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INVERSE SCATTERING AT FIXED ENERGY ON SURFACES WITH

EUCLIDEAN ENDS

COLIN GUILLARMOU, MIKKO SALO, AND LEO TZOU

Abstract. On a fixed Riemann surface (M0, g0) with N Euclidean ends and genus g, we
show that, under a topological condition, the scattering matrix SV (λ) at frequency λ > 0

for the operator ∆ + V determines the potential V if V ∈ C1,α(M0) ∩ e−γd(·,z0)
j

L∞(M0)
for all γ > 0 and for some j ∈ {1, 2}, where d(z, z0) denotes the distance from z to a fixed
point z0 ∈ M0. The topological condition is given by N ≥ max(2g + 1, 2) for j = 1 and by
N ≥ g+1 if j = 2. In R

2 this implies that the operator SV (λ) determines any C1,α potential

V such that V (z) = O(e−γ|z|2) for all γ > 0.

1. Introduction

The purpose of this paper is to prove an inverse scattering result at fixed frequency λ > 0
in dimension 2. The typical question one can ask is to show that the scattering matrix SV (λ)
for the Schrödinger operator ∆+V determines the potential. This is known to be false if V is
only assumed to be Schwartz, by the example of Grinevich-Novikov [6], but it is also known

to be true for exponentially decaying potentials (i.e. V ∈ e−γ|z|L∞(R2) for some γ > 0) with
norm smaller than a constant depending on the frequency λ, see Novikov [15]. For other
partial results we refer to [2], [10], [19], [20], [21]. The determinacy of V from SV (λ) when
V is compactly supported, without any smallness assumption on the norm, follows from the
recent work of Bukhgeim [1] on the inverse boundary problem after a standard reduction to
the Dirichlet-to-Neumann operator on a large sphere (see [25] for this reduction).

In dimensions n ≥ 3, it is proved in Novikov [16] (see also [3] for the case of magnetic
Schrödinger operators) that the scattering matrix at a fixed frequency λ determines an expo-
nentially decaying potential. When V is compactly supported this also follows directly from
the result by Sylvester-Uhlmann [22] on the inverse boundary problem, by reducing to the
Dirichlet-to-Neumann operator on a large sphere. Melrose [14] gave a direct proof of the last
result based on the methods of [22], and this proof was extended to exponentially decaying
potentials in [26] and to the magnetic case in [17]. In the geometric scattering setting, [11, 12]
reconstruct the asymptotic expansion of a potential or metrics from the scattering operator
at fixed frequency on asymptotically Euclidean/hyperbolic manifolds. Further results of this
type are given in [27, 28].

The method for proving the determinacy of V from SV (λ) in [14, 26] is based on the
construction of complex geometric optics solutions u(z) = eρ.z(1+ r(ρ, z)) of (∆+V −λ2)u =
0 with ρ ∈ C

n, z ∈ R
n, and the density of the oscillating scattering solutions usc(z) =∫

Sn−1 ΦV (λ, z, ω)f(ω)dω within those complex geometric optics solutions, where ΦV (λ, z, ω) =

eiλω.z + e−iλω.z|z|−
1
2
(n−1)a(λ, z, ω) are the perturbed plane wave solutions (here ω ∈ Sn−1

and a ∈ L∞). Unlike when n ≥ 3, the problem in dimension 2 is that the set of complex
geometrical optics solutions of this type is not large enough to show that the Fourier transform
of V1 − V2 is 0.
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The real novelty in the recent work of Bukhgeim [1] in dimension 2 is the construction of new
complex geometric optics solutions (at least on a bounded domain Ω ⊂ C) of (∆ + Vi)ui = 0
of the form u1 = eΦ/h(1 + r1(h)) and u2 = e−Φ/h(1 + r2(h)) with 0 < h ≪ 1 where Φ is a
holomorphic function in C with a unique non-degenerate critical point at a fixed z0 ∈ C (for
instance Φ(z) = (z − z0)

2), and ||rj(h)||Lp is small as h→ 0 for p > 1. These solutions allow
to use stationary phase at z0 to get∫

Ω
(V1 − V2)u1u2 = C(V1(z0)− V2(z0))h+ o(h), C 6= 0

as h→ 0 and thus, if the Dirichlet-to-Neumann operators on ∂Ω are the same, then V1(z0) =
V2(z0).

One of the problems to extend this to inverse scattering is that a holomorphic function
in C with a non-degenerate critical point needs to grow at least quadratically at infinity,
which would somehow force to consider potentials V having Gaussian decay. On the other
hand, if we allow the function to be meromorphic with simple poles, then we can construct
such functions, having a single critical point at any given point p, for instance by considering
Φ(z) = (z−p)2/z. Of course, with such Φ we then need to work on C\{0}, which is conformal
to a surface with no hole but with 2 Euclidean ends, and Φ has linear growth in the ends.
In general, on a surface with genus g and N Euclidean ends, we can use the Riemann-Roch
theorem to construct holomorphic functions with linear or quadratic growth in the ends, the
dimension of the space of such functions depending on g,N .

In the present work, we apply this idea to obtain an inverse scattering result for ∆g0 + V
on a fixed Riemann surface (M0, g0) with Euclidean ends, under some topological condition
on M0 and some decay condition on V .

Theorem 1.1. Let (M0, g0) be a non-compact Riemann surface with genus g and N ends
isometric to R

2 \ {|z| ≤ 1} with metric |dz|2. Let V1 and V2 be two potentials in C1,α(M0)
with α > 0, and such that SV1(λ) = SV2(λ) for some λ > 0. Let d(z, z0) denote the distance
between z and a fixed point z0 ∈M0.
(i) If N ≥ max(2g + 1, 2) and Vi ∈ e−γd(·,z0)L∞(M0) for all γ > 0, then V1 = V2.

(ii) If N ≥ g + 1 and Vi ∈ e−γd(·,z0)
2
L∞(M0) for all γ > 0, then V1 = V2.

In R
2, where g = 0 and N = 1, we have an immediate corollary:

Corollary 1.2. Let λ > 0 and let V1, V2 ∈ C1,α(R2) ∩ e−γ|z|
2
L∞(R2) for all γ > 0. If the

scattering matrices satisfy SV1(λ) = SV2(λ), then V1 = V2.

This is an improvement on the result of Bukhgeim [1] which shows identifiability for com-
pactly supported functions, and in a certain sense on the result of Novikov [15] since it is
assumed there that the potential has to be of small L∞ norm.

The structure of the paper is as follows. In Section 2 we employ the Riemann-Roch theorem
and a transversality argument to construct Morse holomorphic functions on (M0, g0) with
linear or quadratic growth in the ends. Section 3 considers Carleman estimates with harmonic
weights on (M0, g0), where suitable convexification and weights at the ends are required since
the surface is non compact. Complex geometrical optics solutions are constructed in Section
4. Section 5 discusses direct scattering theory on surfaces with Euclidean ends and contains
the proof that scattering solutions are dense in the set of suitable solutions, and Section
6 gives the proof of Theorem 1.1. Finally, there is an appendix discussing a Paley-Wiener
type result for functions with Gaussian decay which is needed to prove density of scattering
solutions.
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2. Holomorphic Morse functions on a surface with Euclidean ends

2.1. Riemann surfaces with Euclidean ends. Let (M0, g0) be a non-compact connected
smooth Riemannian surface with N ends E1, . . . , EN which are Euclidean, i.e. isometric to
C \ {|z| ≤ 1} with metric |dz|2. By using a complex inversion z → 1/z, each end is also
isometric to a pointed disk

Ei ≃ {|z| ≤ 1, z 6= 0} with metric
|dz|2

|z|4

thus conformal to the Euclidean metric on the pointed disk. The surface M0 can then be
compactified by adding the points corresponding to z = 0 in each pointed disk corresponding
to an end Ei, we obtain a closed Riemann surface M with a natural complex structure
induced by that of M0, or equivalently a smooth conformal class on M induced by that of
M0. Another way of thinking is to say thatM0 is the closed Riemann surfaceM with N points
e1, . . . , eN removed. The Riemann surfaceM has holomorphic charts zα : Uα → C and we will
denote by z1, . . . zN the complex coordinates corresponding to the ends of M0, or equivalently
to the neighbourhoods of the points ei. The Hodge star operator ⋆ acts on the cotangent
bundle T ∗M , its eigenvalues are ±i and the respective eigenspaces T ∗

1,0M := ker(⋆+ iId) and

T ∗
0,1M := ker(⋆ − iId) are sub-bundles of the complexified cotangent bundle CT ∗M and the

splitting CT ∗M = T ∗
1,0M ⊕ T ∗

0,1M holds as complex vector spaces. Since ⋆ is conformally
invariant on 1-forms on M , the complex structure depends only on the conformal class of g.
In holomorphic coordinates z = x + iy in a chart Uα, one has ⋆(udx + vdy) = −vdx + udy
and

T ∗
1,0M |Uα ≃ Cdz, T ∗

0,1M |Uα ≃ Cdz̄

where dz = dx + idy and dz̄ = dx − idy. We define the natural projections induced by the
splitting of CT ∗M

π1,0 : CT
∗M → T ∗

1,0M, π0,1 : CT
∗M → T ∗

0,1M.

