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Liquid drops can be kept from touching a plane solid surface by a gas stream entering from
underneath, as it is observed for water drops on a heated plate, kept aloft by a stream of water
vapor. We investigate the limit of small flow rates, for which the size of the gap between the drop
and the substrate becomes very small. Above a critical drop radius no stationary drops can exist,
below the critical radius two solutions coexist. However, only the solution with the smaller gap
width is stable, the other is unstable. We compare to experimental data and use boundary integral
simulations to show that unstable drops develop a gas “chimney” which breaks the drop in its
middle.

I. INTRODUCTION

Drops levitated on an air cushion have numerous ap-
plications, and have generated interest for a long time.
For example, in lens manufacture drops of molten glass
can be prevented from contact with a solid substrate [1].
This is achieved by levitating the glass above a porous
mold, through which an air stream is forced. A second
example is the so-called ’Leidenfrost’ drop [2], a drop of
liquid on a plate hot enough to create a film of vapor be-
tween the drop and the plate [3, 4, 5, 6]. Since the drop
is thermally isolated insulated by the vapor film, it can
persist for minutes [5]. Finally, a thin air film is believed
to play a crucial role for the “non-coalescence” of a liquid
drop bouncing off another liquid surface [7, 8, 9].

The question we will address in this paper is whether
for a given set of parameters, in particular the radius of
the drop as it “rests” on the substrate, a stationary so-
lution exists and whether it is stable. Apart from lense
manufacture [1], this question is important for the ma-
nipulation of corrosive substances [10] or the frictionless
displacement of drops [6]. Of particular interest is the
maximum drop size that can be sustained, and the limit
of very small flow rates. The drop continues to levitate in
this limit since the gap between the liquid and the sub-
strate becomes very small, so the lubrication pressure
produced by the viscosity of the gas becomes significant.
This enables us to employ asymptotic methods, making
use of the disparity of scales between the gap size and
that of the drop.

Experimentally, it is observed that the stability limit
is reached when the radius equals at least a few capillary
lengths ℓc =

√

γ/(ρg). This natural length scale for our
system is determined by the surface tension γ, density ρ
of the liquid, and acceleration of gravity g. At a few cap-
illary lengths, the drop is flattened to a pancake shape.
Biance et al. [5, 11] observed a critical radius

rmax

ℓc
= 4.0± 0.2, (1)

where rmax is defined in Fig. 1. Beyond this radius,
“chimneys” appeared, i.e. bubbles of air trapped below
the curved and concave surface of the drop that rise ow-
ing to buoyancy, and eventually burst through the center
of the drop. This suggests that the critical radius is re-
lated to the Rayleigh-Taylor instability of a heavy fluid
(the drop) layered above a light fluid (the gas layer). In
[5, 11] this idea is used to estimate rmax/ℓc ≈ 3.83.
While this is close to the experimental value, the argu-

ment ignores the gas flow responsible for the levitation
force. This flow was taken into account by Duchemin et
al. [1], who calculated the static shape of a drop lev-
itated above a curved porous mould, using a combina-
tion of numerics and asymptotic arguments. For large
drop volume, they found no physical solutions, while for
smaller drops multiple solutions were calculated numeri-
cally. Duchemin et al. [1] did not present a formal sta-
bility analysis of these solutions, but suggested that the
limit of stability is related to the appearance of large os-
cillations on the underside of the drop.
A large number of studies of Leidenfrost drops have fo-

cused on the appearance of self-sustained oscillations of
the drop [3, 5, 12, 13, 14, 15, 16, 17]. These oscillations
can sometimes lead to a morphological bifurcation of the
drop which takes the shape of a star [3, 13, 14, 16, 17].
Similar star-shaped drops have been reported in drops
vertically vibrated on non-sticky surfaces, and the shape
is generally attributed to a parametric instability [18].
Our original question was whether oscillations could per-
haps be explained even in the limit of viscous drops,
which we focus on in this paper. This is not the case,
since both our asymptotic results and simulations of the
complete dynamics (i.e. beyond linear stability analysis)
show that once unstable, a drop breaks up owing to the
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formation of a chimney.
We treat both the liquid drop and the surrounding

gas in the inertialess (Stokes) limit. For the asymptotic
analysis, we also require the drop to be much more vis-
cous than the gas. The main effect of this assumption is
that there is hardly any flow inside the drop, so it can
be treated as being in hydrostatic equilibrium at any in-
stant in time. We also prescribe the rate at which gas
is injected into the underside of the drop, thus ignoring
the possible interplay between drop dynamics and vapor
production in the Leidenfrost problem.
Our analysis is similar in spirit to the earlier paper of

Duchemin et al. [1], but we only address the simpler case
of a flat substrate. As a result, we are able to perform
all the calculations analytically (up to a few universal
constants, which have to be computed numerically). Our
solution curves are in qualitative agreement with those
for a curved substrate [1], but now imply a full analytical
description. In addition, we are the first to perform a
systematic stability analysis of the stationary states. We
find the maximum stable radius

rmax

ℓc
≈ 4.35− r̃ (2)

where r̃ goes to zero in the limit of vanishing gas flow.
For typical experimental flow rates we find that r̃ ≈

0.4, consistent with the experimental result (1). At the
end of the paper we discuss how our analysis relates to
the stability argument of [5, 11], based on the Rayleigh-
Taylor instability.

