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Abstract In this paper we develop the governing equations
of the coupled damage-plasticity model, which is capable of
representing the main mechanisms of inelastic behavior in-
cluding irreversible plastic deformation, change of elastic re-
sponse and the localized failure. We show in particular how
such model should be implemented within the stress-based
variational formulation, providing an important advantage
for local computation of the internal variables, which thus
remains very robust and even non-iterative for the case of
linear hardening model. Several simple examples are pre-
sented in order to illustrate the kind of response the model
can represent.

Keywords coupled damage-plasticity� stress interpolation�
cyclic loading

1 Introduction

It is often the case that the basic phenomenological models
of inelastic behavior, on one side plasticity and on another
damage, cannot represent in a reliable manner all the salient
phenomena observed in inelastic behavior of real materi-
als. In other words, for a number of applications one needs
not only a reliable representation of irreversible deformation
upon unloading as provided by the plasticity model [2] [11]
[18] but also the elastic response modification upon unload-
ing such as provided by the damage model [8] [10]. The
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case in point concerns the inelastic behavior of porous ma-
terials [1] [13] or more general class of the inelastic mate-
rials under cyclic loading. For any such case, the minimum
requirement we need for representing with irreversible de-
formation and change of elastic response leads to a coupled
damage-plasticity model [7] [9] [12] [16]. The class of cou-
pled damage-plasticity models studied in this work is even
more general from the initial models of this kind propos-
ing plasticity criterion in terms of damage-modified effec-
tive stresses [7] [9] [16] in that it accommodates the inde-
pendent criteria, the first for triggering the evolution of the
irreversible deformation as opposed to the second govern-
ing the evolution of the elastic response modification [4] [6].
The main objective of this work is to discuss the theoretical
formulation of such a coupled damage-plasticity model, as
well as the numerical implementation. We show how to build
the corresponding strain energy for such model and how to
compute the evolution of its internal variables over a typi-
cal time step of the incremental / iterative scheme. We show
in particular that the stress-based interpolation can leadto
a very robust numerical implementation where the internal
variables computation is guaranteed to converge. The latter
is thus an additional advantage to what has been illustrated
previously [17] about a superior accuracy of stress-based fi-
nite element approximations.

The outline of the paper is as follows. In the next sec-
tion we briefly recall the governing equations of the coupled
damage-plasticity model [4] [6] and its novel stress-based
variational formulation. In section three, we present the lo-
cal computation of the internal variables, which turns out to
be very robust and even non-iterative for the case of linear
hardening model. A couple of illustrative examples are pre-
sented in section four and concluding remarks are stated in
section five.
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2 Variational formulation of coupled damage-plasticity
model

2.1 Governing equations of the constitutive model

In this section we first present the governing equations for
this constitutive model of coupled damage-plasticity. We show
in particular that all these equations can be derived from
three main ingredients: additive split of the total deforma-
tion field, the strain energy and yield / damage criteria, along
with the principle of maximum dissipations for damage and
plasticity. More precisely, we first assume that the total de-
formationε can be split additively into elastic partεe, plastic
partε p and damage partεd to write:

ε = εe + ε p + εd (1)

Contrary to the plastic deformation which is the main in-
ternal variable for plasticity, the damage deformation is just
the vehicle for connecting two models and the main inter-
nal damage variable still remains the damage complianceD
through the resultεd = Dσ which will be proved shortly af-
terwards.

We can postulate the strain energy of the coupled damage-
plasticity model according to:

ψ(u;σ ;ε p;D;ξ p;ξ d) =
ψe(εe)+ψd(εd ;D)+Ξ p(ξ p)+Ξ d(ξ d) (2)

where, for generality, we accounted for eventual hardening
effects withξ p andξ d as hardening variables for plasticity
and damage.

The plasticity and damage mechanisms of inelastic be-
havior are activated, respectively, for a zero-value of plastic-
ity and damage criterion:

φ p(σ ;qp) = 0 ; φd(σ ;qd) = 0 (3)

In equation (3) above,qp andqd are the stress-like variables
which control the evolution of the plasticity and damage
thresholds as a function of hardening variablesξ p andξ d,
respectively.

Model problem in 1D setting which we choose in order
to clearly illustrate the developments to follow considersa
simple quadratic form of strain energy and a linear isotropic
hardening with:

ψe(εe) = σεe� χe(σ)
with χe(σ) = 1

2
σE�1σ

ψd(εd ;D) = σεd � χd(σ ;D)
with χd(σ ;D) = 1

2
σDσ

Ξ p(ξ p) = 1
2

ξ pKpξ p

Ξ d(ξ d) = 1
2

ξ dKdξ d

φ p(σ ;qp) = jσ j� (σy�qp)
φd(σ ;qd) = jσ j� (σ f �qd)

(4)

In equations (4) above,E is Young’s modulus,Kp andKd are
plastic and damage hardening moduli, whereasσy andσ f are
yield and fracture limits, respectively. We note in passing
that no essential restrictions are introduced with 1D case,
and very much the same development is followed for 2D or
3D cases.