The exterior derivative d defines the de Rham complex 0 → Λ0 → Λ1 → Λ2 → 0 where Λk :=
ΛkT ∗M denotes the real bundle of k-forms on M . Let us denote CΛk the complexification of
Λk, then the ∂ and ∂̄ operators can be defined as differential operators ∂ : CΛ0 → T ∗

1,0M and

∂̄ : CΛ0 → T ∗
0,1M by

∂f := π1,0df, ∂̄f := π0,1df,

they satisfy d = ∂ + ∂̄ and are expressed in holomorphic coordinates by

∂f = ∂zf dz, ∂̄f = ∂z̄f dz̄,

with ∂z :=
1
2(∂x− i∂y) and ∂z̄ :=

1
2(∂x+ i∂y). Similarly, one can define the ∂ and ∂̄ operators

from CΛ1 to CΛ2 by setting

∂(ω1,0 + ω0,1) := dω0,1, ∂̄(ω1,0 + ω0,1) := dω1,0

if ω0,1 ∈ T ∗
0,1M and ω1,0 ∈ T ∗

1,0M . In coordinates this is simply

∂(udz + vdz̄) = ∂v ∧ dz̄, ∂̄(udz + vdz̄) = ∂̄u ∧ dz.
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If g is a metric on M whose conformal class induces the complex structure T ∗
1,0M , there is a

natural operator, the Laplacian acting on functions and defined by

∆f := −2i ⋆ ∂̄∂f = d∗d

where d∗ is the adjoint of d through the metric g and ⋆ is the Hodge star operator mapping
Λ2 to Λ0 and induced by g as well.

2.2. Holomorphic functions. We are going to construct Carleman weights given by holo-
morphic functions on M0 which grow at most linearly or quadratically in the ends. We will
use the Riemann-Roch theorem, following ideas of [7], however, the difference in the present
case is that we have very little freedom to construct these holomorphic functions, simply
because there is just a finite dimensional space of such functions by Riemann-Roch. For
the convenience of the reader, and to fix notations, we recall the usual Riemann-Roch index
theorem (see Farkas-Kra [5] for more details). A divisor D on M is an element

D =
(
(p1, n1), . . . , (pk, nk)

)
∈ (M × Z)k, where k ∈ N

which will also be denoted D =
∏k
i=1 p

ni
i or D =

∏
p∈M pα(p) where α(p) = 0 for all p except

α(pi) = ni. The inverse divisor of D is defined to be D−1 :=
∏
p∈M p−α(p) and the degree

of the divisor D is defined by deg(D) :=
∑k

i=1 ni =
∑

p∈M α(p). A non-zero meromorphic

function on M is said to have divisor D if (f) :=
∏
p∈M pord(p) is equal to D, where ord(p)

denotes the order of p as a pole or zero of f (with positive sign convention for zeros). Notice

that in this case we have deg(f) = 0. For divisors D′ =
∏
p∈M pα

′(p) and D =
∏
p∈M pα(p), we

say that D′ ≥ D if α′(p) ≥ α(p) for all p ∈M . The same exact notions apply for meromorphic
1-forms on M . Then we define for a divisor D

r(D) := dim({f meromorphic function on M ; (f) ≥ D} ∪ {0}),

i(D) := dim({u meromorphic 1 form on M ; (u) ≥ D} ∪ {0}).

The Riemann-Roch theorem states the following identity: for any divisor D on the closed
Riemann surface M of genus g,

(1) r(D−1) = i(D) + deg(D)− g + 1.

Notice also that for any divisor D with deg(D) > 0, one has r(D) = 0 since deg(f) = 0 for
all f meromorphic. By [5, Th. p70], let D be a divisor, then for any non-zero meromorphic
1-form ω on M , one has

(2) i(D) = r(D(ω)−1)

which is thus independent of ω. For instance, if D = 1, we know that the only holomorphic
function on M is 1 and one has 1 = r(1) = r((ω)−1)− g + 1 and thus r((ω)−1) = g if ω is a
non-zero meromorphic 1 form. Now if D = (ω), we obtain again from (1)

g = r((ω)−1) = 2− g + deg((ω))

which gives deg((ω)) = 2(g − 1) for any non-zero meromorphic 1-form ω. In particular, if D
is a divisor such that deg(D) > 2(g − 1), then we get deg(D(ω)−1) = deg(D) − 2(g − 1) > 0
and thus i(D) = r(D(ω)−1) = 0, which implies by (1)

(3) deg(D) > 2(g − 1) =⇒ r(D−1) = deg(D)− g + 1 ≥ g.

Now we deduce the
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Lemma 2.1. Let e1, . . . , eN be distinct points on a closed Riemann surface M with genus g,
and let z0 be another point of M \ {e1, . . . , eN}. If N ≥ max(2g + 1, 2), the following hold
true:
(i) there exists a meromorphic function f on M with at most simple poles, all contained in
{e1, . . . , eN}, such that ∂f(z0) 6= 0,
(ii) there exists a meromorphic function h on M with at most simple poles, all contained in
{e1, . . . , eN}, such that z0 is a zero of order at least 2 of h.

Proof. Let first g ≥ 1, so that N ≥ 2g+1. By the discussion before the Lemma, we know that
there are at least g + 2 linearly independent (over C) meromorphic functions f0, . . . , fg+1 on
M with at most simple poles, all contained in {e1, . . . , e2g+1}. Without loss of generality, one
can set f0 = 1 and by linear combinations we can assume that f1(z0) = · · · = fg+1(z0) = 0.

Now consider the divisor Dj = e1 . . . e2g+1z
−j
0 for j = 1, 2, with degree deg(Dj) = 2g + 1− j,

then by the Riemann-Roch formula (more precisely (3))

r(D−1
j ) = g + 2− j.

Thus, since r(D−1
1 ) > r(D−1

2 ) = g and using the assumption that g ≥ 1, we deduce that there
is a function in span(f1, . . . , fg+1) which has a zero of order 2 at z0 and a function which has
a zero of order exactly 1 at z0. The same method clearly works if g = 0 by taking two points
e1, e2 instead of just e1. �

If we allow double poles instead of simple poles, the proof of Lemma 2.1 shows the

Lemma 2.2. Let e1, . . . , eN be distinct points on a closed Riemann surface M with genus g,
and let z0 be another point of M \ {e1, . . . , eN}. If N ≥ g + 1, then the following hold true:
(i) there exists a meromorphic function f on M with at most double poles, all contained in
{e1, . . . , eN}, such that ∂f(z0) 6= 0,
(ii) there exists a meromorphic function h on M with at most double poles, all contained in
{e1, . . . , eN}, such that z0 is a zero of order at least 2 of h.

2.3. Morse holomorphic functions with prescribed critical points. We follow in this
section the arguments used in [7] to construct holomorphic functions with non-degenerate
critical points (i.e. Morse holomorphic functions) on the surfaceM0 with genus g and N ends,
such that these functions have at most linear growth (resp. quadratic growth) in the ends if
N ≥ max(2g+1, 2) (resp. if N ≥ g+1). We let H be the complex vector space spanned by the
meromorphic functions onM with divisors larger or equal to e−1

1 . . . e−1
N (resp. by e−2

1 . . . e−2
N )

if we work with functions having linear growth (resp. quadratic growth), where e1, . . . eN ∈M
are points corresponding to the ends ofM0 as explained in Section 2. Note thatH is a complex
vector space of complex dimension greater or equal to N − g + 1 (resp. 2N − g + 1) for the
e−1
1 . . . e−1

N divisor (resp. the e−2
1 . . . e−2

N divisor). We will also consider the real vector space
H spanned by the real parts and imaginary parts of functions in H, this is a real vector space
which admits a Lebesgue measure. We now prove the following

Lemma 2.3. The set of functions u ∈ H which are not Morse in M0 has measure 0 in H,
in particular its complement is dense in H.

Proof. We use an argument very similar to that used by Uhlenbeck [24]. We start by defining
m : M0 ×H → T ∗M0 by (p, u) 7→ (p, du(p)) ∈ T ∗

pM0. This is clearly a smooth map, linear
in the second variable, moreover mu := m(., u) = (·, du(·)) is smooth on M0. The map u is a
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Morse function if and only if mu is transverse to the zero section, denoted T ∗
0M0, of T

∗M0,
i.e. if

Image(Dpmu) + Tmu(p)(T
∗
0M0) = Tmu(p)(T

∗M0), ∀p ∈M0 such that mu(p) = (p, 0).