II. PROBLEM FORMULATION

A. Geometry and dimensionless parameters

We consider axisymmetric drops of liquid, levitated
above a flat surface by gas flowing into the underside
of the drop, cf. Fig. 1. We set out to find the shape of
stationary drops and their stability, as a function of the
gas flow rate and the drop volume. The size of the drop
is expressed by the Bond number

Bo =
R2

ℓ2c
, (3)

where V is the volume of the liquid drop, and R =
(4πV/3)1/3 the unperturbed radius. The dimensionless
gas flow rate supporting the drop reads

Γ =
Qηgas
ℓ2cγ

, (4)

where Q is the volume of gas that escapes through the
narrow neck region (see Fig. 1) per unit of time, and ηgas
is the viscosity of the gas. Our analysis will identify the
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FIG. 1: Definitions and sketch of the matching regions.

flux Q as the relevant quantity, which can be calculated
by integrating the gas flux entering from underneath up
to the neck position rn. Let us also introduce a slightly
different dimensionalization of the flow rate

χ =
6Γℓc
πrn

=
6Qn

πrnℓc
, (5)

which will appear naturally in the analysis.
Finally, another parameter is the viscosity ratio be-

tween liquid and gas

λ =
ηdrop
ηgas

, (6)

but which will be considered asymptotically large for
most of this paper. Throughout, lengths will be ex-
pressed in ℓc, velocities in γ/ηgas, and stresses in γ/ℓc.

B. Structure of the problem

The problem we set ourselves is to solve the inertialess,
axisymmetric fluid flow equations, with a prescribed in-
flux of gas into the underside of the drop. Most of our
analytical work assumes in addition that the drop is much
more viscous than the gas. The structure of the expected
solution is shown in Fig. 1. The gas pressure below the
drop has to be sufficiently large in order to support the
weight of the drop. In the limit of small dimensionless gas
flux Γ, the gap between the drop and the substrate must
therefore be small in order to generate enough pressure.
The underside of the drop inflates to a gas pocket, whose
width is of similar size as the drop itself. The narrow
gap is formed in a small neck region only, where a large
curvature assures that the gas pressure can be sustained
by corresponding surface tension forces. Apart from this
viscous neck region the gas pressure is constant, both in
the gas pocket as well as to the exterior of the neck.
This leads to the following asymptotic structure of the

problem, characterized by the matching between three
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different regions. In the limit of small flux all viscous ef-
fects become localized in a small neck region, situated at
a radius r = rn from the center. In this region, there ex-
ists a balance between viscous and surface tension forces.
In addition, the slope of the gap profile h(r) turns out to
be small in this region, so lubrication theory [19] permits
to reduce the flow equations to an ordinary differential
equation for h(r). We will call this the inner solution or
neck region.
To close the problem, boundary conditions are needed.

These are provided by two outer regions on either side
of the neck, denoted by ′−′ (the gas pocket toward the
center of the drop), and ′+′ (the outside of the drop).
Both regions are controlled by a balance of gravity and
surface tension alone. First, we solve the equations in
each of the regions individually. Second, we require that
both the slope and the curvature of the profile match
smoothly at the boundaries between two regions. This
leads to a set of equations which determines stationary
drop solutions uniquely. Solutions exist only below a
certain critical neck position rc, in which case we find two
branches, one with a small gap width (the lower branch),
and an upper branch with a larger gap width.
Our stability analysis of the two branches is based on

the observation that the relevant dynamic variable is the
position rn of the neck, which can shift easily. The max-
imum stable neck radius does not coincide with rc, but
is significantly smaller, located on the lower branch.

III. INNER SOLUTION: NECK REGION

A. Lubrication approximation

We consider incompressible, axisymmetric flow in the
gas layer, so that mass conservation gives

rḣ+ (rhū)
′
= rv(r). (7)

Here ū is the depth averaged horizontal velocity of the
air layer, while v(r) is the rate at which air volume is
injected per unit area below the drop. The main focus of
the paper will be on stationary states and their stability.
Stationary drop profiles are found by taking ḣ = 0, and
integrating (7) to

rhū =
Γ(r)

2π
, (8)

where Γ(r) = 2π
∫ r

0
dr′r′v(r′) is the flux in the lubri-

cation layer. In the case where the injection source is
localized at r = 0, the flux Γ is simply constant.
To get a closed equation for h(r) in the neck region,

we solve for ū. As our results will confirm, the neck
region is shallow, h′ ≪ 1, meaning that we can use the
lubrication approximation [19] to analyze the flow, see
Fig. 1. Owing to the large viscosity ratio between the

drop and the surrounding gas, the liquid drop acts as a
no-slip boundary, and the flow in the gas layer is well
approximated by

u = 6ū

(

z

h
− z2

h2

)

. (9)

Since the Reynolds number is very small in typical ex-
periments, we use the Stokes approximation [19] to relate
this velocity to the pressure. As there is almost no flow
inside the drop, the liquid will be at hydrostatic equilib-
rium, pliquid = p0 − z. Furthermore, the pressure jump
across the interface equals the curvature times the surface
tension, so one obtains the lubrication pressure inside the
gas layer as

p = p0 − h− h′′. (10)