The total dissipation produced by this coupled damage-
plasticity model, which must remain non-negative, can be
written by appealing to the second principle of the thermo-
dynamics [11]:

0� Ḋ =σε̇ � ψ̇=σ̇(∂ χe

∂ σ
� εe)+ σ̇(∂ χd

∂ σ
� εd)+

σε̇ p � ∂ Ξ p

∂ ξ p
ξ̇ p| {z }Ḋ p

+ ∂ χd

∂ D
Ḋ� ∂ Ξ d

∂ ξ d
ξ̇ d| {z }Ḋd

(5)

The last statement leads to two possible interpretations:

1. Elastic process which is characterized by the frozen val-
ues of the internal variables witḣε p = 0, ξ̇ p = 0, Ḋ = 0
andξ̇ d = 0, which also implies that plastic and damage
dissipationsḊ p = 0 andḊd = 0. We thus obtain from
equations (5) the constitutive equations for the stress, the
definition of the damage strain as well as the hardening
variablesqp andqd according to:Ḋ = 0)εe = ∂ χe

∂ σ
= E�1σ

εd = ∂ χd

∂ σ
= Dσ

qp =�∂ Ξ p

∂ ξ p
=�Kpξ p

qd =�∂ Ξ d

∂ ξ d
=�Kdξ d

(6)

2. By assuming the last results to remain valid for the in-
elastic process, we can obtain the corresponding inter-
pretation of the inelastic dissipation for an inelastic pro-
cess where internal variables evolution takes place:

0< Ḋ = σε̇ p +qpξ̇ p| {z }Ḋ p

+σε̇d +qd ξ̇ d| {z }Ḋd

(7)

The only remaining hypothesis which is needed is the
one based on maximizing the dissipation in any such inelas-
tic process. The latter can be set as the corresponding con-
strained minimization problem and handled by the Lagrange
multiplier method [6] [19] according to:

min
φ p(σ ;qp)=0;φ d(σ ;qd)=0

[�D p(σ ;qp)�Dd(σ ;qd)℄)max
γ̇ p ;γ̇d

min8σ ;qp;qd
[L p(σ ;qp)+L d(σ ;qd)℄L p(σ ;qp) =�D p(σ ;qp)+ γ̇ p �φ p(σ ;qp)L d(σ ;qd) =�Dd(σ ;qd)+ γ̇d �φd(σ ;qd) (8)
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The Kuhn-Tucker optimality conditions for those kind
of minimization problem can then be written providing the
evolution equations for all the internal variables along with
the loading / unloading conditions for plasticity and damage
components:

0= ∂L p

∂ σ
=�ε̇ p + γ̇ p ∂ φ p

∂ σ
) ε̇ p = γ̇ p ∂ φ p

∂ σ

0= ∂L p

∂ qp
=�ξ̇ p + γ̇ p ∂ φ p

∂ qp
) ξ̇ p = γ̇ p ∂ φ p

∂ qp

0= ∂L p

∂ γ̇ p
= φ p

0= ∂L d

∂ σ
=�Ḋσ + γ̇d ∂ φd

∂ σ
) Ḋσ = γ̇d ∂ φd

∂ σ

0= ∂L d

∂ qd
=�ξ̇ d + γ̇d ∂ φd

∂ qd
) ξ̇ d = γ̇d ∂ φd

∂ qd

0= ∂L d

∂ γ̇d
= φd

(9)

By admitting that a negative value of yield and damage
criteria corresponds to the elastic process, we can write a
generalized form of the loading / unloading conditions with:

γ̇ p � 0 ; φ p(σ ;qp)� 0 ; γ̇ p�φ p(σ ;qp) = 0

γ̇d � 0 ; φd(σ ;qd)� 0 ; γ̇d�φd(σ ;qd) = 0
(10)

The plastic and damage multipliers remain equal to zero in
any elastic process and we easily show from equations (9)
that there is no change of internal variables. On the other
hand, the plastic and damage multipliers take positive val-
ues in an inelastic process with the corresponding change of
internal variables computed from equations (9). The values
of multipliers can be computed from the consistency condi-
tions imposing that the stress field remains admissible with
respect to the chosen yield and damage criteria:

γ̇ p > 0 ; φ p = 0 ; φ̇ p = 0) ∂ φ p

∂ σ
σ̇ + ∂ φ p

∂ qp
q̇p = 0) γ̇ p = ∂φ p

∂σ E(ε̇ � ε̇d)
∂φ p

∂σ E ∂φ p

∂σ � ∂φ p

∂qp
dqp

dξ p
∂φ p

∂qp

γ̇d > 0 ; φd = 0 ; φ̇d = 0) ∂ φd

∂ σ
σ̇ + ∂ φd

∂ qd
q̇d = 0) γ̇d = ∂φ d

∂σ D�1ε̇d

∂φ d

∂σ D�1 ∂φ d

∂σ � ∂φ d

∂qd
dqd

dξ d
∂φ d

∂qd

(11)

These values of plastic and damage multipliers can be
exploited to obtain the stress rate constitutive equations:

σ̇ =Cep(ε̇ � ε̇d)
Cep = E� ∂φ p

∂σ EE ∂φ p

∂σ
∂φ p

∂σ E ∂φ p

∂σ � ∂φ p

∂qp
dqp

dξ p
∂φ p

∂qp

= EKp

E +Kp

σ̇ =Ced ε̇d

Ced = D�1� ∂φ d

∂σ D�1D�1 ∂φ d

∂σ
∂φ d

∂σ D�1 ∂φ d

∂σ � ∂φ d

∂qd
dqd

dξ d
∂φ d

∂qd

= D�1Kd

D�1+Kd

(12)

These two equations can be combined in order to obtain
the elasto-plastic-damage tangent modulus leading to:

σ̇ =Cepd ε̇ ; Cepd = CepCed

Cep +Ced

Cepd = ED�1KpKd

ED�1Kp +ED�1Kd +EKpKd +D�1KpKd

(13)

where the explicit form for linear hardening case is also
recorded.

2.2 Hellinger-Reissner type of variational principle

With all the equations governing the evolution of internal
variables listed in previous section, we can obtain the gov-
erning equations for other state variables by appealing to the
Hellinger-Reissner type of variational principle; namely, for
the fixed values of the internal variables, we can seek the
stationarity condition for the energy functional:

ΠHR(u;σ ;ε p;D;ξ p;ξ d) =Z
Ω
[�χe(σ)� χd(σ ;D)+σ(du

dx
� ε p)℄dV �Z

Γ
u � t̄dA

(14)

where the last term corresponds to the external energy pro-
duced by the boundary traction forces.

At the fixed values of internal variables, one can obtain
from relation (14) above the corresponding variational equa-
tions:

0= Gu(u;σ ;ε p;D;ξ p;ξ d;w)= Z
Ω

dw
dx

σdV �Z
Γ

w � t̄dA

0= Gσ (u;σ ;ε p;D;ξ p;ξ d;τ)= Z
Ω

τ(du
dx

� ε p�Dσ �E�1σ)dV

(15)

wherew andτ are, respectively, the virtual displacement and
virtual stress fields. It is easy to see that the Euler-Lagrange
equations corresponding to(15)1 is nothing else but the lo-
cal equilibrium,dσ

dx = 0, accompanied by the natural bound-
ary conditionσ �njΓ , whereas the same kind of equation for
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formation into elastic, plastic and damage component,du

dx =
E�1σ + ε p +Dσ .

We seek an approximate solution to equations (15) by
using the finite element method [21]. To that end, we choose
the standard isoparametric interpolations for the displace-
ment field along with the stress field representation discon-
tinuous from element to element:

uh =[
Ω e

Na(x)da ; σ hjΩ e = Sbβb

wh =[
Ω e

Na(x)ca ; τhjΩ e = Sbγb

(16)

We indicate in (16) that the same kind of interpolations are
chosen for real and virtual fields as the optimal choice for
this kind of problems [6] [21]. With these approximations
on hand we can write the discrete form of the variational
equations in (15):

0= Gh
u =∑

a

ca(∑
b

Z
Ω e

BT
a SbdV �βb�Z

Γ e
Nat̄dA)

0= Gh
σ =∑

b

γb(∑
a

Z
Ω e

ST
b BadV �da�∑

c

Z
Ω e

ST
b E�1ScdV �βc�∑

c

Z
Ω e

ST
b DScdV �βc�Z

Ω e
ST

b ε pdV )
By considering that the virtual fields interpolation pa-

rameters can be picked arbitrarily we obtain from (15) the
discrete form of the equilibrium equations which we con-
structed by the finite element assemblyAnel

e=1 of the elements
contributions:

Anel

e=1

�
0 FeT

Fe �(HE;e +HD;e
n+1

)��de
n+1

β e
n+1

�= Anel

e=1

�
fe
n+1

ep;e
n+1

�
(18)

where

Fe = Z
Ω e

ST BdV ; fe
n+1 = Z

Γ e
NT t̄n+1dA

HE;e = Z
Ω e

ST E�1SdV ; HD;e
n+1 = ZΩ e

ST Dn+1SdV

ep;e
n+1 = ZΩ e

ST ε p
n+1dV

(19)

We have indicated in (18) above that the solution to the
equilibrium problem is sought at a given pseudo-time value
tn+1 of the imposed loading program withdn+1 = d(tn+1) and
βn+1 = β(tn+1). The main source of nonlinearity in this set of
equations pertains to the corresponding value of the internal
variables for plasticity and damage defined byε p

n+1
andDn+1

respectively. As shown in the next section, the latter can be
computed by incremental analysis with no need to iterate in
each increment.

