
the whole power of catenation scheme and can often give simpler arguments for our specific case. The rest
of the paper is devoted to construct the automaton and prove it is intrinsically universal. This is done in
two steps: first, we give the automaton and show, using catenation scheme, that it can somehow “simulate”
the local behavior of any automaton. Then, we show how to assemble those local simulations into a global
one.

4. Constructing a Small Universal Cellular Automaton

Using particles and collisions, we shall give in this section the construction of a 1D universal cellular
automaton with first neighbors and only 4 states. The proof is divided in two parts: first, we give the general
scheme of the simulation and then we study the details of the construction.

Theorem 7. There exists an intrinsically universal 1D cellular automaton for mixed bulking with first
neighbors neighborhood and 4 states.

4.1. Building an elementary block

To build a universal cellular automaton, we design a widget able to simulate any transition of a cellular
automaton using an elementary block. Before going on with this block, one point to notice is that it
is sufficient to simulate one-way cellular automata to be intrinsically universal. Therefore, our elementary
block is constructed such that it takes three inputs (one transition function and two arguments) and outputs
three values (one transition function and two “copies” of the result).

To provide a good view of the automaton, all needed materials are depicted in Fig. 2 and Fig. 3. The first
figure gives the local transition function and particles, the second one gives the catenation scheme along
with all interesting extracts of corresponding space-time diagram. The rest of this section is devoted to
describe and explain the contents of these two figures. The local transition function is fully depicted on the
top of Fig. 2. In fact, it is not a real transition rule since some cases (denoted by interrogation marks) are
not used and thus can take arbitrary values.

Even though giving the rules of our cellular automata would be sufficient, we will explain the intuition
behind our local transition function as an aid to understanding the automaton. The first part of the
explaination is devoted presenting background and particles used in the construction. Those structures are
depicted in the corresponding part of Fig. 2. For each structure, we give a meaningful extract of space time,
its name along with used local transition function cases. The formal definition can be trivially extracted
from those diagrams.

One requirement of our cellular automaton is that, contrary to other known constructions, it does not
use a uniform background but a bi-colored check-board (B). With this new approach, we need two states

5

Local rule

?

?

? ?

f(l, , r) f(l, , r)

?

?

f(l, , r) f(l, , r)
Question marks denotes cases that are not chosen and can be chosen arbitrary

Background and Particles

(B) (←−) (−→)

(⇑) (←−) (−→)
Signals

(l) (m) (R)
Collisions

(a)

(b)
(c)
(d)
(e)
(f)
(g)

Figure 2: Local rule and particles

6

l

m

R

R

l′
m′

R

R

(b)

(b’)

(f)

(c)

(d)

(e)

(a)

(a’)

(g)

(g’)
R

R′

R̃′

R̃′

l

l

l +m

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3: Constructed block and collisions

7

(instead of one) for the background but this allows us to have a greater range of particles since each remaining
state can lead to two distinct particles according to its alignment within the background. Thus, with the two

remaining states, we can construct four different particles (
←−
,
−→
,
←−
,
−→

). Furthermore, since the background
has two different phases, one can construct an additional particle (⇑) by taking advantage of the gap between
the two phases. Those are the main particles used in the construction.

To encode information, the basic idea is to use groups of parallel particles that we call signals, depicted
in the corresponding section of Fig. 2. In these groups, information can be encoded in two different ways:
either by the number and type of the particles used or by relative position between those particles. Here, we
use both approaches. As noted earlier, to simulate a one-way cellular automaton, we need to encode three
main types of information: the left state (i.e., state of the left neighbor) is encoded in unary by the number

of (regularly spaced)
−→

particles (signal l). In a similar manner, the center state is encoded in unary by the

number of (regularly spaced)
←−

particles (signal m). The local transition function is encoded as an array of

integers, with each integer encoded by spaces between a pair of particles
←−

(signal R): the j-th element of
the array corresponds to the space between the j-th and the j+ 1-th particle of the signal. To be exact, the
space is two plus the sum of numbers of between two consecutive (for the previously mentioned states).
This way of counting may seem a little obscure but is chosen to give nice formulae in the end of this section.
In the rest of the paper, names of symbols are also used when speaking of encoded values.