This is equivalent to the fact that the Hessian of u at critical points is non-degenerate (see for
instance Lemma 2.8 of [24]). We recall the following transversality result, the proof of which
is contained in [24, Th.2] by replacing Sard-Smale theorem by the usual finite dimensional
Sard theorem:

Theorem 2.4. Let m : X ×H → W be a Ck map and X,W be smooth manifolds and H a
finite dimensional vector space, if W ′ ⊂ W is a submanifold such that k > max(1,dimX −
dimW + dimW ′), then the transversality of the map m to W ′ implies that the complement
of the set {u ∈ H;mu is transverse to W ′} in H has Lebesgue measure 0.

We want to apply this result with X := M0, W := T ∗M0 and W ′ := T ∗
0M0, and with

the map m as defined above. We have thus proved our Lemma if one can show that m is
transverse to W ′. Let (p, u) such that m(p, u) = (p, 0) ∈ W ′. Then identifying T(p,0)(T

∗M0)
with TpM0 ⊕ T ∗

pM0, one has

Dm(p,u)(z, v) = (z, dv(p) + Hessp(u)z)

where Hessp(u) is the Hessian of u at the point p, viewed as a linear map from TpM0 to T
∗
pM0

(note that this is different from the covariant Hessian defined by the Levi-Civita connection).
To prove that m is transverse to W ′ we need to show that (z, v) → (z, dv(p) + Hessp(u)z) is
onto from TpM0 ⊕ H to TpM0 ⊕ T ∗

pM0, which is realized if the map v → dv(p) from H to
T ∗
pM0 is onto. But from Lemma 2.1, we know that there exists a meromorphic function f

with real part v = Re(f) ∈ H such that v(p) = 0 and dv(p) 6= 0 as an element of T ∗
pM0. We

can then take v1 := v and v2 := Im(f), which are functions of H such that dv1(p) and dv2(p)
are linearly independent in T ∗

pM0 by the Cauchy-Riemann equation ∂̄f = 0. This shows our
claim and ends the proof by using Theorem 2.4. �

In particular, by the Cauchy-Riemann equation, this Lemma implies that the set of Morse
functions in H is dense in H. We deduce

Proposition 2.1. There exists a dense set of points p in M0 such that there exists a Morse
holomorphic function f ∈ H on M0 which has a critical point at p.

Proof. Let p be a point of M0 and let u be a holomorphic function with a zero of order at
least 2 at p, the existence is ensured by Lemma 2.1. Let B(p, η) be a any small ball of radius
η > 0 near p, then by Lemma 2.3, for any ǫ > 0, we can approach u by a holomorphic Morse
function uǫ ∈ Hǫ which is at distance less than ǫ of u in a fixed norm on the finite dimensional
space H. Rouché’s theorem for ∂zuǫ and ∂zu (which are viewed as functions locally near p)
implies that ∂zuǫ has at least one zero of order exactly 1 in B(p, η) if ǫ is chosen small enough.
Thus there is a Morse function in H with a critical point arbitrarily close to p. �

Remark 2.5. In the case where the surface M has genus 0 and N ends, we have an explicit
formula for the function in Proposition 2.1: indeed M0 is conformal to C \ {e1, . . . , eN−1}
for some ei ∈ C - i.e. the Riemann sphere minus N points - then the function f(z) =
(z−z0)

2/(z−e1) with z0 6∈ {e1, . . . , eN−1} has z0 for unique critical point in C\{e1, . . . , eN−1}
and it is non-degenerate.
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We end this section by the following Lemmas which will be used for the amplitude of the
complex geometric optics solutions but not for the phase.

Lemma 2.6. For any p0, p1, . . . pn ∈ M0 some points of M0 and L ∈ N, then there exists a
function a(z) holomorphic on M0 which vanishes to order L at all pj for j = 1, . . . , n and
such that a(p0) 6= 0. Moreover a(z) can be chosen to have at most polynomial growth in the
ends, i.e. |a(z)| ≤ C|z|J for some J ∈ N.

Proof. It suffices to find on M some meromorphic function with divisor greater or equal to
D := e−J1 . . . e−JN pL1 . . . p

L
n but not greater or equal to Dp0 and this is insured by Riemann-

Roch theorem as long as JN − nL ≥ 2g since then r(D) = −g + 1+ JN − nL and r(Dp0) =
−g + JN − nL. �

Lemma 2.7. Let {p0, p1, .., pn} ⊂M0 be a set of n+1 disjoint points. Let c0, c1, . . . , cK ∈ C,
L ∈ N, and let z be a complex coordinate near p0 such that p0 = {z = 0}. Then there
exists a holomorphic function f on M0 with zeros of order at least L at each pj , such that
f(z) = c0 + c1z + ... + cKz

K + O(|z|K+1) in the coordinate z. Moreover f can be chosen so
that there is J ∈ N such that, in the ends, |∂ℓzf(z)| = O(|z|J ) for all ℓ ∈ N0.

Proof. The proof goes along the same lines as in Lemma 2.6. By induction on K and
linear combinations, it suffices to prove it for c0 = · · · = cK−1 = 0. As in the proof of
Lemma 2.6, if J is taken large enough, there exists a function with divisor greater or equal to
D := e−J1 . . . e−JN pK−1

0 pL1 . . . p
L
n but not greater or equal to Dp0. Then it suffices to multiply

this function by cK times the inverse of the coefficient of zK in its Taylor expansion at z = 0.
�

2.4. Laplacian on weighted spaces. Let x be a smooth positive function on M0, which is
equal to |z|−1 for |z| > r0 in the ends Ei ≃ {z ∈ C; |z| > 1}, where r0 is a large fixed number.
We now show that the Laplacian ∆g0 on a surface with Euclidean ends has a right inverse on
the weighted spaces x−JL2(M0) for J /∈ N positive.

Lemma 2.8. For any J > −1 which is not an integer, there exists a continuous operator G
mapping x−JL2(M0) to x

−J−2L2(M0) such that ∆g0G = Id.

Proof. Let gb := x2g0 be a metric conformal to g0. The metric gb in the ends can be written
gb = dx2/x2 + dθ2S1 by using radial coordinates x = |z|−1, θ = z/|z| ∈ S1, this is thus a
b-metric in the sense of Melrose [13], giving the surface a geometry of surface with cylindrical
ends. Let us define for m ∈ N0

Hm
b (M0) := {u ∈ L2(M0; dvolgb); (x∂x)

j∂kθu ∈ L2(M0; dvolgb) for all j + k ≤ m}.

The Laplacian has the form ∆gb = −(x∂x)
2 +∆S1 in the ends, and the indicial roots of ∆gb

in the sense of Section 5.2 of [13] are given by the complex numbers λ such that x−iλ∆gbx
iλ is

not invertible as an operator acting on the circle S1
θ . Thus the indicial roots are the solutions

of λ2+k2 = 0 where k2 runs over the eigenvalues of ∆S1 , that is, k ∈ Z. The roots are simple
at ±ik ∈ iZ \ {0} and 0 is a double root. In Theorem 5.60 of [13], Melrose proves that ∆gb is
Fredholm on xaH2

b (M0) if and only if −a is not the imaginary part of some indicial root, that

is here a 6∈ Z. For J > 0, the kernel of ∆gb on the space xJH2
b (M0) is clearly trivial by an

energy estimate. Thus ∆gb : x
−JH0

b (M0) → x−JH−2
b (M0) is surjective for J > 0 and J 6∈ Z,

and the same then holds for ∆gb : x
−JH2

b (M0) → x−JH0
b (M0) by elliptic regularity.
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Now we can use Proposition 5.64 of [13], which asserts, for all positive J 6∈ Z, the existence
of a pseudodifferential operator Gb mapping continuously x−JH0

b (M0) to x−JH2
b (M0) such

that ∆gbGb = Id. Thus if we set G = Gbx
−2, we have ∆g0G = Id and G maps continuously

x−J+1L2(M0) to x
−J−1L2(M0) (note that L2(M0) = xH0

b (M0)). �

3. Carleman Estimate for Harmonic Weights with Critical Points

3.1. The linear weight case. In this section, we prove a Carleman estimate using harmonic
weights with non-degenerate critical points, in a way similar to [7]. Here however we need to
work on a non compact surface and with weighted spaces. We first consider a Morse holo-
morphic function Φ ∈ H obtained from Proposition 2.1 with the condition that Φ has linear
growth in the ends, which corresponds to the case where V ∈ e−γ/xL∞(M0) for all γ > 0. The
Carleman weight will be the harmonic function ϕ := Re(Φ). We let x be a positive smooth
function on M0 such that x = |z|−1 in the complex charts {z ∈ C; |z| > 1} ≃ Ei covering the
end Ei.

