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Abstract 

We theoretically investigate the non-radiative heat transfer between two photonic crystals separated by a small 

gap in non-equilibrium thermal situation. We predict that the surface Bloch states coupling supported by these 

media can make heat exchanges larger than those measured at the same separation distance between two massive 

homogeneous materials made with the elementary components of photonic crystals. These results could find 

broad applications in near-field technologies. 
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Classical radiometry theory1 predicts that the net flux exchanged between two hot bodies cannot 

exceed the value exchanged between two perfect blackbodies. At subwavelength distances, the 

situation radically changes and this theory fails to describe heat transfers2,3 due to the presence of non-

radiative (non-propagative) electromagnetic modes which coexist with the radiative (propagative) 

ones. In these conditions, evanescent modes localized close to the surface become the main 

contributors to energy transfer so that it becomes possible to exceed the far field limit 4,5. In particular, 

when two massive materials support resonantly coupled surface modes such as surface polaritons, heat 

transfer is able to surpass by several orders of magnitude the limit predicted by the Planck theory. This 

singular behaviour has opened possibilities for the development of innovative near-field technologies 

such as near-field thermophotovoltaïc conversion6, plasmon assisted nanophotolitography7 or near-

field spectroscopy8. 

Recently this subwavelength heat transfer theory has also been applied to massive materials 

coated by thin films9-10 to be finally extended to arbitrary layered materials11. In the present Letter, we 

apply this theoretical framework to investigate near-field heat exchanges between some specific 

multilayered media, the periodic layered materials, also called photonic crystals (PCs). We show that 

near-field heat exchanges between two PCs in non-equibrium thermal situation are completely driven 

by the surface Bloch waves coupling and can be controlled by an appropriate design of PCs. 

Let us first consider the system described in Fig.1 which is composed of two arbitrary 

multilayered materials of total thickness 





1M

1i
iL de  and 




N

1Mi
iR de  deposed on two transparent 

(i.e. non-emitting) massive materials. These coated materials are separated by a vacuum gap  of 

thickness Md . We also suppose, for the seek of simplicity, that all involved materials are nonmagnetic 

and have a frequency dependent complex dielectric functions of the form )(i-)()( kkk    

with 0k    for N,...,1k  . In addition, we assume that the left and right media are maintained in 

nonequilibrium thermal situation with two fictive thermal baths of temperatures LT  and RT , 

respectively. Due to the presence of thermal fluctuations within these media, the local charges inside 
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any layer k randomly oscillate to give rise, in other layers j, to electric and magnetic fields jkE  and 

jkH  . The corresponding energy flux in layer j is given by the Poynting vector  

 ),(),(Re2),(   rHrErS *
jkjkjk .                                                                                    (1) 

Since, the energy absorbed by a body is equal to the total flux which crosses its boundary, the net 

radiative flux exchanged between the left and right coating reads in terms of total Poynting vector  

),(),(
k

   rSrS jkj  (the summation operates over all random sources which effectively 

contribute to the energy balance) 

  z11-MN1M eSSSS .),0(),e(-),)dee((-),)de(()( LMRLMLLR  
 .  (2) 

In this expression   denotes the statistical averaging over all realizations of random sources and ze is 

the unit vector normal to each layer. To calculate each term of this relation, we proceed as 

followed. Due to the linearity of Maxwell equations12,13, the total electric field  
k

jkj EE and 

magnetic field  
k

jkj HH in layer j  can be related to the local fluctuating currents ),(rjk s  by 

the following expressions 

) (rEj , -  
k V

s0 ),(),(dri ∫ ss, rjrrG k
jk
E ,                                                                           (3-a) 

 
k V

s ),(),(dr∫ ss,, rjrrG) (rH k
jk
Hj

,                                                                                        (3-b) 

where ),( s,rrG jk
E  and ),( s,rrG jk

H denote the electric and magnetic dyadic Green tensors 

between the source layer and the observation layer.  It follows from these expressions that, the ith  

component of total Poynting vector inside layer j writes 









    rdrdrrrrGrrGerS jk
H

jk
Eij

k V V

*
kk

*

mlilm0 ),(j),(j),(),(iRe2.),( ,,    (4) 
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where the curl operator has been expressed in term of Levi-Civitas tensor  . Here we have adopted 

the Einstein summation convention over the repeated index  ,  , l  and  m which denote the Green 

tensors components.  

According to the fluctuation dissipation theorem14, the fluctuating current cross correlation function 

reads 

)-(
)T,()(

),(j),(j R,Lk0*
kk rrrr 



 
  ,                                                                     (5) 

with ]1-)Tk//[exp(≡)T,( R,LBR,L    the mean energy of a Planck oscillator at the 

equilibrium temperature LT  or RT  depending on the considered coating. Then, using this expression 

and the expansion of Green tensors in terms of the intracavity fields11 the net flux exchanged between 

both media can be recast into the simple form  
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                 (6) 

where 
Lr  and 

Rr are the reflexion coefficients the cavity sides and ″i′
MMM   is the normal 

component of wavector in this layer (by convention 0″
M  ). The first integral denotes the 

contribution of propagative modes (i.e. c/k //  ) while the second one is that of non-propagative 

ones. 