During computation, other kind of signals appear: First, a mirror image of signal R (R′) which encodes

the same information using
−→

particles (going in the opposite direction). At last, an altered version of R′,

which we denotes as R̃′, appears. In this altered version, some of the leftmost
−→

particles are replaced by−→
.
With such construction, two main types of problem can occur. The first one is that a small shift of one

particle can change the behavior of the collision. The second one is that two particles which are coming
closer can interact with each others. For those reasons, one is often expected to give a set of exact positions
for every particle and show that those positions do not present any of the previous problem. In our case,
one very interesting property is that our construction cannot have the first problem due to the fact that
particles can only be placed in one way relative to the background. Thus we can state the following lemma:

Lemma 8. When two of the particles (or signals) described above collide, the occurring collision is always
the same.

Proof. As studied by J. P Crutchfield et al. [24], the number of ways two particles (or signals) can collide
depends on the relative position between those two particles. Possible relative positions takes into account
repetition vectors of those particles and constraints induced by backgrounds. In our case, repetition vectors
are either (1, 1), (0, 2) or (−1, 1) which suggests the possibility of two distinct collisions. However, the
background forbids one of those possibility leaving only one possible case.

With this very strong property, we can forget about exact position of particles and focus on symbolic
behavior. Let us go and construct the dynamic. The scheme of elementary block is depicted in Fig. 3 (along
with extracts of all induced collisions). The block is made the following way: left and right borders are
delimited by ⇑ particle. At the bottom, we have a left state signal l, a rule R and a center state signal
m. The left state signal is going through the rule (collision f) and then collides with center state signal
(collision c). This collision outputs an unused copy of the left signal to the right. This signal is erased when
encountering the right border (collision g). Collision c also sends a signal encoding the sum of left and center
state to the left. This new signal is encountering (collision d) the mirror copy R′ (created when R crossed
the left border during collision b). During collision d, the number of particle of R′ altered2 is exactly the
encoded value (i.e., the sum of left and center signals). The signal embedding the sum is destroyed by the
collision and the altered rule R̃ proceed to the right. After crossing another rule R (collision e), the altered
rule R̃ collides with the right border and produces at the same time a new center state signal and a left
state signal (located right of the border) in collision a.

2Last alteration is an erasing rather than a change of the particle but this does not change the behavior

8

Additional cases needed for each collision in the local transition function are made explicit at the bottom
of Fig. 3. This scheme gives us a symbolic block which somehow “computes” the rule. Now, let us prove
that this symbolic behavior does really correspond to a valid space-time diagram and look at the details
of the computed function. The following proposition deals with the first problem by ensuring that, under
reasonable conditions, the scheme of the symbolic block is a valid space-time diagram. Moreover, it gives
some additional results on regularity of this block.

Proposition 9. For any encoded rule R such that spaces between particles are even numbers larger than
four, for any reasonable encoded value in left and middle state signal (i.e. both not null and their values
are such that their sum is less than the number of integers encoded in R) the scheme of the symbolic block
corresponds to a valid space-time diagram. Moreover, for a fixed R, the size of the space-time diagram does
not depend on the encoded states and those blocks can tile the plane.

Proof. First of all, the previous lemma ensures us that there is only one type of collision for each pair
of particles; The non null condition ensures that all particles exist. The proof that collisions are valid can
be directly deduced from extracts given in Fig. 3. Due to the fact that constraints are local, periodicity
considerations are sufficient to prove the validity of the collisions occurring. In fact, it is sufficient to check
the validity of one repetition of each periodic portion and the joint between different portion. The case of
collisions c, e, f and g is easily dealt with since the perturbation inside the collision is periodic: adding
one (or more) particles is the same as increasing the size of the periodic portion of the collision. Collision b

requires space between particles
←−

to be greater than four. For collision d, the constraint is just that there

are at least one particles
−→

left (i.e. sum of left and right values is less that the number of integers encoded
in R). The last significant point is in collision a: since the vertical portion in the collision has periodicity
(0, 4), it requires that inter-space in R̃ being even (this inter-space is of course the same as in R). If all these
constraints are respected (which is the case for our proposition) then the resulting catenation scheme can
be implemented as a valid space-time diagram. That is, there exists a space-time diagram where particles
and collisions are positioned in the same way as in the catenation scheme.