Let δ ∈ (0, 1) be small and let us take ϕ0 ∈ x−αL2(M0) a solution of ∆g0ϕ0 = x2−δ,
a solution exists by Proposition 2.8 if α > 1 + δ. Actually, by using Proposition 5.61
of [13], if we choose α < 2, then it is easy to see that ϕ0 is smooth on M0 and has
polyhomogeneous expansion as |z| → ∞, with leading asymptotic in the end Ei given by
ϕ0 = −x−δ/δ2 + ci log(x) + di + O(x) for some ci, di which are smooth functions in S1. For
ǫ > 0 small, we define the convexified weight ϕǫ := ϕ− h

ǫϕ0.

We recall from the proof of Proposition 3.1 in [7] the following estimate which is valid in
any compact set K ⊂M0: for all w ∈ C∞

0 (K), we have

(4)
C

ǫ

( 1
h
‖w‖2L2 +

1

h2
‖w|dϕ|‖2L2 +

1

h2
‖w|dϕǫ|‖

2
L2 + ‖dw‖2L2(K)

)
≤ ‖eϕǫ/h∆ge

−ϕǫ/hw‖2L2

where C depends on K but not on h and ǫ.

So for functions supported in the end Ei, it clearly suffices to obtain a Carleman estimate
in Ei ≃ R

2 \ {|z| ≤ 1} by using the Euclidean coordinate z of the end.

Proposition 3.1. Let δ ∈ (0, 1), and ϕǫ as above, then there exists C > 0 such that for all
ǫ≫ h > 0 small enough, and all u ∈ C∞

0 (Ei)

h2||eϕǫ/h(∆− λ2)e−ϕǫ/hu||2L2 ≥
C

ǫ
(||x1−

δ
2u||2L2 + h2||x1−

δ
2 du||2L2).

Proof. The metric g0 can be extended to R
2 to be the Euclidean metric and we shall denote

by ∆ the flat positive Laplacian on R
2. Let us write P := ∆g0 − λ2, then the operator

Ph := h2eϕǫ/hPe−ϕǫ/h is given by

Ph = h2∆− |dϕǫ|
2 + 2h∇ϕǫ.∇− h∆ϕǫ − h2λ2,

following the notation of [4, Chap. 4.3], it is a semiclassical operator in S0(〈ξ〉2) with semi-
classical full Weyl symbol

σ(Ph) := |ξ|2 − |dϕǫ|
2 − h2λ2 + 2i〈dϕǫ, ξ〉 = a+ ib.

We can define A := (Ph+P
∗
h )/2 = h2∆−|dϕǫ|

2−h2λ2 and B := (Ph−P
∗
h )/2i = −2ih∇ϕǫ.∇+

ih∆ϕǫ which have respective semiclassical full symbols a and b, i.e. A = Oph(a) and B =
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Oph(b) for the Weyl quantization. Notice that A,B are symmetric operators, thus for all
u ∈ C∞

0 (Ei)

(5) ||(A + iB)u||2 = 〈(A2 +B2 + i[A,B])u, u〉.

It is easy to check that the operator ih−1[A,B] is a semiclassical differential operator in
S0(〈ξ〉2) with full semiclassical symbol

(6) {a, b}(ξ) = 4(D2ϕǫ(dϕǫ, dϕǫ) +D2ϕǫ(ξ, ξ))

Let us now decompose the Hessian of ϕǫ in the basis (dϕǫ, θ) where θ is a covector orthogonal
to dϕǫ and of norm |dϕǫ|. This yields coordinates ξ = ξ0dϕǫ + ξ1θ and there exist smooth
functions M,N,K so that

D2ϕǫ(ξ, ξ) = |dϕǫ|
2(Mξ20 +Nξ21 + 2Kξ0ξ1).

Notice that ϕǫ has a polyhomogeneous expansion at infinity of the form

ϕǫ(z) = γ.z +
h

ǫ

rδ

δ2
+ c1 log(r) + c2 + c3r

−1 +O(r−2)

where r = |z|, ω = z/r, γ = (γ1, γ2) ∈ R
2 and ci are some smooth functions on S1 depending

on h; in particular we have

dϕǫ = γ1dz1 + γ2dz2 +O(r−1+δ), ∂αz ∂
β
z̄ ϕǫ(z) = O(r−2+δ) for all α+ β ≥ 2

which implies that M,N,K ∈ r−2+δL∞(Ei). Then one can write

{a, b} =4|dϕǫ|
2(M +Mξ20 +Nξ21 + 2Kξ0ξ1)

=4(N(a+ h2λ2) + ((M −N)ξ0 + 2Kξ1)b/2 + (N +M)|dϕǫ|
2)

and since M +N = Tr(D2ϕǫ) = −∆ϕǫ = h∆ϕ0/ǫ we obtain

(7)

{a, b} = 4|dϕǫ|
2(c(z)(a + h2λ2) + ℓ(z, ξ)b +

h

ǫ
r−2+δ),

c(z) =
N

|dϕǫ|2
, ℓ(z, ξ) =

(M −N)ξ0 + 2Kξ1
2|dϕǫ|2

.

Now, we take a smooth extension of |dϕǫ|
2, a(z, ξ), ℓ(z, ξ) and r to z ∈ R

2, this can done
for instance by extending r as a smooth positive function on R

2 and then extending dϕ and
dϕ0 to smooth non vanishing 1-forms on R

2 (not necessarily exact) so that |dϕǫ|
2 is smooth

positive (for small h) and polynomial in h and a, ℓ are of the same form as in {|z| > 1}. Let
us define the symbol and quantized differential operator on R

2

e := 4|dϕǫ|
2(c(z)(a + h2λ2) + ℓ(z, ξ)b), E := Oph(e)

and write

(8)
ih−1r1−

δ
2 [A,B]r1−

δ
2 = hF + r1−

δ
2Er1−

δ
2 −

h

ǫ
(A2 +B2),

with F := h−1r1−
δ
2 (ih−1[A,B]− E)r1−

δ
2 +

1

ǫ
(A2 +B2).

We deduce from (6) and (7) the following
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Lemma 3.2. The operator F is a semiclassical differential operator in the class S0(〈ξ〉4) with
semiclassical principal symbol

σ(F )(ξ) =
4|dϕ|2

ǫ
+

1

ǫ
(|ξ|2 − |dϕ|2)2 +

4

ǫ
(〈ξ, dϕ〉)2.

By the semiclassical G̊arding estimate, we obtain the

Corollary 3.3. The operator F of Lemma 3.2 is such that there is a constant C so that

〈Fu, u〉 ≥
C

ǫ
(||u||2L2 + h2||du||2L2).

Proof. It suffices to use that σ(F )(ξ) ≥ C′

ǫ (1+|ξ|4) for some C ′ > 0 and use the semiclassical
G̊arding estimate. �

So by writing 〈i[A,B]u, u〉 = 〈ir1−
δ
2 [A,B]r1−

δ
2 r−1+ δ

2u, r−1+ δ
2u〉 in (5) and using (8) and

Corollary 3.3, we obtain that there exists C > 0 such that for all u ∈ C∞
0 (Ei)

||Phu||
2
L2 ≥〈(A2 +B2)u, u〉+

Ch2

ǫ
(||r−1+ δ

2u||2L2 + h2||r−1+ δ
2 du||2L2) + h〈Eu, u〉

−
h2

ǫ
(||A(r−1+ δ

2u)||2L2 + ||B(r−1+ δ
2u)||2L2).

(9)

We observe that h−1[A, r−1+ δ
2 ]r1+

δ
2 ∈ S0(〈ξ〉) and h−1[B, r−1+ δ

2 ]r1+
δ
2 ∈ hS0(1), and thus

||A(r−1+ δ
2u)||2L2+||B(r−1+ δ

2u)||2L2) ≤ C ′(||Au||2L2+||Bu||2L2+h
2||r−1+ δ

2u||2L2+h
4||r−1+ δ

2 du||2L2)

for some C ′ > 0. Taking h small, this implies with (9) that there exists a new constant C > 0
such that

(10) ||Phu||
2
L2 ≥

1

2
〈(A2 +B2)u, u〉+

Ch2

ǫ
(||r−1+ δ

2u||2L2 + h2||r−1+ δ
2du||2L2) + h〈Eu, u〉.