3 Noniterative solution to local problem

3.1 Coupled damage-plasticity internal variable
computations

The local problem of plastic and damage flow computation,
yet referred as the central problem of computational inelas-
ticity, is solved by an incremental procedure. In each incre-
ment we employ the implicit Euler scheme to integrate the
model evolution equations in (9) to obtain:

Local problem of internal variables computation

Given: β trial;(i)
n+1

;ε p
n ;Dn;ξ p

n ;ξ d
n

Find : ε p
n+1

;Dn+1;ξ p
n+1

;ξ d
n+1

Such that :γ̇ p
n+1

�φ p
n+1

= 0 ; γ̇d
n+1�φd

n+1 = 0
(20)

with the last condition which is needed in order to guarantee
the admissibility of the computed stress in the sense of the
chosen criteria. More precisely, we first start by integrating
the evolution equations in (9) by the implicit Euler scheme,
which leads to:

ε p
n+1 = ε p

n + γ p
n+1

∂ φ p
n+1

∂ σn+1

ξ p
n+1 = ξ p

n + γ p
n+1

∂ φ p
n+1

∂ qp
n+1

Dn+1σn+1 = Dnσn+1+ γd
n+1

∂ φd
n+1

∂ σn+1

ξ d
n+1 = ξ d

n + γd
n+1

∂ φd
n+1

∂ qd
n+1

(21)

In any of those two equations we do not know the value
of γ p

n+1
norγd

n+1 and hence we start with the elastic trial state,

which considers the trial values of plasticityγ p;trial
n+1

= 0 and

damage multipliersγd;trial
n+1

= 0, which implies that the inter-
nal variables will not change from the previous increment.
This allows us to compute the trial values of stress or rather
its interpolation parametersβ trial;(i)

n+1
according to:

β e;trial;(i)
n+1 = (HE;e +HD;e

n )�1(Fede;(i)
n+1�ep;e

n )) σ trial;(i)
n+1 = Sβ trial;(i)

n+1

(22)

The corresponding trial values of the damage and yield
criteria can then be written:

φ p;trial
n+1 = jσ trial;(i)

n+1 j� (σy�qp
n)

φd;trial
n+1 = jσ trial;(i)

n+1 j� (σ f �qd
n) (23)

If both of these trial values are negative, the elastic trialstep
is confirmed as the good guess; if only one of them is posi-
tive, the problem remains of standard form [6] [18], and the
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most interesting is the case where both trial values are pos-
itive. The latter one will further be elaborated upon. To that
end, we first make use of the auxiliary result:

σ trial
n+1 = (E�1+Dn)�1(ε(i)

n+1� ε p
n )

σn+1 = (E�1+Dn+1)�1(ε(i)
n+1� ε p

n+1)= σ trial
n+1 � (E�1+Dn)�1(γ p

n+1

∂ φ p
n+1

∂ σn+1
+ γd

n+1
∂ φd

n+1

∂ σn+1
)
(24)

The last result provides the justification for the stress pa-
rameters update with:

βn+1 = β e;trial
n+1 � (HE;e +HD;e

n )�1(gp;e
n+1+gd;e

n+1)
gp;e

n+1 = ZΩ e
ST γ p

n+1

∂ φ p
n+1

∂ σn+1
dV

gd;e
n+1 = ZΩ e

ST γd
n+1

∂ φd
n+1

∂ σn+1
dV

(25)

Moreover, the same auxiliary result can be exploited to
obtain the values of the multipliers by enforcing the yield
and damage criteria locally at each Gauss quadrature point,
which allows us to write:

0= φ p
n+1 =

φ p;trial
n+1 � [(E�1+Dn)�1+Kp℄γ p

n+1� (E�1+Dn)�1γ p
n+1

0= φd
n+1 =

φd;trial
n+1 � (E�1+Dn)�1γ p

n+1� [(E�1+Dn)�1+Kd ℄γd
n+1

(26)

The latter reduces to a set of two equations with the mul-
tipliers as unknowns, which can be solved in a close form:�

γ p
n+1

γd
n+1

�=� (E�1+Dn)�1+Kp (E�1+Dn)�1(E�1+Dn)�1 (E�1+Dn)�1+Kd

��1�φ p;trial
n+1

φd;trial
n+1

�
(27)

With this computation of multipliers we can easily carry out
the corresponding updates of internal variables in (21).