Let us now pay our attention on the non-propagative exchanges between two periodic layered 

media made with high contrast index materials, the so called photonic crystals15. To investigate 

qualitatively and quantitatively these exchanges, it is convenient to introduce the monochromatic non-

radiative heat transfer coefficient  

c/kRL

LR

T→T
R

//
RL T-T

)(
lim≡)T;(h




                                                                                                           (7) 
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defined as the ratio of net radiative flux exchanged over the coating temperature difference when this 

discrepancy tends to zero. For concreteness, we first consider here two quarter-wave coatings made 

with alternating layers of transparent material and lossy dielectric with thickness m1d1   and 

m66.1d 2   and dielectric constants 25.61   and i3.025.22  , respectively. We also assume 

that the number of period is finite but can be arbitrary large. In infinite periodic structures, we know 

that Bloch waves are eigenstates. The dispersion relations for these modes for both polarizations are 

given by16  

)dsin()dsin()dcos()dcos()Kcos( 2211q2211z                                                 (8) 

where 
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and 21 dd   is the period of the structure. At any frequency  , a real solution for zK  represents 

a propagating Bloch state. On the other hand, when 1)Kcos( z  , the Bloch states are evanescent 

waves.  These waves belong to the so-called forbidden bands of the periodic medium. The collection 

of all Bloch states in the //k  plane defines the band structure of material. In Fig. 2-a, band 

structure of Bloch modes in a quarter-wave photonic crystal is displayed in the mid-infrared region 

around the Wien’s frequency /.ω Tk8212= BW  at 300K. The straight line represents the light line 

in vacuum and the grey bands frame the allowed zones. In a finite photonic crystal all confined Bloch 

modes are discrete modes. The local density of state (LDOS) calculated from the reflection coefficient 

of crystal17 (Fig. 2-b and 2-c) shows that these modes are evanescent in the surrounding vacuum and 

their number increases with the period number of PC.  

   Heat transfer coefficients between these quarter waves PCs and several other coupled 

systems made with identical PCs are plotted in Fig. 3-a  at different frequencies. They show that the 

transfer is maximal in the spectral region where the surface Bloch waves have been highlighted. 

Moreover, we note in Fig. 3-b, that the heat transfer coefficient exhibit a maximum at a certain 
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distance  contrary with what is traditionally observed (Fig. 3-c) between two massive materials. The 

origin of this behaviour still remains an open question. However, one can speculate that it is the result 

of complex interactions between the different Bloch modes throughout the vacuum gap. This suggests 

that the heat transfer might be optimized by an appropriate design of PCs. On the other hand and more 

interestingly, we see in Figs. 3-b,c  that the magnitude of heat transfer can surpass the values observed 

between two non structured massive materials at the same separation distance. As confirmed in Fig. 3-

a, this original behaviour is due to the presence of several surface modes which couple and create 

channels for heat exchanges between both materials. As the number of mode increases, energy 

exchange also is magnified. Finally, due to the confinement of surface Bloch waves close to the light 

line ( c///  ), we see in Figs. 3-b,c that the enhancement of transfer beyond the blackbody limit 

can be observed at longer separation distances than between two massive materials. Moreover, this 

behaviour has been observed simultaneously for both polarization states [only s-polarisation is plotted 

in Figs. 3]. 

In summary, we have seen that the near-field heat transfers between PCs are driven by a 

surface Bloch waves coupling. In comparison with massive materials, we have shown that these 

confined modes allow magnifying heat exchanges by a factor of three in both polarization states.  In 

addition, transfer enhancement takes place at separations distances ten times larger than usually. 

Consequently, PCs-based coatings seem promising structures to improve the performance of numerous 

near-field technologies such as the near-field thermophotovoltaïc energy conversion or the near-field 

thermophotolitography.  
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Captions List 

 

 

 

 Fig.1 Structure consisting of plane layers made of absorbing materials coating deposited on semi-

infinite transparent materials. These textured materials are separated by a vacuum gap and are 

maintained in nonequilibrium thermal situation at temperatures TL and TR , respectively .   

 

 

Fig.2 (a) Band structure of a quarter-wave infinite photonic crystal ( 25.61  , i3.025.22   and 

m1d1  , m66,1d 2   ) for TE waves. White zones are forbidden bands in which 1)Kcos( z  . 

The black straight line delimits the light cone in vacuum. (b) LDOS of evanescent modes at 

nm50z  from the surface plotted in the //k   plane for a quarter-wave photonic crystal with 5 

periods and 15 periods (c). The white triangular zone which corresponds to propagative modes is not 

detailed.  

 

Fig.3 (a) Monochromatic non-radiative heat transfer coefficient for TE waves (at 300 K) between two 

photonic crystals (case I) made with 15 periods of unit cell with 161  , i3.025.22   

m1,1d1   and m55,0d 2   and (case II) between two quarter-wave photonic crystals  made  with 

5 and 15 periods ( 25.61  , i3.025.22  ) respectively and for a 100 nm separation distance.  

The dashed curve describes exchanges between two massive materials of dielectric constant 

i3.025.22   at the same separation distance. Heat transfer coefficient in case I (b) and between 

two massive materials (c) vs the separation distance.  
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