It remains to deal with h〈Eu, u〉: we first write E = 4|dϕǫ|
2(c(z)(A + h2λ2) + Oph(ℓ)B) +

hr−1+ δ
2Sr−1+ δ

2 where S is a semiclassical differential operator in the class S0(〈ξ〉) by the
decay estimates on c(z), ℓ(z, ξ) as z → ∞, then by Cauchy-Schwartz (and with L := Oph(ℓ))

|〈hEu, u〉| ≤Ch(||Au||L2 + h2||r−1+ δ
2u||L2 + h||Sr−1+ δ

2u||L2)||r−1+ δ
2u||L2 + Ch||Bu||L2 ||Lu||L2

≤
1

4
||Au||2L2 + h2||Sr−1+ δ

2u||2L2 + Ch2||r−1+ δ
2u||2L2 +

1

4
||Bu||2L2 + Ch2||Lu||2L2

where C is a constant independent of h, ǫ but may change from line to line. Now we observe

that Lr1−
δ
2 and S are in S0(〈ξ〉) and thus

||Sr−1+ δ
2u||2L2 + ||Lu||2L2 ≤ C(||r−1+ δ

2u||2L2 + h2||r−1+ δ
2 du||2L2),

which by (10) implies that there exists C > 0 such that for all ǫ ≫ h > 0 with ǫ small enough

||Phu||
2
L2 ≥

Ch2

ǫ
(||r−1+ δ

2u||2L2 + h2||r−1+ δ
2 du||2L2)

for all u ∈ C∞
0 (Ei) . The proof is complete. �

Combining now Proposition 3.1 and (4), we obtain
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Proposition 3.4. Let (M0, g0) be a Riemann surface with Euclidean ends with x a boundary
defining function of the radial compactification M0 and let ϕǫ = ϕ − h

ǫϕ0 where ϕ is a
harmonic function with non-degenerate critical points and linear growth onM0 and ϕ0 satisfies

∆g0ϕ0 = x2−δ as above. Then for all V ∈ x1−
δ
2L∞(M0) there exists an h0 > 0, ǫ0 and C > 0

such that for all 0 < h < h0, h≪ ǫ < ǫ0 and u ∈ C∞
0 (M0), we have

(11)
1

h
‖x1−

δ
2u‖2L2 +

1

h2
‖x1−

δ
2u|dϕ|‖2L2 + ‖x1−

δ
2 du‖2L2 ≤ Cǫ‖eϕǫ/h(∆g + V − λ2)e−ϕǫ/hu‖2L2

Proof. As in the proof of Proposition 3.1 in [7], by taking ǫ small enough, we see that the
combination of (4) and Proposition 3.1 shows that for any w ∈ C∞

0 (M0),

C

ǫ

( 1
h
‖x1−

δ
2w‖2L2 +

1

h2
‖x1−

δ
2w|dϕ|‖2L2 +

1

h2
‖x1−

δ
2w|dϕǫ|‖

2
L2 + ‖x1−

δ
2dw‖2L2

)

≤ ‖e
ϕǫ
h (∆ − λ2)e−

ϕǫ
h w‖2L2

which ends the proof. �

3.2. The quadratic weight case for surfaces. In this section, ϕ has quadratic growth

at infinity, which corresponds to the case where V ∈ e−γ/x
2
L∞ for all γ > 0. The proof

when ϕ has quadratic growth at infinity is even simpler than the linear growth case. We
define ϕ0 ∈ x−2L∞ to be a solution of ∆g0ϕ0 = 1, this is possible by Lemma 2.8 and one
easily obtains from Proposition 5.61 of [13] that ϕ0 = −x−2/4 + O(x−1) as x → 0. We let
ϕǫ := ϕ− h

ǫϕ0 which satisfies ∆g0ϕǫ/h = −1/ǫ.
If K ⊂M0 is a compact set, the Carleman estimate (4) in K is satisfied by Proposition 3.1

of [7], it then remains to get the estimate in the ends E1, . . . , EN . But the exact same proof
as in Lemma 3.1 and Lemma 3.2 of [7] gives directly that for any w ∈ C∞

0 (Ei)

(12)
C

ǫ

( 1
h
‖w‖2L2 +

1

h2
‖w|dϕ|‖2L2 +

1

h2
‖w|dϕǫ|‖

2
L2 + ‖dw‖2L2

)
≤ ‖eϕǫ/h∆g0e

−ϕǫ/hw‖2L2

for some C > 0 independent of ǫ, h and it suffices to glue the estimates in K and in the ends
Ei as in Proposition 3.1 of [7], to obtain (12) for any w ∈ C∞

0 (M0). Then by using triangle
inequality

||eϕǫ/h(∆g0 + V − λ2)e−ϕǫ/hu||L2 ≤ ||eϕǫ/h∆g0e
−ϕǫ/hu||L2 + C||u||L2

for some C depending on λ, ||V ||L∞ , we see that the V − λ2 term can be absorbed by the left
hand side of (12) and we finally deduce

Proposition 3.5. Let (M0, g0) be a Riemann surface with Euclidean ends and let ϕǫ =
ϕ − h

ǫϕ0 where ϕ is a harmonic function with non-degenerate critical points and quadratic

growth on M0 and ϕ0 satisfies ∆g0ϕ0 = 1 with ϕ0 ∈ x−2L∞(M0). Then for all V ∈ L∞ there
exists an h0 > 0, ǫ0 and C > 0 such that for all 0 < h < h0, h≪ ǫ < ǫ0 and u ∈ C∞

0 (M0)

C

ǫ

( 1
h
‖u‖2L2 +

1

h2
||u|dϕ|||2L2 + ‖du‖2L2

)
≤ ‖eϕǫ/h(∆g0 + V − λ2)e−ϕǫ/hu‖2L2 .

The main difference with the linear weight case is that one can use a convexification which
has quadratic growth at infinity which allows to absorb the λ2 term, while it was not the case
for the linearly growing weights.
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4. Complex Geometric Optics on a Riemann Surface with Euclidean ends

As in [1, 9, 7], the method for identifying the potential at a point p is to construct com-
plex geometric optic solutions depending on a small parameter h > 0, with phase a Morse
holomorphic function with a non-degenerate critical point at p, and then to apply the sta-
tionary phase method. Here, in addition, we need the phase to be of linear growth at infinity
if V ∈ e−γ/xL∞ for all γ > 0 while the phase has to be of quadratic growth at infinity if

V ∈ e−γ/x
2
L∞ for all γ > 0.

We shall now assume thatM0 is a non-compact surface with genus g with N ends equipped
with a metric g0 which is Euclidean in the ends, and V is a C1,α function in M0. Moreover,

if V ∈ e−γ/xL∞ for all γ > 0, we ask that N ≥ max(2g + 1, 2) while if V ∈ e−γ/x
2
L∞ for

all γ > 0, we assume that N ≥ g + 1. As above, let us use a smooth positive function x
which is equal to 1 in a large compact set of M0 and is equal to x = |z|−1 in the regions
|z| > r0 of the ends Ei ≃ {z ∈ C; |z| > 1}, where r0 is a fixed large number. This function is a
boundary defining function of the radial compactification of M0 in the sense of Melrose [13].
To construct the complex geometric optics solutions, we will need to work with the weighted
spaces x−αL2(M0) where α ∈ R+.

Let H be the finite dimensional complex vector space defined in the beginning of Section
2.3. Choose p ∈ M0 such that there exists a Morse holomorphic function Φ = ϕ + iψ ∈ H

on M0, with a critical point at p; there is a dense set of such points by Proposition 2.1. The
purpose of this section is to construct solutions u on M0 of (∆− λ2 + V )u = 0 of the form

(13) u = eΦ/h(a+ r1 + r2)

for h > 0 small, where a ∈ x−J+1L2 with J ∈ R+ \ N is a holomorphic function on M0,
obtained by Lemma 2.6, such that a(p) 6= 0 and a vanishing to order L (for some fixed large
L) at all other critical points of Φ, and finally r1, r2 will be remainder terms which are small

as h→ 0 and have particular properties near the critical points of Φ. More precisely, eϕ0/ǫr2
will be a oL2(h) and r1 will be a Ox−JL2(h) but with an explicit expression, which can be
used to obtain sufficient information in order to apply the stationary phase method.