3.2 Softening response computation

The proposed damage-plasticity model can be further en-
hanced in order to handle the softening response without any
mesh dependency. In that aspect we will follow the develop-
ment presented in [5] for plasticity model. The key ingredi-
ent pertains to a modification of the strain field which allows
a correct representation of the total strain field:

ε = dū
dx

+ G̃α| {z }
ε̄

+ δx̄α|{z}
¯̄ε

(28)

In (28) above,¯̄ε = δx̄α is the corresponding localized
strain representation by Dirac function positioned at ¯x, α
is the localized strain parameter, whereasG̃ is the function
which defines the influence zone of the discontinuity typi-
cally limited to a single finite element. The latter allows to
write:

t =�Z
le

G̃σdx (29)

wheret is the traction at discontinuity.
We also ought to modify the strain energy in (2) in order

to account properly for the fracture energy which is needed
to completely break the bond between two parts of the body:

ψ(�) = ψ̄(�)+δx̄
¯̄ψ( ¯̄ξ ) (30)

where ψ̄(�) is already defined in (2). The final modifica-
tion concerns the corresponding criterion defining the stress
valueσu at which the bond starts breaking, as well as the
softening law:

¯̄φ(t; ¯̄q) = jtj� (σu� ¯̄q( ¯̄ξ ))� 0

¯̄q =� ¯̄K ¯̄ξ ; G f = σ2
u

2 ¯̄K

(31)

With the remaining ingredients of the softening model
obtained by the principle of maximum dissipation, we can
carry out the computation in the very much same manner
as already presented for the coupled model. The only differ-
ence concerns computing the trial value of the driving trac-
tion at discontinuity:

t trial
n+1 =�Z

le
G̃Sβ (i)

n+1| {z }
σ (i)

n+1

dx (32)

where the corresponding stress parameter values are furnished
by the coupled damage-plasticity model as described in this
section. A more detailed description of dealing with soften-
ing phenomena for 1D and 2D cases is presented previously
in [5].

4 Finite element interpolations

At this stage we can turn to the global computation phase,
which should provide the new iterative value of the trial
stress, or rather the stress parametersβ trial;(n+1)

n+1
. The cor-

responding set of equations to be solved can be written as:

r =0BBBBBB�Fede;(i+1)
n+1

� (HE;e +HD;e
n )β e

n+1�ep;e
n �gp;e

n+1
�gd;e

n+1
φ p

n+1�ξ p
n+1

+ξ p
n + γ p

n+1

∂φ p
n+1

∂qp
n+1

φd
n+1�ξ d

n+1+ξ d
n + γd

n+1
∂φ d

n+1

∂qd
n+1

1CCCCCCA= 0
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(33)

By taking into account that the solution of (33) is sought
at the known values of multipliers and internal variables,
we can further linearize this system and perform the static
condensation [3]. The linearized form of the remaining first
equation can be written as:

0= Lin[Gσ ℄ = Gσ j(i)n+1+DGσ �∆β (i)
n+1

β (i+1)
n+1 = β (i)

n+1+∆β (i)
n+1

(34)

with

DGσ =�[HE;e +HD;e
n +Gp;e

n+1+Gd;e
n+1℄

Gp;e
n+1 = ∂gp;e

n+1

∂ βn+1
= Z

Ω e
ST [γ p

n+1

∂ 2φ p
n+1

∂ σ2
n+1

�
∂ φ p

n+1

∂ σn+1
(∂ φ p

n+1

∂ qp
n+1

dqp
n+1

dξ p
n+1

∂ φ p
n+1

∂ qp
n+1

)�1
∂ φ p

n+1

∂ σn+1
℄SdV

Gd;e
n+1 = ∂gd;e

n+1

∂ βn+1
= Z

Ω e
ST [γd

n+1
∂ 2φd

n+1

∂ σ2
n+1

�
∂ φd

n+1

∂ σn+1
(∂ φd

n+1

∂ qd
n+1

dqd
n+1

dξ d
n+1

∂ φd
n+1

∂ qd
n+1

)�1 ∂ φd
n+1

∂ σn+1
℄SdV

(35)

We note that all the results in (35) are computed with the
corresponding admissible values of internal variables, which
are obtained for the given best iterative guess on displace-
ment and stress parameters. The improved parameters values
can be obtained, if needed, by solving the linearized form of
equilibrium equations in (18):