Now let us fix R, this implies that encoded values in states signals are bounded. Therefore, all signals are
of bounded size and, up to increasing the size of the cell, they can be considered as objects with negligible
size. With this, it is sufficient to take relative positions of signal as in the scheme of Fig. 3 to achieve same
size blocks. More formally, if we chose for origin the collision a′ and take s a value large enough relative to
the size of collisions and signals; the positions of particles are chosen to ensure collisions around the following
positions: f at (s, s), c at (1.5s, 1.5s), g at (2s, 2s), b at (0, 2s), d at (.5s, 2.5s), e at (1.5s, 3.5s) and a at
(2s, 4s). Thus, it is possible to achieve a symbolic block with “approximate” positions. By the fact that
particles always interact in the same way, such block correspond to a valid space-time diagram.

The last point is to prove that such space-time diagrams, associated to elementary blocks, tile the plane:
that is, that the small approximations that we have left occurs in the previous paragraph can not add and
become large. Before that point, the first remark is that symbolic blocks already tile the plane if we respect
the exacts values. Now if we look in details at Fig. 3, borders are left untouched by all collisions and rule
signals are only shifted by a constant when encountering a border. This implies that crossings of rule signals
and borders (collisions b) form a regular grid on the plane. Finally, the position of all other collisions only
depends on a small number of neighbor points on this grid. It is directly visible for e and a. Positions of
collisions f , g and c also depend on a′ but its position is fixed by the previous case. At last, collision d
depends on c which was already treated.

With this result, we have an elementary block able to do simple computation according to a rule R
and which can tile the plane. Before combining those elementary blocks in the next section, we must first
study exactly which function is computed by our block. For the same periodicity reason as previously, it is
sufficient to look at what happens in the case of collision a in Fig. 3.

Lemma 10. Let R(i)1≤i≤N be the array of N integers encoded in R and xl (resp. xm) be the one encoded
in l (resp. m); then the block leaves R unchanged and outputs m′ and l′ with encoded values respectively
R(xl + xm) + xl + xm − (N + 1) and R(xl + xm)/2.

9

Thus we can construct a block parametrized by some rule R which is represented as a sequence of integers.
As long as all elements of this sequence are even integers greater that four. The block behaves as denoted
in the previous lemma for any pair of input encoding values xl,xm such that the sum xm + xl is less than
the number of integer in the sequence R. Note that we do not care for the moment if the input condition is
preserved on the outputs.

This block computation is like a cell in a cellular automaton except that it sends different values for left
and right states. This difference prevents us from giving a direct simulation and requires quite additional
work to get rid of this problem and be able to iterate the use of elementary blocks. A better way to
overcome this problem would be to alter the automaton or use unused cases in the local transition function
to ensure equality of outputs. However, for the moment, we do not manage to do such a thing. Therefore
an alternative (and quite combinatorial) solution is presented in the following to use this elementary blocks
in intrinsic simulation.

4.2. Combining blocks

To simulate a cellular automaton using elementary blocks, the idea is to iterate them as depicted in
Fig. 5 and choose a rule which emulates the behavior of the cellular automaton, the states being encoded
into inputs and outputs of the blocks. Although we can make a wide range of possible rules for the blocks,
restrictions on the form of the outputs is too tight for us to directly encode the transition rule inside it (or
more precisely, we do not currently know how to do this).

To overcome this difficulty, we choose to group elementary blocks by two in the way depicted in Fig. 4:
we use the right output of the first one as the input for the second one. In this way, we have a new basic
block which has three inputs xl,xm, xm̃ and three outputs xl′ , xm′ and xm̃′ . The relation between inputs and
outputs is still fully determined by the rule R in the following way: denoting as l0 the intermediate value,
we have that xm′ = R(xl +xm) +xl +xm(N + 1), xl0 = R(xl +xm)/2, xm̃′ = R(xl0 +xm̃) +xl0 +xm̃(N + 1)
and lastly xl′ = R(xl0 + xm̃)/2.

l m

m̃

l0m′

m̃′ l′

Figure 4: Symbolic chaining of elementary blocks (encoding of state is omitted)

At this point, we want this double blocks to “emulate” the local transition function of any cellular
automaton. In fact, since there exists intrinsically universal one-way cellular automata, we can restrict
ourselves without loss of generality to the case of one-way cellular automata (1, S, {0, 1}, f) with f : S2 → S.