In what follows we will show that the width of the neck
region scales as Γ1/5 and thus is asymptotically small in
the limit of vanishing flux. We are therefore permitted to
neglect the axisymmetric contribution to the curvature in
the neck region. Using the horizontal component of the
Stokes equation, p′ = ∂2u/∂z2, we find

ū = 12h2 (h′ + h′′′) . (11)

Now (8),(11) provide a closed equation for the stationary
interface profile h(r):

h3 (h′ + h′′′) =
6Γ(r)

πr
. (12)

The right hand side of (12) represents the viscous stress
in the flow, and will only become important when h is
small, i.e. in a small neck region around rn, where we
may set r = rn. This gives

h3 (h′ + h′′′) = χ, (13)

with

χ ≡ 6Γ(rn)

πrn
. (14)

A crucial observation is that there is no need to know
the precise form of how the gas is injected, but one only
requires the flux across the neck. This of course provides
a great simplification for the Leidenfrost problem, where
evaporation rates are related in a complicated way to the
temperature profile inside the drop.
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B. Similarity solution for neck region

As gravity is unimportant in the thin neck region, (13)
can be further simplified to

h3h′′′ = χ. (15)

Since we are interested in the limit of small flux, we look
for similarity solutions

h(r) = χαH (ξ) , where ξ =
r − rn
χβ

(16)

giving

H3H ′′′ = 1, with 4α− 3β = 1. (17)

In the limit ξ → ∞, the solutions have to match onto a
sessile drop of constant curvature. Since

h′′ = χα−2βH ′′, (18)

one needs that α − 2β = 0 for the curvature to remain
finite as χ → 0. Together with (17) this fixes α = 2/5
and β = 1/5, and hence we have

h(r) = χ2/5H

(

r − rn
χ1/5

)

. (19)

The form of the similarity function will be determined
from the matching below. The fact that α > β justifies
the assumptions made so far. First, we find that h′ ≪
1 in the limit χ → 0, justifying the use of lubrication
theory. Similarly, h′ ≪ h′′′, so that both gravity and the
axisymmetric curvature can indeed be neglected in the
neck region.
The asymptotic behavior of (17) is quadratic for both

ξ → ±∞,

H+ =
1

2
K+ξ

2 + S+ξ for ξ → ∞ (20)

H− =
1

2
K−ξ

2 + S−ξ for ξ → −∞. (21)

Physically, the values of the asymptotic curvatures K±

set the pressure in the corresponding outer regions.
Since (17) is of third order, solutions can be specified

by three independent parameters, one of which can be
absorbed into a shift of ξ. Therefore, the two asymptotic
curvatures K± uniquely determine the solution. As a
consequence, the slopes S± are dependent variables. To
perform the matching, we require the function

S− = −f (K−,K+) , (22)

FIG. 2: Solid line: the function f relates the slope S− to cur-
vature K′

−
of the inner solution (Eq. (23) with K+ = 2.17,

corresponding to rn = r0). Dotted lines: the function g pro-
vides the matching condition between inner region and gas
pocket region (Eq. (51) with χ = 10−7). The three curves
correspond to values rn = 3.55 (below critical), rn = 3.62
(critical), and rn = 3.65 (above critical).

whose existence is assured by the above argument. Since
(17) is invariant under the transformation h → h/a and
x → x/a4/3 one must have

f (K−,K+) = K
1/5
+ f

(

K−

K+
, 1

)

. (23)

This function is computed numerically and is plotted in
Fig. 2. We show below that stationary solutions cor-
respond to the intersection of f with another function
g, shown in the same figure. It can be seen that the
matching breaks down at a critical neck radius rn, be-
yond which stationary solutions cease to exist.

IV. OUTER SOLUTIONS

Having seen that viscous effects are localized in the
neck region, the rest of the drop is at static equilibrium.
Hence, the pressure is constant both in the gas pocket
between the drop and the substrate, as well as to the
exterior of the neck. These pressures are not equal, how-
ever, since one requires a pressure difference to drive the
flow across the neck. In Fig. 1 we therefore distinguish
two outer regions, denoted by + and - respectively. Since
p± = p0−h−κ, the outer solutions can be obtained from

κ+ h = c±, (24)

where κ is the curvature of the interface. The constants
c± determine the pressure difference across the neck



5

FIG. 3: The outer solution of the ”drop” region corresponds
to a perfectly non-wetting sessile drop. The size of the drop,
characterized by rn, sets the curvature K+ for the inner so-
lution.

∆p = p− − p+ = c+ − c−, (25)

and will follow from the matching.

A. Outer ”drop” region: +

Below we will find that the profile of the ”drop” re-
gion requires dh/dr → 0 as h → 0, in order to match
to the neck smoothly. This corresponds to a perfectly
non-wetting sessile drop (Fig. 3). When matching the
curvature we also require d2h/dr2 = K+ as h → 0. Ow-
ing to the vanishing slope near h = 0 we are allowed to
write κ = d2h/dr2 in (24). Hence, one finds c+ = K+.
To deal with the overhang of the sessile drop, it is

convenient to solve the profile in terms of the arclength
s along the interface. We define θ as the angle with the
horizontal and rewrite (24) as

dθ

ds
= − sin θ

r
− h+K+ (26)

dh

ds
= sin θ (27)

dr

ds
= cos θ, (28)

with boundary conditions

θ(0) = 0 (29)

h(0) = 0 (30)

r(0) = rn (31)

θ(st) = π (32)

r(st) = 0, (33)

FIG. 4: The outer solution fixes the value of K+ as a function
of the neck radius (which controls the drop volume). The
maximal radius r0 = 3.38317 · · · gives K+ = 2.17 · · ·.

where st is the value of the arclength at the top. Two of
these five boundary conditions serve as the definitions of
rn and st, so that the remaining three boundary condi-
tions fix the solution uniquely. The equations have been
solved numerically.
Each value of K+ thus gives a solution with a differ-

ent rn, some of which are shown in Fig. 3. The nu-
merically obtained relation between K+ and rn is de-
picted in Fig. 4. For the maximal neck radius rn = r0 =
3.38317 · · ·, introduced below, one finds K+ = 2.17 · · ·.
The value of rn effectively sets the volume of the drop.