4.0.1. Construction of r1. We want to construct r1 = Ox−JL2(h) which satisfies

e−Φ/h(∆g0 − λ2 + V )eΦ/h(a+ r1) = Ox−JL2(h)

for some large J ∈ R+ \N so that a ∈ x−J+1L2.
Let G be the operator of Lemma 2.8, mapping continuously x−J+1L2(M0) to x

−J−1L2(M0).
Then clearly ∂̄∂G = i

2⋆
−1 when acting on x−J+1L2, here ⋆−1 is the inverse of ⋆ mapping

functions to 2-forms. First, we will search for r1 satisfying

(14) e−2iψ/h∂e2iψ/hr1 = −∂G(a(V − λ2)) + ω +Ox−JH1(h)

with ω ∈ x−JL2(M0) a holomorphic 1-form on M0 and ‖r1‖x−JL2 = O(h). Indeed, using the
fact that Φ is holomorphic we have

e−Φ/h∆g0e
Φ/h = −2i ⋆ ∂̄e−Φ/h∂eΦ/h = −2i ⋆ ∂̄e−

1
h
(Φ−Φ̄)∂e

1
h
(Φ−Φ̄) = −2i ⋆ ∂̄e−2iψ/h∂e2iψ/h

and applying −2i ⋆ ∂̄ to (14), this gives

e−Φ/h(∆g0 + V )eΦ/hr1 = −a(V − λ2) +Ox−JL2(h).
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Writing −∂G(a(V − λ2)) =: c(z)dz in local complex coordinates, c(z) is C2,α by elliptic
regularity and we have 2i∂z̄c(z) = a(V − λ2), therefore ∂z∂z̄c(p

′) = ∂2z̄ c(p
′) = 0 at each

critical point p′ 6= p by construction of the function a. Therefore, we deduce that at each
critical point p′ 6= p, c(z) has Taylor series expansion

∑2
j=0 cjz

j +O(|z|2+α). That is, all the

lower order terms of the Taylor expansion of c(z) around p′ are polynomials of z only. By
Lemma 2.7, and possibly by taking J larger, there exists a holomorphic function f ∈ x−JL2

such that ω := ∂f has Taylor expansion equal to that of ∂G(a(V − λ2)) at all critical points
p′ 6= p of Φ. We deduce that, if b := −∂G(a(V − λ2)) + ω = b(z)dz, we have

(15)
|∂mz̄ ∂

ℓ
zb(z)| = O(|z|2+α−ℓ−m), for ℓ+m ≤ 2, at critical points p′ 6= p

|b(z)| = O(|z|), if p′ = p.

Now, we let χ1 ∈ C∞
0 (M0) be a cutoff function supported in a small neighbourhood Up of the

critical point p and identically 1 near p, and χ ∈ C∞
0 (M0) is defined similarly with χ = 1 on

the support of χ1. We will construct r1 to be a sum r1 = r11 + hr12 where r11 is a compactly
supported approximate solution of (14) near the critical point p of Φ and r12 is correction
term supported away from p. We define locally in complex coordinates centered at p and
containing the support of χ

(16) r11 := χe−2iψ/hR(e2iψ/hχ1b)

where Rf(z) := −(2πi)−1
∫
R2

1
z̄−ξ̄

fdξ̄ ∧ dξ for f ∈ L∞ compactly supported is the classical

Cauchy operator inverting locally ∂z (r11 is extended by 0 outside the neighbourhood of p).
The function r11 is in C3,α(M0) and we have

(17)
e−2iψ/h∂(e2iψ/hr11) = χ1(−∂G(a(V − λ2)) + ω) + η

with η := e−2iψ/hR(e2iψ/hχ1b)∂χ.

We then construct r12 by observing that b vanishes to order 2+α at critical points of Φ other
than p (from (15)), and ∂χ = 0 in a neighbourhood of any critical point of ψ, so we can find
r12 satisfying

(18) 2ir12∂ψ = (1− χ1)b.

This is possible since both ∂ψ and the right hand side are valued in T ∗
1,0M0 and ∂ψ has

finitely many isolated zeroes on M0: r12 is then a function which is in C2,α(M0 \ P ) where
P := {p1, . . . , pn} is the set of critical points other than p, it extends to a function in C1,α(M0)
and it satisfies in local complex coordinates z at each pj

|∂βz̄ ∂
γ
z r12(z)| ≤ C|z|1+α−β−γ , β + γ ≤ 2

by using also the fact that ∂ψ can be locally be considered as a smooth function with a zero
of order 1 at each pj. Moreover b ∈ x−JH2(M0) thus r1 ∈ x−JH2(M0) and we have

e−2iψ/h∂(e2iψ/hr1) = b+ h∂r12 + η = −∂G(a(V − λ2)) + ω + h∂r12 + η.

Lemma 4.1. The following estimates hold true

||η||H2(M0) = O(| log h|), ‖η‖H1(M0) ≤ O(h| log h|), ||xJ∂r12||H1(M0) = O(1),

||xJr1||L2 = O(h), ||xJ(r1 − hr̃12)||L2 = o(h)

where r̃12 solves 2ir̃12∂ψ = b.
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Proof. The proof is exactly the same as the proof of Lemma 4.2 in [8], except that one
needs to add the weight xJ to have bounded integrals. �

As a direct consequence, we have

Corollary 4.2. With r1 = r11 + hr12, there exists J > 0 such that

||e−Φ/h(∆g0 − λ2 + V )eΦ/h(a+ r1)||x−JL2(M0) = O(h| log h|).

4.0.2. Construction of r2. In this section, we complete the construction of the complex geo-
metric optic solutions. We deal with the general case of surfaces and we shall show the
following

Proposition 4.1. If ϕ0 is the subharmonic function constructed in Section 3, then for ǫ small
enough there exist solutions to (∆g0 − λ2 + V )u = 0 of the form u = eΦ/h(a + r1 + r2) with

r1 = r11+hr12 constructed in the previous section and r2 ∈ e−ϕ0/ǫL2 satisfying ‖eϕ0/ǫr2‖L2 ≤

Ch3/2| log h|.

This is a consequence of the following Lemma (which follows from the Carleman estimate
obtained in Section 3 above)

Lemma 4.3. Let δ ∈ (0, 1), V ∈ x1−
δ
2L∞(M0), and ϕǫ = ϕ− h

ǫϕ0 a weight with linear growth

at infinity as in Proposition 3.4. For all f ∈ L2(M0) and all h > 0 small enough, there exists
a solution v ∈ L2(M0) to the equation

(19) e−ϕǫ/h(∆g − λ2 + V )eϕǫ/hv = x1−
δ
2 f

satisfying

‖v‖L2(M0) ≤ Ch
1
2‖f‖L2(M0).

If ϕǫ has quadratic growth at infinity, the same result is true when V ∈ L∞(M0) but x1−
δ
2 f

can be replaced by f ∈ L2 in (19).

Proof. The proof is based on a duality argument. Let Ph := eϕǫ/h(∆g − λ2 + V )e−ϕǫ/h and

for all h > 0 the real vector space A := {u ∈ x−1+ δ
2H1(M0);Phu ∈ L2(M0)} equipped with

the real scalar product

(u,w)A := 〈Phu, Phw〉L2 .

By the Carleman estimate of Proposition 3.4, the space A is a Hilbert space equipped with the

scalar product above if h < h0, and thus the linear functional L : w →
∫
M0

x1−
δ
2 fw dvolg0 on

A is continuous with norm bounded by Ch
1
2 ||f ||L2 by Proposition 3.4, and by Riesz theorem

there is an element u ∈ A such that (., u)A = L and with norm bounded by the norm of L. It

remains to take v := Phu which solves P ∗
hv = x1−

δ
2 f where P ∗

h = e−ϕǫ/h(∆g − λ2 + V )eϕǫ/h

is the adjoint of Ph and v satisfies the desired norm estimate. The proof when the weight
ϕǫ has quadratic growth at infinity is the same, but improves slightly due to the Carleman
estimate of Proposition 3.5. �

Proof of Proposition 4.1. We first solve the equation

(∆ + V − λ2)eϕǫ/hr̃2 = x1−
δ
2 eϕǫ/h

(
x−1+ δ

2 e−ϕǫ/h(∆ + V − λ2)eΦ/h(a+ r1)
)
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by using Lemma 4.3 and the fact that for J large, there is C > 0 such that for all h < h0

||x−1+ δ
2 e−ϕǫ/h(∆ + V − λ2)eΦ/h(a+ r1)||L2 ≤ C||xJe−Φ/h(∆ − λ2 + V )eΦ/h(a+ r1)||L2

since x−J−1eϕ0/ǫ ∈ L∞(M0) for all J (recall that ϕ0 ∼ −x−δ/δ2 as x → 0). But now
the right hand side is bounded by O(h| log h|) according to Corollary 4.2, therefore we set

r2 := −e−iψ/h−ϕ0/ǫr̃2 which satisfies (∆g0 −λ2 +V )eΦ/h(a+ r1 + r2) = 0 and, by Lemma 4.3,

the norm estimate ||eϕ0/ǫr2||L2 ≤ O(h3/2| log h|). �

5. Scattering on surface with Euclidean ends

Let (M0, g0) be a surface with Euclidean ends and V ∈ e−γ/xL∞(M0) for some γ. The
scattering theory in this setting is described for instance in Melrose [14], here we will follow
this presentation (see also Section 3 in Uhlmann-Vasy [26] for the R

n case). First, using
standard methods in scattering theory, we define the resolvent on the continuous spectrum
as follows

Lemma 5.1. The resolvent RV (λ) := (∆g0+V −λ2)−1 admits a meromorphic extension from

{Im(λ) < 0} to {Im(λ) ≤ A,Re(λ) 6= 0}, as a family of operators mapping e−γ/xL2(M0) to

eγ/xL2(M0) for any γ > A. Moreover, for λ ∈ R \ {0} not a pole, RV (λ) maps continuously
xαL2 to x−αL2 for any α > 1/2.