Anel
e=1

�
0 FeT

Fe �(HE;e +HD;e
n +Gp;e

n+1
+Gd;e

n+1
)�(∆de;(i)

n+1
∆β e;(i)

n+1

)=( fe;(i)
n+1�ge;(i)
n+1

)
de;(i+1)

n+1 = de;(i)
n+1+∆de;(i)

n+1 )
ge;(i)

n+1 = Fede;(i)
n+1� (HE;e +HD;e

n )β e;(i)
n+1 �ee;p

n �gp;e
n+1�gd;e

n+1

(36)

The last equation in (36) above can be solved at the ele-
ment level which allows to reduce the system to the standard
form and to obtain the element tangent stiffness matrix:

Anel
e=1
fFeT (HE;e +HD;e

n +Gp;e
n+1+Gd;e

n+1)�1Fe| {z }
K e;(i)

n+1

∆de;(i)
n+1 =

fe
n+1�FeT (HE;e +HD;e

n +Gp;e
n+1+Gd;e

n+1)�1ge;(i)
n+1| {z }

f̂
e;(i)
n+1

g (37)

It is important to note that the tangent stiffness matrix
of this kind has been computed without any local iteration
(which is in sharp contrast with displacement-type formu-
lation which requires a local iterative procedure to compute
the stress).

4.1 1D case with 2-node truss-bar finite element
interpolations

A very clear illustration of the result in (37) can be given for
the simplest choice of hybrid stress interpolations for a 2-
nodes truss bar element where displacement field is a linear
polynomial and the stress field a constant:

uh(x)jΩ e = N1(x)de
1+N2(x)de

2

N1(x) = 1� x
l

; N2(x) = x
l

β h(x)jΩ e = S(x)β e ; S(x) = 1

(38)

In this case we obtain the following results (valid for unit
cross-sectionA = 1):

Fe = Z
le
(1)[�1

l
1
l
℄dx = [�1 1℄

HE;e = Z
le
(1) 1

E
(1)dx = le

E

HD;e
n = Z

le
(1)Dn(1)dx = le

1
Dn

Gp;e
n+1 = Z

le
(1) 1

Kp
(1)dx = le

Kp

Gd;e
n+1 = Z

le
(1) 1

Kd
(1)dx = le

Kd

ep;e
n = Z

le
(1)ε p

n dx

gp;e
n+1 = Z

le
(1)γ p

n+1

φ p
n+1

σn+1
dx

gd;e
n+1 = Z

le
(1)γd

n+1
φd

n+1

σn+1
dx

(39)

With these results on hand the tangent stiffness matrix in
(37) can be explicitly written as:

K e
n+1 = Cepd

n+1

le

�
1 �1�1 1

�
Cepd

n+1 = ( 1
E
+ 1

D�1
n

+ 1
Kp

+ 1
Kd

)�1= ED�1
n KpKd

EKpKd +ED�1
n Kp +ED�1

n Kd +D�1
n KpKd

(40)

We note that the tangent elasto-plastic-damage modulus
in discrete problem computed in (40) is the same as the cor-
responding one for the continuum problem in (13). This kind
of conclusion holds only for 1D case.

4.2 2D case with 4-node hybrid stress Pian-Sumihara finite
element interpolations

The described formulation was implemented according to
displacement and stress interpolation proposed by Pian and
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Sumihara (e.g. see [14]). In this case, the displacement field
interpolation is written in terms of natural coordinatesη1
andη2 as a bilinear polynomial expression, which is iden-
tical to the standard 4-node isoparametric element (e.g. see
[21]), i.e.

Na(η1;η2) = 1
4
(1+ηa1η1)(1+ηa2η2); (41)

whereηa1;ηa2 are the corresponding nodal value of natural
coordinates (equal to�1). On the other hand, the stress field
interpolation in natural coordinates no longer corresponds to
the one provided by a 4-node isoparametric element, and can
be written as:

σ11 = λ1+λ2 η2

σ22 = λ3+λ4 η1

σ12 = λ5: (42)

This kind of stress interpolation provides the element with
nearly optimal performance in bending dominated problems.
Moreover, the choice of the shape functions in (42) implies
that equilibrium equations are directly verified in the parent
domain, i.e.divη σ = 0 for each set of parametersλα .

Next we transform the interpolation into the global co-
ordinate system,(x1;x2). In order to preserve the statical ad-
missibility (divη σ = 0! divx σ = 0), the transformation
has to be of the form (e.g. see [21]),

σ(x1;x2) = T (η1;η2)σ(η1;η2)T T (η1;η2): (43)

If, in top of that, we demand that the constant stress field
is properly transformed, the transformation tensor,T , has to
be constant,T (η1;η2) � T . The most efficient choice has
proven to be

Ti j = Ji j(η1 = 0;η2 = 0) (44)

where

Ji j(η1;η2) := ∂ xi

∂ η j
(45)

is the jacobian tensor. Therefore, the stress can finally be
expressed as,

σ = S λ ; (46)

where

S = T

0�1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

1AT T : (47)

The remaining part of computations follows closely the
one presented for 1D case, with consistent matrix which
ought to be computed by inversion.