Namely, the weight of the sessile drop is carried by the
pressure exerted by the substrate on the contact area πr2n.
The difference between the liquid and the gas pressures
at h = 0 is simply K+, so we find

K+πr
2
n = 2πV+ ⇒ V+ =

1

2
K+r

2
n. (34)

where V+ is defined as the real volume divided by 2π, i.e.

V+ =
1

2π

∫ hmax

0

dh πr2. (35)

Note that to obtain the real liquid volume, one has to
subtract the volume V− of the gas pocket. However, V−

goes to zero in the limit of vanishing gas flow, as shown
below.

B. Outer ”gas pocket” region: -

In the ”gas pocket” region, the profile h(r) is no longer
multivalued and we can express the curvature as

κ =
h′′

(1 + h′2)3/2
+

h′

r(1 + h′2)1/2
. (36)
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The solution is then specified by (24) with boundary con-
ditions

h′(0) = 0 (37)

h(rn) = 0. (38)

In Appendix A we show that the solution can be written
as an expansion

h(r) = −c−
J0(r) − J0(rn)

J0(rn)
+O

(

c3−
)

, (39)

where J0(r) is a Bessel function of the first kind. Using
furthermore that the curvature has to match the curva-
ture of the inner solution K−, and thus K− = h′′(rn), we
can further simplify to

h(r) = K−

J0(r) − J0(rn)

J ′′
0 (rn)

+O
(

K3
−

)

. (40)

We see that the thickness scale of the gas pocket is set
by the value of K−. In the limit of vanishing flux we
expect this thickness to tend to zero, making K− a small
parameter. To find solution branches, it is crucial to go
beyond linear order and to find the term of order K3

− in
(40). The only quantity that is needed to perform the
matching to (22), coming from the inner solution, is the
slope h′

−(rn). This calculation is done in Appendix A.
At this point we can already infer an upper bound on

the possible values of rn. Figure 5 shows the outer gas
pocket solution (with normalized amplitude) for various
values of rn. The outer solutions are defined on the do-
main where h(r) ≥ 0, hence the maximum possible neck
radius is achieved when J0(r) has its first minimum at
the maximal radius r0 = 3.8317 · · · (vertical line). The
corresponding solution is drawn with a heavy line.
A second remark is that J ′′

0 vanishes at r ≈ 1.852 · · ·,
so K− must become zero at this radius. At even smaller
radii J ′′

0 turns negative, which yields negative values of
K−. However, the inner solution cannot reach large h for
negative K−, which means that the matching procedure
described here does not work. Dealing with this problem
requires an additional matching region between the inner
and outer (gas pocket) solution, the introduction of which
lies beyond the scope of this paper. We will simply stay
away from rn ≈ 1.852 and instead focus on radii close to
the maximal value r0 ≈ 3.8317, as detailed below.

V. MATCHING THE ASYMPTOTIC REGIONS

A. Matching conditions

We can now match the asymptotic regions by express-
ing (20),(21) in their original variables and expanding the
outer solutions around r = rn,

FIG. 5: Outer solutions for the gas pocket region (amplitudes
normalized to unity). Thin solid lines correspond to rn = 1, 2;
the dashed line, corresponding to rn = 3, illustrates that h
would have to become negative to realize a neck radius larger
than r0. The heavy line shows the maximum possible rn = r0,
corresponding to the first minimum of J0(r).

hout± =
1

2
h′′

±|rn(r − rn)
2 + h′

±|rn(r − rn) (41)

hin± =
1

2
K±(r − rn)

2 + χ1/5S±(r − rn). (42)

Therefore the matching conditions become

K± = h′′

±|rn (43)

χ1/5S′

± = h′

±|rn . (44)

The conditions on the curvature were already taken
into account when computing the outer profiles from
(24). Typical values for K+ are of order unity, while the
slope requires h′

+|rn = 0 as χ → 0. This is why for the
first outer solution we considered a perfectly non-wetting
drop.
The − conditions are more subtle. The thickness of the

gas pocket goes to zero asymptotically so that both h′′
−|rn

and h′
−|rn will be small. In this case the selection of the

solution explicitly requires the slope condition, which we
express as

S− =
K−

χ1/5

h′
−|rn

h′′
−|rn

≡ −g(K−, rn;χ). (45)

Together with (22) this closes the matching problem:

f (K−,K+) = g (K−, rn;χ) . (46)

This equation indeed contains the three matching re-
gions: K+ implicitly depends on rn through the + outer
solution, f is determined by the inner solution, while g
follows from the − outer solution.
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B. Bifurcation: critical radius rc