As we only need two inputs, we choose to search the encoding in which the values of m̃ are all equal
to a fixed constant c. To maintain this choice throughout the iterations of blocks, we must have that
c = xm̃′ = xm̃ that is R(xl0 +xm̃)+xl0 +xm̃(N+1) = m̃ which can be restated as R(xl0 +c) = (N+1)−xl0 .
Now, we must find two encodings ξl and ξm from N to Q such that if ξl(xl) = q and ξm(xm) = q′ then the
block satisfies ξl(l

′) = ξm(m′) = f(q, q′).
Those two encodings are based on a vision of integers as written in binary. First, let us assimilate the set

S as strictly positives integers {1, 2, 3, . . . , |S|}. Thus, if we denote as k the value dlog(|S| + 1)e any s ∈ S
can be written as the binary word s1s2 . . . sk.

Then, we choose to work with integers represented by binary elements of size (4+8k+3) (that is between
0 and 24+8k+3 − 1). Informally, those binary representations can be understood as follows: the first 3 bits

10

(header) serve to recognize the kind of signal encountered; each of the k blocks of 8 bits (digits) is used to
encode one bit of the state; lastly the remaining 4 bits are used to ensure that constraints on parity are
respected (footer). With this representation, let s = s1s2 . . . sk ∈ S, we define ξl(x) = s if and only if x
is of the form 0101 (⊥⊥si0⊥⊥00)1≤i≤k⊥⊥⊥ where ⊥ denotes an arbitrary bit. The same way, we define
ξm(x) = s if and only if x is on the form 0000 (⊥⊥00⊥⊥si0)1≤i≤k⊥⊥⊥.

The last point is to prove that we can choose the function R such that, for any pair (xl, xm) such that
ξl(xl) = s and ξm(xm) = s′, we have ξl(xl′) = ξm(xm′) = f(s, s′). For this, let us assume the following
arbitrary restrictions: we choose to set the number N (which is the domain of R) to 24+8k+3 − 1 and the
value c = xm̃′ = xm̃ = 24+8k+2 as depicted in Tab. 1.

Let us now study the form of values present inside the block. Those values are depicted in Tab. 1.
The first remark is that in the sum (xl + xm); it is possible to retrieve both the value of s and s′ in an
unambiguous way. Thus the result of our output can take the value f(s, s′) = t1t2 . . . tk. The choice of the
value R(xl, xm) can be divided in two parts: we chose it to be on the form 01XX (Y Y XXY Y XX)100; X
bits will serve to set the value of xm′ and Y bits the one of xl′ . Since xm′ = R(xl +xm) +xl +xm− (N + 1),
we can see that the X bits allows us to set the corresponding digits of xm′ ensuring that ξm(xm′) = t.

For the Y part, if we set it as indicated in the table, then we can see that the sum (xl0 + xm̃) begins
with 11 as the two first bits and thus is ensured to be distinct from any valid (xl + xm) sum. Therefore,
it is possible to choose R(xl0 + xm̃) as the value indicated previously to respect the constraint xm̃ = xm̃′ .
Moreover with our previous choice, the output l′ does satisfy ξl(xl′) = t.

As a final note, it is important to note that neither of our encoded values can be zero (for xm, one must
recall that s cannot be zero).

header (digits) footer
N 1111 (11 11 11 11) 111
xl 0101 (⊥⊥ si0 ⊥⊥ 00) ⊥⊥⊥
xm 0000 (⊥⊥ 00 ⊥⊥ s′i0) ⊥⊥⊥
xm̃ 1000 (00 00 00 00) 000
xl + xm 01xx (⊥⊥ si⊥ ⊥⊥ s′i⊥) ⊥⊥⊥ where xx = 01 or 10
R(xl + xm) 10 • • (t̄i1 •• 11 ••) 100
xm′ 0000 (⊥⊥ 00 ⊥⊥ ti0) ⊥⊥⊥
xl0 010⊥ (⊥t̄i 1⊥ ⊥1 1⊥) ⊥10
N − xl0 + 1 101⊥ (⊥ti 0⊥ ⊥0 0⊥) ⊥10
xl′ 0101 (⊥⊥ ti0 ⊥⊥ 00) ⊥⊥⊥

⊥ denotes arbitrary value and • value to be fixed.