5 Numerical Examples

In this section we present several illustrative numerical sim-
ulations, which consider the typical response curves for con-
crete in compression and in tension, as well as the response
of porous metals. The implementation of the proposed model
and all the computations are carried out with the general pur-
pose finite element program FEAP [20].

5.1 Localization of the strain in a simple traction test

The first example presents the response of a bar computed
during a single cycle of loading and unloading, as described
in Figure 1a. The finite element for the bar is composed
of three 2-nodes truss-bar elements with unit cross-section
and unit length. The material model for the bar is the cou-
pled damage-plasticity proposed in this work. The model
can handle both the strain hardening and the softening re-
sponse phase. The latter starts at the ultimate stress valueof
σu = 30MPa, chosen for all the elements except the one in
the middle where a slightly reduced ultimate stress value is
set toσu = 29:9MPa. This choice is made in order to control
the section where the strain will localize, here attributedto
the element in the middle, and turn this kind of bifurcation
problem into a limit load problem.

As shown in Figure 1b, the plasticity component is ac-
tivated first at point A, with the damage model following
shortly and activated at point B. Since then until ultimate
stress both plasticity and damage components are active and
coupled as described previously. At point C, the ultimate
stress is reached and yet another inelastic mechanism of the
strain softening process is activated within the weakened
sectionΓ in the middle of the bar. Following that point the
localized deformation̄ε will occur only in the middle of the
bar. The localized strain leads to stress reduction and forces
the rest of the bar to unload with inelastic strainsε p andεd

remaining fixed (see Figure 1c).
We assume herein that the localized strain is equivalent

to a plasticity-like mechanism, which allows us to compute
the irreversible localized strain value at sectionΓ , when the
stress fully unloads to zero; namely, we obtainε = ε p + ¯̄ε in
sectionΓ andε = ε p in any other section. This plasticity-
like mechanism for strain softening can be replaced by a
damage-like model, which would apply the localized strain
disappearance upon the stress unloading. Whatever is our
choice made for the softening mechanism, the computed re-
sult will not depend on the mesh grading.

5.2 Cyclic behavior of concrete under compression

The constitutive model presented herein can also represent
the behavior of concrete under cyclic loading. Indeed, in Fig-
ure 1b, the portion AB of the curve represent the plastic be-
havior of the material before the appearance of micro cracks
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Fig. 1 a) Description of the bar; b) Response of element 2; c) Response of elements 1 and 3

at point B. The portion BC represents the fracture process
zone (FPZ) which is assumed to develop in the whole bar.
In the FPZ,ε = εe + ε p + εd with ε p the irreversible part
of the deformation due to the fact that micro cracks do not
necessarily close entirely upon unloading because some par-
ticles may have penetrate in them. When the ultimate stress
σu is reached, strain diminishes in the whole bar except in
sections where macro cracks appear. Under tension, the lo-
calized strain parameterα clearly is the size of the crack
opening perpendicular to the loading direction. Under com-
pression, macro cracks develop parallel to the loading direc-
tion and the physical interpretation ofα is somewhat less
straightforward to provide than for the localized failure in
tension.

To represent local hysteretic phenomena of concrete be-
havior under cyclic loading in compression (see Figure 2a),
we enrich the continuum plasticity model presented in the
previous sections with a linear kinematic hardening law. For
that purpose, we introduce the internal variableκ p, along
with its conjugate state variableτ p. The strain energy can
then be written in a slightly generalized form with respect to
(2):

ψ(u;σ ;ε p;D;ξ p;ξ d;κ p) =
ψe(εe)+ψd(εd ;D)+Ξ p(ξ p)+Ξ d(ξ d)+λ p(κ p)) τ p =�dΛ p

dκ p
=�H pκ p

(48)

The yield criterion is also modified from (4) in order to ac-
count for the elastic domain translation:

φ p(σ ;qp;τ p) = jσ + τ pj� (σy�qp)� 0 (49)

If the imposed loading program considers only a com-
pression or a tensile loading (without unloading), the formu-
lation and implementation of such a modified model remain

analogous to those of the proposed model without kinematic
hardening.

By introducing the kinematic hardening law in the plas-
ticity model, we can better represent some local hysteretic
phenomena that occur in concrete and generally associated
to sliding in cracks as shown in Figure 2b plotted with the
following parameters:E =30GPa, σy =8MPa, σ f =21MPa,

σu = 28MPa, H p = 40GPa, Kd = 8GPa and ¯̄K =�1:6GPa.