For a given value of the flux χ, we have reduced the
problem to finding the intersections of the functions f
and g. This is sketched in Fig. 2, showing f and g for
χ = 10−7 and several values of rn. Depending on the
value of rn, there can be two intersections, one intersec-
tion (when the curves are tangent), or no intersection.
Each intersection corresponds to a stationary drop solu-
tion. This can be translated into a bifurcation diagram
showing K− vs rn (Fig. 7). For small radii there are two
branches of solutions, corresponding to the two intersec-
tions, which merge at rc. No stationary drop solutions
exist for rn > rc.
We analyze the bifurcation in the limit of vanishing

flux, χ → 0. We will show that

rc = r0 +O
(

χ2/15
)

, (47)

so that the critical neck radius rc approaches the maximal
radius r0 in the limit of vanishing flux. To analyze the
vicinity of the critical point we introduce

r̃ = r0 − rn. (48)

At the same time we will find that K− ∝ χ1/15. This
means that as the limit of χ going to zero is reached,
K− = 0 and rn = r0, which implies K+ = 2.17 according
to Fig. 4. These two data fix the solution of (17) uniquely,
and lead to the asymptotic profile shown in Fig. 6. From
its minimum, one finds that

hn ≈ 0.931χ2/5, (49)

in agreement with the scaling found by [1].
We now analyze the first correction to the solution as

χ increases, but in the limit where χ,K−, r̃ ≪ 1. This
can be done by considering the corresponding limit of
the functions f and g, cf. Fig. 2. Namely, the function f
approaches a constant, which is found numerically to be

f ≃ f0 = 1.12 · · · . (50)

on the other hand, the asymptotic form of g becomes

g ≃ χ−1/5K−

(

r̃ − g2K
2
−

)

. (51)

The first term of (51) is found by expanding (40) for rn
close to r0:

h′
−|rn

h′′
−|rn

=
J ′′
0 (r0)(r − rn)

J ′′
0 (rn)

+O
(

K2
−

)

≃ −r̃ +O
(

K2
−

)

, (52)

where we used the property J ′
0(r0) = 0. We need to keep

the K2
− term as it can become of the same order as r̃.

FIG. 6: The inner solution H(ξ) obtained from numerical
integration of (17), with K+ = 2.17 and K− = 0. It will
follow that these values correspond to the critical solution.
The minimum value Hn ≈ 0.931 determines the thickness of
the neck (49).

For details we refer to Appendix A, where we show that
g2 = 1.486 · · ·.
The matching condition f = g (cf. (46)) is now re-

duced to a horizontal line intersecting a cubic function:

f0 =
K−

χ1/5
(r̃ − g2K

2
−). (53)

Solving for r̃, one finds

r̃(K−, χ) =
χ1/5f0
K−

+ g2K
2
−, (54)

which has been plotted for different values of χ in Fig. 7.
Thus for a given value of rn one finds two solution
branches, which end at the critical value

r̃c = 3

(

1

4
g2f

2
0

)1/3

χ2/15 +O
(

χ4/15
)

, (55)

as claimed before. Note that the smallness of the power
2/15 makes r̃c non-negligible. For typical experimental
values of the flux the critical point is thus substantially
shifted with respect to the asymptotic value r0.
Plugging this back into (54), one finds the value of K−

at the critical point: K
(c)
− = 0.72χ1/15. But it follows

from (40) that h0 = h(0) ≈ K−(1 − J0(r0))/J
′′
0 (r0), and

thus the maximum gap width is to leading order

h0 ≈ 2.52χ1/15. (56)

This concludes the analysis of the stationary solutions,
which are described by (54). At a given flow rate χ, the
critical neck radius is given by (55), which approaches
the maximal value r0 in the limit χ → 0.
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χ=10

χ=10
−10

−5

χ=10
−7

FIG. 7: The bifurcation diagram (K−, r̃), derived from
(54). Curves correspond to different values of the flux, χ =
10−5, 10−7, 10−10, revealing the weak dependence on χ. The
dashed lines represent perturbations δr̃, δK− = −δr̃/c which
are tangent to the solution curve. They represent marginal
perturbations, separating stable from unstable solutions.

VI. STABILITY

We now turn to the important question of which part
of the solution branches shown in Fig. 7 are stable. Es-
sentially, we find that the lower branch is linearly stable,
while the upper is linearly unstable. Surprisingly, how-
ever, the marginal point is not exactly at the maximum
radius, but slightly before.

A. Stability limit

Once more we make use of the fact that there is no flow
inside the drop, so that the drop shape adjusts quasi-
statically to variations in the neck region. We therefore
consider infinitesimal variations in the neck position, δrn
and assess the corresponding change in levitation force
δF . Since the pressure difference ∆p = p− − p+ across
the neck acts for r < rn, this force reads

F = ∆pπr2n. (57)

A marginal perturbation δrn occurs whenever the re-
sulting levitation force is unchanged, δF = F ′δrn = 0, so
that it still equilibrates the weight of the drop. Hence,
we find the marginal condition

∆p′ = −2∆p

rn
, (58)

where the prime denotes the derivative with respect to
rn. In order to produce the same levitation force, an in-
crease in rn thus has to be compensated by a decrease

of ∆p. Had the pressure stayed constant, F would be
larger than the weight of the drop leading to the for-
mation of a chimney and thus to instability. Similarly,
pressures smaller than the marginal condition leads to a
stable situation, giving the stability criterion