Table 1: Encoding of states inside values

Here, one can notice that we use a mixed bulking since we have some “junk” which we cannot control
but end up not interfering with the simulation. One relevant problem is to know whether we can get rid
of this junk and thus achieve injective bulking. In this case, we conjecture that such achievement would be
possible by using the following scheme: do one step of computation then take some time to get rid of the
junk. However, we have not pursed this reflexion any further since the workload to achieve this result seems
too high with respect to the interest of the result.

Thanks to the previous encoding, we can now simulate any cellular automaton in the following way: we
input blocks with the rule corresponding to the automaton and containing an encoding of each state of the
initial configuration. As each block simulates one cell, we can “see” the evolution of the simulated cellular
automaton in the space time diagram.

However, the blocks are not aligned horizontally but are organized in a diagonal way (see for example
Fig. 5). This problem can be worked around with a well-known construction. The idea is the following:
instead of directly simulating an initial automaton (1, S, {−1, 0}, f) we use the automaton (1, S′ = {B} ∪

11

S→ ∪ S↑ ∪ S↑→, f ′) defined by for all s, s′ ∈ S:

f ′(s→, B) = s→
f ′(B, s↑) = s↑
f ′(s↑→, B) = s→
f ′(B, s↑→) = s↑
f ′(s→, s′↑) = f(s, s′)↑→
f ′(x, y) = B otherwise

Informally, the intermediate automaton runs the following way: states are replaced by signals going
either vertically (↑) or diagonally (→). When both signals meet, we make one step of computation and
output two copies of the result (one going up and one going to the upper-right). This way, it is possible
to simulate the initial automaton with any wanted scaling and correct the slope by scaling until we find a
block at the same level (see Fig. 5). Therefore, one cell s of the initial cellular automaton can be simulated
with cells on the forms s↑→Bm for any fixed m ∈ N.

Figure 5: Straightening simulation (light grey squares represents blocks encoding ↑ states, medium → and dark ↑→ ones.)

5. Conclusion

We have constructed a four states intrinsically universal cellular automaton with first neighbors neigh-
borhood. Thanks to the formal definition, a proof of non universality is possible for given cellular automata.
However, due to the undecidability of the property, there is no general method. Still, several invariants can
be used, coming from the study of the bulking quasi-orders.

A first interesting problem is the pattern problem. Given a cellular automaton, a finite configuration
and a pattern, the question is to decide if the pattern appears in the orbit of the configuration. For Turing
universal, thus also for intrinsically universal cellular automata, the problem has maximal complexity. For
simpler cellular automata it is decidable.

Theorem 11. The pattern problem is undecidable for any intrinsically universal cellular automaton.

A second interesting problem is the verification problem. Given a cellular automaton, a finite pattern
and a state, the question is to decide if the state is obtained by iterating the local rule on the pattern
until it consists of only one state. A simple simulation permits to test this property in polynomial time.
By adapting the classical proof of Ladner [25], one can prove that it is P-complete in general. For simpler
cellular automata, the complexity can be lower.

12

Theorem 12. The verification problem is P-complete for any intrinsically universal cellular automaton.

Unfortunately, in the case of rule 110, the pattern problem is undecidable and the verification problem
has been shown P-complete by Neary and Woods:

Theorem 13 (Neary and Woods [26]). Rule 110 is P-complete.

Open Problem 3. Develop more tools to prove non universality.

References

[1] J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Urbana, Ill., 1966, (A. W. Burks,
ed.).