5.3 Criteria for porous metals in tension

The porous metal coupled model was built along the lines of
the pioneering work of Gurson ([1]), however with impor-
tant difference regarding the present model, which has the
ability to describe the closing of pores at unloading. Postu-
lating that it is only spherical part of stress which determines
the porosity, the damage criterion is given as

φd(σ ;qd) = htr(σ)i� (σd
f �qd); (50)

wheretr(σ) denotes the trace of the tensorσ and< �> the
Macauley brackets:< x >=� x ;x� 0

0 ;x < 0 : (51)

Here we neglect the possibility that the material can be dam-
aged in compression. To model the plasticity of metal ma-
trix, we used the von Mises criterion:

φ p(σ ;qp) =pdev(σ) : dev(σ)� (σ p
y �qp); (52)

wheredev(σ) denotes the deviatoric part of the tensorσ ,
dev(σ)� σ � 1

3tr(σ).
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Fig. 2 a) Experimental result for cyclic behavior of concrete in compression (from [15]); b) Numerical result for cyclic behavior of concrete in
compression by using the proposed coupled damage-plasticity model

From the choice of the criteria it follows that the evo-
lution of damage variables depends only upon the spherical
part of the stress tensor and the evolution of plastic variables
upon its deviatoric part. Hence, the two nonlinear phenom-
ena appear uncoupled in strain space. This is the direct con-
sequence of the initial physical presumption that the open-
ing of the micro-cracks is due to positive spherical part of
the stress and sliding of crystal planes due to the stress devi-
ator. The former corresponding to damage and the latter to
plasticity.

Finally, we use an exponential hardening law for either
phenomenon, plasticity and damage,

qp(ξ p) = (σ p
y �σ p

∞)(1� e�bpξ p)
qd(ξ d) = (σ d

f �σ d
∞)(1� e�bdξ d ); (53)

whereσ p
∞ and σ d

∞ are saturation values of stress, whereas
bp andbd are the material parameters governing the rate of
saturation.

The model is illustrated on an example of a rectangular
plate with a circular hole in the middle, submitted to a simple
tension test. By exploiting symmetry conditions, only one
quarter of the model is used in the analysis; See Figure 3.

The material properties taken in the calculation were the
following; (i) for elasticity: Young’s modulus,E = 240GPa
and the shear modulus,µ = 92GPa; (ii) for plasticity: yield
stress,σy = 170MPa, hardening limit stress,σ p

∞ = 210MPa
and saturation parameter,bp = 50; (iii) for damage: fracture
stress,σ f = 170MPa, hardening limit stress,σ d

∞ = 210MPa
and saturation parameter,bd = 50.

In Figures 3 and 4 we show how the spreading of plastif-
ied and damaged regions will change with the other phe-
nomenon being activated. Different stages of activation of
either plasticity or damage models are illustrated by con-
tours of hardening variablesξ p andξ d, respectively.

We observe the complete disappearance of shear band
(Figure 4), a typical response of metals or alloys with von
Mises criterion, when damage is also taken into account. Be-
sides, we notice that in the case where both phenomena are
activated either region is reduced to a smaller volume, but
the differences between the maximum and minimum value
of ξ p andξ d is larger. With other words, the phenomena are,
when activated simultaneously, more localized.

6 Conclusion

The coupled damage-plasticity model proposed in this work
goes beyond the minimum requirement we need for any such
model of representing the irreversible deformation and change
of elastic response, in that it also includes the strain localiza-
tion softening phase. Any of the basic mechanisms of inelas-
tic behavior is governed by an independent criterion, which
specifies at what stage the corresponding evolution would
start.

We have presented the governing equations for such model,
which can be of interest for number of problems dealing with
cyclic constitutive behavior. We have also shown that the
best manner to provide the robust numerical implementation
for such a model relies upon the direct stress interpolation.
The latter provides the possibility to avoid any local iterative
loop and much improves the model robustness.

It is clear that a constitutive model of this kind can be
very useful for representing a number of experimentally ob-
served inelastic phenomena including failure. However, the
choice of model parameters, or rather the sequence of ac-
tivation of each mechanism, ought to identified with care.
This question is currently studied for a simpler constitutive
model of anisotropic damage, with respect to modern testing
procedures under heterogeneous stress field (see [22]); how
to generalized these developments to current model will be
examined in our future work.
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Fig. 3 a) One quarter of the specimen: geometry and boundary conditions; b) Plasticity model: contours of the plastic hardening variable ξ p

showing typical shear bands.
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Fig. 4 Coupled damage-plasticity model: a) contours of the plastic hardening variable ξ p, and b) contours of the damage hardening variable
ξ d .
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