∆p′ − 2∆p

rn
< 0. (59)

In the limit of small χ, the pressure difference (25) is
simply the difference of the curvatures:

∆p = K+ −K−, (60)

so that stability requires

K ′

+ −K ′

− +
2∆p

rn
< 0. (61)

The derivative K ′
+ can be read off from Fig. 4, and is

negative. Clearly, this has a stabilizing effect. The sign
of K ′

− can be inferred from the bifurcation diagram. The
lower branch has a stabilizing contribution, while the
upper branch is be destabilizing. The location of the
marginal point, however, depends on the numerical val-
ues of the three terms.
Taking the derivative of (34), we find

K ′

+ =
2V ′

+

r2n
− 2K+

rn
. (62)

Moreover, for vanishing flux K− ≪ K+, hence we may
replace ∆p ≃ K+, giving the stability criterion

K ′

− >
2V ′

+

r2n
. (63)

Near the maximal radius rn ≈ r0 the criterion for stabil-
ity becomes

K ′

− > c−1 ≡ 2V ′
+

r20
= 0.92 · · · . (64)

Indeed, the upper branch with K ′
− < 0 is unstable, but

the marginal point is not at the maximum radiusK ′
− = 0,

but slightly before. This is indicated in Fig. 7 by the
dashed lines, which each have a slope 0.92.

B. Linear stability analysis

We now include dynamics into the stability analysis.
We note first that an infinitesimal variation of the neck
position, δrn = −δr̃, also induces a variation of the cur-
vature, δK−, and of the flux, δχ. These three parame-
ters are related through mass conservation of the liquid
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and the gas. The analysis is closed by a third equation
coming from matching the dynamic inner region to the
hydrostatic outer regions.
The volume of the liquid can be calculated by the vol-

ume enclosed by the sessile drop solution, V+, minus the
volume of the gas pocket V−, i.e.

Vliquid = V+(rn)− V−(rn,K−). (65)

This is exact up to asymptotically small corrections due
to the inner region. The volume V+ is (numerically) de-
termined by the value of rn, while V− can be computed
analytically using (40),

V−(rn,K−) =

∫ rn

0

dr r h−(r)

≃ 1

2
K−r

2
n

(

J0(rn)− 2J1(rn)/rn
J0(rn)− J1(rn)/rn

)

. (66)

The expression simplifies at r0, because of the property
J1(r0) = 0. Since the liquid volume is strictly conserved,

V̇liquid = 0, one finds near r0

δK− = −δr̃

c
, (67)

where the constant c has been defined by (64). Relation
(67) expresses the fact that when rn increases, increasing
V+, the volume of the gas pocket has to increase by a
similar amount to keep the liquid volume constant. This
is achieved by an increase of K−.
Mass conservation of the gas is described by continuity

(7), which can be integrated to

rhū = Γ(r)− ∂

∂t

∫ r

0

dr r h. (68)

The second term on the right hand side can be identified
as the rate of change of gas pocket volume V̇−, which we
will write as −V ′

+δ ˙̃r. This change absorbs part of the
injected air, decreasing the flux passing across the neck.
Considering the radius somewhere inside the neck region,
r ≈ rn, the equation can be simplified to (using (11) and
h′ ≪ 1):

h3h′′′ = χ+ δχ, (69)

where the variation of the flux reads

δχ =
r0
24c

δ ˙̃r. (70)

The matching condition (54) closes the dynamical sys-
tem, taking into account the dependencies (67) and (70).
The marginal case δχ = 0 corresponds to a curve tan-
gent to any of the lines r̃(K−) shown in Fig. 7. Since in

addition the slope of such a tangent curve must be −c−1

according to (67), this uniquely fixes a point on any of the
lines at constant χ. The critical tangent curve is drawn
dashed in Fig. 7. Below this point, on the lower branch,
solutions are stable, above they are unstable.
Formally, the growth rate of perturbations is computed

by writing

δ ˙̃r = σδr̃. (71)

Now using (67), (70), and the first variation of (54) one
finds

σ =
24

cr0

(

∂r̃

∂χ

)−1 [
∂r̃

∂K−

+ c

]

. (72)

The partial derivatives are to be evaluated from (54).
This indeed gives the same stability boundary as (63),

which was based on a global force balance (note that
∂r̃/∂K− = −(K ′

−)
−1). The maximum stable radius r̃s is

found by the condition σ = 0, yielding

χ1/5f0
K2

−

− 2g2K− = c (73)

as an equation for K− at the stability boundary. This
value of K− is inconsistent with the asymptotic estimate
K− ≈ χ1/15 considered so far, indicating that the point
where the solution exchanges stability is at a distance
slightly larger from the critical point rc. This means
thatK− is smaller than expected (further down the lower
branch, cf. Fig. 7). Thus the second term on the right of
(73) is small compared to the other two, and we obtain

K− =

(

f0
c

)1/2

χ1/10. (74)

If we evaluate (54) in the same limit, we finally obtain

r̃s = (f0c)
1/2χ1/10. (75)

Thus for vanishing flux the maximum radius of stable
solutions approaches r0, but with an even smaller power
than rc. This scaling implies that rs < rc < r0, as seen
in Fig. 7.