Proof. The statement is known for V = 0 and M0 = R
2 by using the explicit formula of the

resolvent convolution kernel on R
2 in terms of Hankel functions (see for instance [14]), we

shall denote R0(λ) this continued resolvent. More precisely, for all A > 0, the operator R0(λ)
continues analytically from {Im(λ) < 0} to {Im(λ) ≤ A,Re(λ) 6= 0} as a family of bounded

operators mapping e−γ/xL2 to eγ/xL2 for any γ > A. Now we can set χ ∈ C∞
0 (M0) such

that 1 − χ is supported in the ends Ei, and let χ0, χ1 ∈ C∞
0 (M0) such that (1 − χ0) = 1 on

the support of (1 − χ) and χ1 = 1 on the support of χ. Let λ0 ∈ −iR+ with iλ0 ≫ 0, then
the resolvent R0(λ0) is well defined from L2(M0) to H

2(M0) since the Laplacian is essentially
self-adjoint [23, Proposition 8.2.4], and we have a parametrix

E(λ) := (1− χ0)R0(λ)(1 − χ) + χ1R0(λ0)χ

which satisfies

(∆g0 − λ2 + V )E(λ) = 1 +K(λ),

K(λ) := ([∆g0 , χ1]− (λ2 − λ20)χ1)R0(λ0)χ− [∆g0 , χ0]R0(λ)(1 − χ) + V E(λ),

where here we use the notation R0(λ) for an integral kernel on M0, which in the charts
{z ∈ R

2; |z| > 1} corresponding the ends E1, . . . EN , is given by the integral kernel of (∆R2 −
λ2)−1. Using the explicit expression of the convolution kernel of R0(λ) in the ends (see
for instance Section 1.5 of [14]) and the decay assumption on V , it is direct to see that
for Im(λ) < A,Re(λ) 6= 0, the map λ 7→ K(λ) a is compact analytic family of bounded

operators from e−γ/xL2 to e−γ/xL2 for any γ > A. Moreover 1 + K(λ0) is invertible since
||K(λ0)||L2→L2 ≤ 1/2 if iλ0 is large enough. Then by analytic Fredholm theory, the resolvent
RV (λ) has an meromorphic extension to Im(λ) < A,Re(λ) 6= 0 as a bounded operator from

e−γ/xL2 to eγ/xL2 if γ > A, given by

RV (λ) = E(λ)(1 +K(λ))−1.
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Now (1 + K(λ))−1 = 1 + Q(λ) for some Q(λ) = −K(λ)(1 + K(λ))−1 mapping e−γ/xL2 to
itself for any γ > A, which proves the mapping properties of RV (λ) on exponential weighted
spaces. For the mapping properties on {Re(λ) = 0}, a similar argument works. �

A corollary of this Lemma is the mapping property

Corollary 5.2. For λ ∈ R \{0} not a pole of RV (λ), and f ∈ e−γ/xL∞ for some γ > 0, then
there exists v ∈ C∞(∂M 0) such that

RV (λ)f − x
1
2 e−iλ/xv ∈ L2.

Proof. Using the expression RV (λ) = E(λ)(1+Q(λ)) of the proof of Lemma 5.1, it suffices to

know the mapping property of E(λ) on e−γ/xL2, but since outside a compact set (i.e. in the
ends) E(λ) is given by the free resolvent on R

2, this amounts to proving the statement in R
2,

which is well-known: for instance, this is proved for f ∈ C∞
0 (R2) in Section 1.7 [14] but the

proof extends easily to f ∈ e−γ/xL∞(R2) since the only used assumption on f for applying

a stationary phase argument is actually that the Fourier transform f̂(z) has a holomorphic
extension in a complex neighbourhood of R2. �

We also have a boundary pairing, the proof of which is exactly the same as [14, Lemma
2.2] (see also Proposition 3.1 of [26]).

Lemma 5.3. For λ > 0 and V ∈ e−γ/xL∞(M0), if u± ∈ x−αL2(M0) for some α > 1/2 and
(∆g0 − λ2 + V )u± ∈ xαL2(M0) with

u+ − x
1
2 eiλ/xf++ − x

1
2 e−iλ/xf+− ∈ L2, u− − x

1
2 eiλ/xf−+ − x

1
2 e−iλ/xf−− ∈ L2

for some f±± ∈ C∞(∂M 0), then

〈u+, (∆g0 + V − λ2)u−〉 − 〈(∆g0 + V − λ2)u+, u−〉 = 2iλ

∫

∂M0

(f++f−+ − f+−f−−)

where the volume form on ∂M 0 ≃ ⊔Ni=1S
1 is induced by the metric x2g|T∂M0

.

As a corollary, the same exact arguments as in Sections 2.2 to 2.5 in [14] show 1

Corollary 5.4. The operator RV (λ) is analytic on λ ∈ R \ {0} as a bounded operator from
xαL2 to x−αL2 if α > 1/2.

In R
2 there is a Poisson operator P0(λ) mapping C∞(S1) to x−αL2(R2) for α > 1/2, which

satisfies that for any f+ ∈ C∞(S1) there exists f− ∈ C∞(S1) such that

P0(λ)f+ − x
1
2 eiλ/xf+ − x

1
2 e−iλ/xf− ∈ L2, (∆− λ2)P0(λ)f+ = 0.

We can therefore define in our case a similar Poisson operator PV (λ) mapping C∞(∂M 0) to
x−αL2 for α > 1/2, by

(20) PV (λ)f+ := (1− χ)P0(λ)f+ −RV (λ)(∆g0 + V − λ2)(1 − χ)P0(λ)f+

where 1 − χ ∈ C∞(M0) equals 1 in the ends Ei and P0(λ) denotes here the Schwartz kernel
of the Poisson operator on R

2 pulled back to each of the Euclidean ends Ei of M0 in the

1In [14], a unique continuation is used for Schwartz solutions of (∆+ V − λ2)u = 0 when V is a compactly
supported potential on R

n but the same result is also true in our setting, this is a consequence of a standard
Carleman estimate.
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obvious way. Then, since (∆g0 + V − λ2)(1 − χ)P0(λ)f+ ∈ e−γ/xL2 for all γ > 0, it suffices
to use Corollaries 5.2 and 5.4 to see that it defines an analytic Poisson operator PV (λ) on
λ ∈ R \ {0} satisfying that for all f+ ∈ C∞(∂M0), there exists f− ∈ C∞(∂M 0) such that

(21) PV (λ)f+ − x
1
2 eiλ/xf+ − x

1
2 e−iλ/xf− ∈ L2, (∆ + V − λ2)PV (λ)f+ = 0.

Moreover, it is easily seen to be the unique solution of (21): indeed, if two such solutions exist

then the difference is a solution u with asymptotic x
1
2 e−iλ/xf−+L2 for some f− ∈ C∞(∂M 0),

but applying Lemma 5.3 with u− = u+ = u shows that f− = 0, thus u ∈ L2, which implies
u = 0 by Corollary 5.4.

Definition 5.5. The scattering matrix SV (λ) : C∞(∂M 0) → C∞(∂M 0) for λ ∈ R \ {0} is
defined to be the map SV (λ)f+ := f− where f− is given by the asymptotic

PV (λ)f+ = x
1
2 eiλ/xf+ + x

1
2 e−iλ/xf− + g, with g ∈ L2.

We remark that, using Lemma 5.3 and the uniqueness of the Poisson operator, one easily
deduces for λ ∈ R \ {0}

(22) SV (λ)
∗ = SV (−λ) = SV (λ)

−1

where the scalar product on L2(∂M0) is induced by the metric x2g0|T∂M0
.

We can now state a density result similar to Proposition 3.3 of [26]:

Proposition 5.6. If V ∈ e−γ0/xL∞(M0) (resp. V ∈ e−γ0/x
2
L∞(M0)) for some γ0 > 0, and

λ ∈ R \ {0}, then for any 0 < γ < γ′ < γ0 the set

F := {PV (λ)f+; f+ ∈ C∞(∂M0)}

is dense in the null space of ∆g0 + V − λ2 in eγ/xL2(M0) for the topology of eγ
′/xL2(M0)

(resp. in eγ/x
2
L2(M0) for the topology of eγ

′/x2L2(M0)).