[2] E. F. Codd, Cellular Automata, Academic Press, New York, 1968.
[3] N. Ollinger, Universalities in cellular automata, in: G. Rozenberg, T. Baeck, J. Kok (Eds.), Handbook of Natural Com-

puting, Springer, Berlin, (to appear).
[4] E. R. Banks, Universality in cellular automata, in: Symposium on Switching and Automata Theory (Santa Monica,

California, 1970), IEEE, 1970, pp. 194–215.
[5] E. R. Banks, Information processing and transmission in cellular automata, Ph.D. thesis, Massachusetts Institute of

Technology (1971).
[6] A. R. Smith, III, Simple computation-universal cellular spaces, Journal of the ACM 18 (1971) 339–353.
[7] B. Durand, Z. Róka, The game of life: universality revisited, in: M. Delorme, J. Mazoyer (Eds.), Cellular automata

(Saissac, 1996), Kluwer Acad. Publ., Dordrecht, 1999, pp. 51–74.
[8] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways for your mathematical plays. Vol. 2, Academic Press Inc.

[Harcourt Brace Jovanovich Publishers], London, 1982, games in particular.
[9] J. Albert, K. Čulik, II, A simple universal cellular automaton and its one-way and totalistic version, Complex Systems

1 (1) (1987) 1–16.

[10] N. Ollinger, Automates cellulaires : structures, Ph.D. thesis, École Normale Supérieure de Lyon (2002).
[11] G. A. Hedlund, Endormorphisms and automorphisms of the shift dynamical system, Mathematical Systems Theory 3

(1969) 320–375.
[12] D. Richardson, Tessellations with local transformations, Journal of Computer and System Sciences 6 (1972) 373–388.
[13] J. Kari, Theory of cellular automata: A survey, Theoretical Computer Science 334 (2005) 3–33.

[14] G. Theyssier, Automates cellulaires : un modèle de complexités, Ph.D. thesis, École Normale Supérieure de Lyon (2005).
[15] M. Delorme, J. Mazoyer, N. Ollinger, G. Theyssier, Bulking I: an abstract theory of bulking, http://hal.

archives-ouvertes.fr/hal-00451732/ (accepted to Theoretical Computer Science).
[16] M. Delorme, J. Mazoyer, N. Ollinger, G. Theyssier, Bulking II: Classifications of cellular automata, http://hal.

archives-ouvertes.fr/hal-00451727/ (accepted to Theoretical Computer Science).
[17] N. Ollinger, The intrinsic universality problem of one-dimensional cellular automata, in: H. Alt, M. Habib (Eds.), Sym-

posium on Theoretical Aspects of Computer Science (STACS’2003), Vol. 2607 of Lecture Notes in Computer Science,
Springer, Berlin, 2003, pp. 632–641.

[18] J. Mazoyer, I. Rapaport, Global fixed point attractors of circular cellular automata and periodic tilings of the plane:
undecidability results, Discrete Mathematics 199 (1-3) (1999) 103–122.

[19] N. Ollinger, The quest for small universal cellular automata, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessy,
S. Eidenbenz, R. Conejo (Eds.), International Colloquium on Automata, languages and programming (Málaga, Spain,
2002), Vol. 2380 of Lecture Notes in Computer Science, Springer, Berlin, 2002, pp. 318–329.

[20] M. Cook, Universality in elementary cellular automata, Complex Systems 15 (2004) 1–40.
[21] G. Richard, Rule 110: universality and catenations, in: B. Durand (Ed.), Symposium on Cellular Automata Journées

Automates Cellulaires (JAC’2008), MCCME Publishing House, Moscow, 2008, pp. 141–160.
[22] S. Wolfram, A new kind of science, Wolfram Media Inc., Champaign, Ilinois, US, United States, 2002.
[23] N. Ollinger, G. Richard, Collisions and their catenations: Ultimately periodic tilings of the plane, in: IFIP-TCS, Vol. 273,

Springer Boston, 2008, pp. 229–240.
[24] W. Hordijk, C. R. Shalizi, J. P. Crutchfield, Upper bound on the products of particle interactions in cellular automata,

Phys. D 154 (3-4) (2001) 240–258.
[25] R. E. Ladner, The circuit value problem is log space complete for p, SIGACT News 7 (1) (1975) 18–20.
[26] T. Neary, D. Woods, P-completeness of cellular automaton rule 110, in: Proceedings of ICALP 2006, Vol. 4051 of Lecture

Notes in Computer Science, Springer, Berlin, 2006, pp. 132–143.

13