VII. NUMERICAL TESTS

A. Non-linear dynamical behavior

We begin with a simulation of the full axisymmetric
Stokes problem, using a boundary integral method [20],
which has the advantage that it tracks the interface with
high precision. The idea is to regard the interface as a
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continuous distribution of point forces, which point in
the direction of the normal and whose strength is pro-
portional to the mean curvature. Since for Stokes flow
one knows the Green function giving the velocity field
resulting from a point force, one can write the velocity
anywhere in space as an integral over the free surface. In
an axisymmetric situation, the angle integral can be per-
formed, so the remaining integration is one-dimensional.

External flow sources can simply be added; in the
present case we take the gas flow as a point source of
strength Q situated at the origin on the solid plate which
bounds the flow. For this a simple exact solution is avail-
able [21]. Likewise for the Green function one must take
into account the presence of a no-slip wall. This is pos-
sible using the method of images [22], and the resulting
boundary integral formulation has been applied success-
fully to the motion of drops relative to a wall [23]. If, as
in our case, the viscosity of the drop is different from that
of the surrounding, one must account for the stress mis-
match across the interface. This can be done at the cost
of introducing another integral over the velocity on the
interface into the equation, which turns the equation for
the velocity field into an integral equation. After solving
this equation for a given interface shape, the thus com-
puted velocity field can be used to advance the interface.

We follow closely an earlier implementation of the
boundary integral method, used for example the coales-
cence of two drops inside another fluid [24]. The only
significant difference is that the free space Green func-
tion has been replaced by those for half space, bounded
by a wall. We tested the code by comparing to an ex-
act solution of a sphere moving perpendicular to a wall
[25]. This is realized in the limit of a very small drop,
or of very large drop viscosity, so that there is hardly
any deformation. The agreement was good, but signifi-
cant deviations occurred when the gap between the wall
and the drop was smaller than 5 % of the drop radius. At
present, we do not know the origin of this numerical prob-
lem, which prohibits us from investigating the asymptotic
limit of very small gap spacings. Instead, we report on
simulations at moderate gap spacings, which show the
nonlinear stages of chimney formation, not captured by
our linear stability analysis.

Figure 8 shows a viscous drop which is slightly smaller
then the stability boundary. Starting from a configura-
tion shown as the light curve, it relaxes toward a station-
ary stable state (heavy line). For a Bond number which
is just slightly larger, the same initial condition leads to
a rising gas bubble in center of the drop, see Fig. 9. A
thin film forms between the rising gas bubble and the top
of the drop, which drains slowly. As seen in Fig. 8, the
neck radius is rn ≈ 2.5, giving χ = 0.015. On the basis
of our asymptotic theory (75), a rough estimate of the
stability boundary gives rs ≈ 3.2.

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

FIG. 8: Boundary integral simulation of a drop with parame-
ters Γ = 0.02, Bo=4.2, and λ = 100. The drop relaxes toward
a stable state, which is drawn as the heavy line.

FIG. 9: The same as Fig. 8, but with a slightly larger Bo =
4.4. The air bubble under the center of the drop lifts up to
form a chimney. The time interval between the profiles is ∆t
= 3000, in units of ℓcηgas/γ.

B. Lubrication approximation

To test the bifurcation scenario in more detail we re-
sort to direct numerical simulation of the lubrication
equation. Due to the overhang of the drop, we sepa-
rate the upper part of the drop and the lower part of
the drop at the maximum radius, rmax, defined by the
point |h′| = ∞. The upper part is solved as described in
Sec. IV A, and for the lower part of the drop we use

κ =
h′′

(1 + h′2)3/2
+

h′

r(1 + h′2)1/2
(76)

χ = h3 (κ′ + h′) . (77)
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This describes both the inner and outer regions in the
lower part of the interface, while we have conveniently
taken the rate of injection Γ(r)/r to be constant for all
r. Boundary conditions for this 3rd order equation are

h′(0) = 0 (78)

h′(rmax) = ∞ (79)

κ(rmax) = κpatch, (80)

where κpatch is the curvature at the point where the upper
and lower solutions are patched. A one-parameter family
of solutions is obtained through variation of the upper
part of the drop. It was shown in [1] that this procedure
provides drop solutions that are quantitatively accurate.
The numerically obtained drop profiles are conve-

niently characterized by the position of the neck, rn, and
the gap below the center of the drop, h0. Numerical re-
sults for the solution branches are shown as solid lines in
Fig. 10 for two values of the flux. χ = 10−4 is a typi-
cal experimental value encountered for Leidenfrost drops,
while χ = 10−7 illustrates the convergence toward the
asymptotic limit. As predicted, there is a critical radius
beyond which no stationary solutions exist. The asymp-
totic predictions shown in Fig. 7 have been translated to
the dashed lines of Fig. 10. These are obtained from (54),
whereK− was computed from h0 using (40). Good quan-
titative agreement is achieved for small enough values of
the flux.
Finally, we determined the critical radius rc for a range

of values of the flux χ. Figure 11 shows how the numer-
ical values (dots) indeed approach the asymptotic pre-
diction (solid line) in the limit of vanishing flux. Due
to the very small powers χ2/15, the convergence towards
r0 = 3.8317 · · · is extremely slow (horizontal line). As a
consequence, the correction with respect to this asymp-
totic value will be significant for typical experimental val-
ues of the flux.

VIII. DISCUSSION

Owing to the smallness of the neck region (49), we can
make the simplification that the pressure inside the gas
pocket below the drop is constant (Fig. 1). This pressure
is larger than the atmospheric pressure and provides the
force required to levitate the drop. Matching the pressure
difference across the neck with the viscous flow then pro-
vides the bifurcation diagram of Fig. 7, yielding a critical
neck radius rc. In the limit of vanishing flux, the criti-
cal radius approaches r0 = 3.8317 · · ·. This value arises
because it is the first minimum of the function charac-
terizing the shape of the gas pocket, which is the Bessel
function J0(r). For larger rn, the gas pocket shape would
need to become negative, which is of course not allowed.
Experimentally, the size of the drop is measured by

looking at the drop from above. This measurement pro-
vides the maximum radius rmax rather than the neck ra-
dius, cf. Fig. 1. For large puddles the difference between

FIG. 10: Bifurcation diagram h0 vs rn for χ = 10−4 and 10−7.
Smaller χ yield larger radii. Solid lines were obtained from
numerical solution of the lubrication equation (77). Dashed
lines correspond to asymptotic theory (54).

FIG. 11: Critical radius rc as a function of the flux χ.
The numerical values obtained from the lubrication equa-
tion (dots) indeed approach the theoretical prediction (55)
(solid line). The dashed line indicates the asymptotic value
r0 = 3.8317 · · ·.

.

rmax and rn approaches
√
2 − arcccosh

√
2 ≈ 0.53. For

drop sizes relevant here we confirmed numerically that
rmax − rn ≈ 0.52. Combined with (55), we thus find

rmax,st ≈ 4.35− 1.02χ1/10 (81)

for the boundary of stability, expressed in terms of the
capillary length. Typical experimental values of χ can
be extracted using (49), and typical experiments yield
hn ≈ 100µ m, obtained from diffraction data [5]. This
gives χ ≈ 10−4, and thus rmax,st ≈ 3.95, to be compared
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to reported experimental values of 4.0 ± 0.2 [5, 11]. A
similar estimate of χ is obtained from considering the la-
tent heat of evaporation [5]. Furthermore, our boundary
integral simulations show that the nonlinear dynamics
for larger drops lead to the formation of chimneys, as ob-
served experimentally. We are therefore confident that
the analysis in terms of Stokes flow provides an accurate
description of this instability.
Let us now return to the argument put forward in

[5, 11], relating chimney formation to the Rayleigh-
Taylor instability. The later occurs when a layer of fluid
is suspended above another fluid of lower density, so that
the system tends to destabilize due to buoyancy forces.
Surface tension opposes this effect, so that the instabil-
ity occurs at long wavelengths only. Biance et al. [5, 11]
propose that levitated drops remain stable as long as ax-
isymmetric perturbations that fit inside the drop are sta-
ble with respect to this buoyancy driven instability.
For an infinitely extended liquid film, one finds that

J0(kr) are axisymmetric eigenmodes, with the stability
criterion k > 1. While the Bessel function does not have
a well-defined period, the maximum drop size was esti-
mated in [11] by the first minimum of the mode with
k = 1, occurring at r0. In hindsight, our results justify
this choice of taking the minimum of J0(r) as the sta-
bility boundary, provided that it is identified with the
neck radius, rather than with rmax. With this connec-
tion, our results reduce to the Rayleigh-Taylor argument
in the limit of vanishing gas flow, showing that the bal-
ance between buoyancy and surface tension provides the
right mechanism. The effect of the gas flow is to slightly
reduce the range of stable solutions (81).

APPENDIX A: GAS POCKET SOLUTION

In this appendix we expand the gas pocket solution
for small amplitudes and compute the constant g2. We
consider the equation

h′′

(1 + h′2)3/2
+

h′

r(1 + h′2)1/2
+ h = c−, (A1)

with boundary conditions

h′(0) = 0 (A2)

h(rn) = 0. (A3)

This is equivalent to solving

y′′

(1 + y′2)3/2
+

y′

r(1 + y′2)1/2
+ y = 0, (A4)

with boundary conditions

y′(0) = 0 (A5)

y(rn) = −A, (A6)
where A = c− We expand in A,

y(r) = Ay1(r) +A3y3(r) +O
(

A5
)

. (A7)

This yields a hierarchy of equations

y′′1 +
y′1
r

+ y1 = 0, (A8)

y′′3 +
y′3
r

+ y1 =
3

2
y′21 y

′′

1 +
1

2r
y′31 . (A9)

with boundary conditions

y′1(0) = 0 (A10)

y1(rn) = −1 (A11)

y′3(0) = 0 (A12)

y3(rn) = 0. (A13)

The first equation gives y1(r) = −J0(r)/J0(rn), which
can be inserted into the right hand side of the equation
for y3(r).

To compute the constant g2, we require the ratio
y′(r0)/y

′′(r0). In terms of the expansion

y′(r0)

y′′(r0)
= A2y′3(r0) +O

(

A4
)

, (A14)

where we used the properties y1(r0)
′ = 0 and y′′1 (r0) =

−y1(r0) = 1. Comparing to (51), we simply find

g2 = y′3(r0). (A15)

We obtained this value numerically by solving the ODE
for y3, for which we numerically obtained g2 = 1.486 · · ·.
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