Proof. First assume V ∈ e−γ0/xL∞(M0). Let w ∈ e−γ
′/xL2 be orthogonal to F, and set u− :=

RV (λ)w and u+ = PV (λ)f++ for some f++ ∈ C∞(∂M 0). Then, define f−− ∈ C∞(∂M 0)

by RV (λ)w − x
1
2 e−iλ/xf−− ∈ L2, and from Lemma 5.3 we obtain 〈f+−, f−−〉 = 0 since

〈w,PV (λ)f++〉 = 0 by assumption. Since f+− = SV (λ)f++ is arbitrary, then f−− = 0 and
u− ∈ L2. In particular, from the parametrix constructed in the proof of Lemma 5.1

RV (λ)w − (1− χ0)R0(λ)(1 − χ)(1 +Q(λ))w ∈ L2

with (1 + Q(λ))w ∈ e−γ
′/xL2. Since in each end, R0(λ) is the integral kernel of the free

resolvent of the Euclidean Laplacian on R
2 and (1 − χ0) and (1 − χ) are supported in the

ends, we can view the term (1−χ0)R0(λ)(1−χ)(1+Q(λ))w as a disjoint sum (over the ends)
of functions on R

2 of the form

(23) (1− χ0(z))
1

(2π)2

∫

R2

eizξ(ξ2 − λ2 − i0)−1f̂(ξ)dξ

where in each end Ei, f = (1−χ)(1+Q(λ))w ∈ e−γ
′/xL2(Ei) can be considered as a function in

e−γ
′|z|L2(R2). By the Paley-Wiener theorem, f̂ is holomorphic in a strip U = {|Im(ξ)| < γ′}

with bound supη≤γ ||f̂(·+ iη)||L2(R2) <∞ for all γ < γ′, so the fact that (23) is in L2 implies

that f̂ vanishes at the real sphere {ξ ∈ R
2; ξ2 = λ2}, and thus there exists h holomorphic in

U such that f̂(ξ) = (ξ2 − λ2)h(ξ) (see e.g. the proof of Lemma 2.5 in [17]), and satisfying the

same types of L2 estimates as f̂ in U on lines Im(ξ) = cst. By the Paley-Wiener theorem
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again, we deduce that (23) is in e−γ|z|L2 and thus RV (λ)w ∈ e−γ/xL2(M0) for any γ < γ′.

Then if v ∈ eγ/xL2(M0) and (∆g0 + V − λ2)v = 0, one has by integration by parts

0 = 〈RV (λ)w, (∆g0 + V − λ2)v〉 = 〈w, v〉

which ends the proof in the case V ∈ e−γ0/xL∞(M0). The quadratic decay case V ∈

e−γ0/x
2
L∞(M0) is exactly similar but instead of Paley-Wiener theorem, we use Corollary

7.3 and the inclusions e−γ
′/x2L2 ⊂ e−γ

′′/x2L1 ∩ e−γ
′′/x2L2 and e−γ

′/x2L∞ ⊂ e−γ/x
2
L2 for all

γ < γ′′ < γ′. �

6. Identifying the potential

6.1. The case of a surface. On a Riemann surface (M0, g0) with N Euclidean ends and
genus g, we assume that V1, V2 ∈ C1,α(M0) are two real valued potentials such that the
respective scattering operators SV1(λ) and SV2(λ) agree for a fixed λ > 0. We also assume
that for all γ > 0

V1, V2 ∈

{
e−γ/xL∞(M0) if N ≥ max(2g + 1, 2)

e−γ/x
2
L∞(M0) if N ≥ g + 1.

By considering the asymptotics of u1 := PV1(λ)f1 and PV2(−λ)f2 for fi ∈ C∞(∂M 0) we easily
have by integration by parts that

∫

M0

(V1 − V2)u1u2 dvolg0 =− 2iλ

∫

∂M0

SV1(λ)f1.f2 − f1.SV2(−λ)f2

=− 2iλ

∫

∂M0

(SV1(λ)− SV2(λ))f1.f2 = 0

(24)

by using (22). From Proposition 5.6, this implies by density that, if V ∈ e−γ/xL∞ (resp.

V ∈ e−γ/x
2
L∞ for all γ > 0), then for all solutions ui of (∆g0 +Vi−λ2)ui = 0 in eγ

′/xL2(M0)

(resp. ui ∈ eγ
′/x2L2(M0)) for some γ′ > 0, we have

(25)

∫

M0

(V1 − V2)u1u2 dvolg0 = 0.

We shall now use our complex geometric optics solutions as special solutions in the weighted

space e−γ
′/hxL2(M0) (resp. e−γ

′/hx2L2(M0)) for some γ′ > 0 if V ∈ e−γ/xL∞ (resp. V ∈

e−γ/x
2
L∞) for all γ > 0.

Let p ∈ M0 be such that, using Proposition 2.1, we can choose a holomorphic Morse
function Φ = ϕ + iψ with linear or quadratic growth on M0 (depending on the topological
assumption), with a critical point at p. Then for the complex geometric optics solutions u1, u2
with phase Φ constructed in Section 4, the identity (25) holds true. We will then deduce the

Proposition 6.1. Let λ ∈ (0,∞) and assume that SV1(λ) = SV2(λ), then V1(p) = V2(p).

Proof. Let u1 and u2 be solutions on M0 to

(∆g + Vj − λ2)uj = 0

constructed in Section 4 with phase Φ for u1 and −Φ for u2, thus of the form

u1 = eΦ/h(a+ r11 + r12), u2 = e−Φ/h(a+ r21 + r22).
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We have the identity ∫

M0

u1(V1 − V2)u2 dvolg0 = 0

Then by using the estimates in Lemma 4.1 and Proposition 4.1 we have, as h→ 0,
∫

M0

e2iψ/h|a|2(V1 − V2) dvolg0 + h

∫

M0

e2iψ/h(ar̃112 + ar̃212)(V1 − V2) dvolg0 + o(h) = 0

where r̃j12 ∈ L∞(M0) are defined in Lemma 4.1, with the superscript j refering to the solution

for the potential Vj; in particular these functions r̃j12 are independent of h.
By splitting Vi(·) = (Vi(·)− Vi(p)) + Vi(p) and using the C1,α regularity assumption on Vi,

one can use stationary phase for the Vi(p) term and integration by parts to gain a power of
h for the Vi(·)− Vi(p) term (see the proof of Lemma 5.4 in [8] for details) to deduce

∫

M0

e2iψ/h|a|2(V1 − V2) dvolg0 = Ch(V1(p)− V2(p)) + o(h)

for some C 6= 0. Therefore,

Ch(V1(p)− V2(p)) + h

∫

M0

e2iψ/h(ar̃112 + ar̃212)(V1 − V2) dvolg0 = o(h).

Now to deal with the middle terms, it suffices to apply a Riemann-Lebesgue type argument
like Lemma 5.3 of [8] to deduce that it is a o(h). The argument is simply to approximate
the amplitude in the L1(M0) norm by a smooth compactly supported function and then use
stationary phase to deal with the smooth function. We have thus proved that V1(p) = V2(p)
by taking h→ 0. �

7. Appendix

To obtain mapping properties of the resolvent of ∆R2 acting on functions with Gaussian
decay, we shall give two Lemmas on Fourier transforms of functions with Gaussian decay.

Lemma 7.1. Let f(z) ∈ e−γ|z|
2
L2(R2) for some γ > 0. Then the Fourier transform f̂(ξ)

extends analytically to C
2 and for all ξ, η ∈ R

2,

||f̂(ξ + iη)||L2(R2,dξ) ≤ 2πe
|η|2

4γ ||eγ|z|
2
f ||L2(R2).

If f(z) ∈ e−γ|z|
2
L1(R2) for some γ > 0 then

sup
ξ∈R2

|f̂(ξ + iη)| ≤ e
|η|2

4γ ||eγ|z|
2
f ||L1(R2).

Proof. The first statement is clear. For the bound, we write

f̂(ξ + iη) = e
|η|2

4γ

∫

R2

e−iξ.ze
−γ|z− η

2γ
|2
eγ|z|

2
f(z)dz = e

|η|2

4γ Fz→ξ(e
−γ|z− η

2γ
|2
eγ|z|

2
f(z)).

But the function e−γ|z−
η
2γ

|2eγ|z|
2
f(z) is in L2(R2, dz) and its norm is bounded uniformly by

||eγ|z|
2
f ||L2 , thus it suffices to use the Plancherel theorem to obtain the desired bound. The

L∞ bound is similar. �
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Lemma 7.2. Let F (ξ + iη) be a complex analytic function on R
2 + iR2 = C

2 such that there
is C > 0 and γ > 0 with

||F (ξ + iη)||L2(R2,dξ) ≤ Ce
|η|2

4γ and sup
ξ∈R2

|F (ξ + iη)| ≤ Ce
|η|2

4γ .

If F vanishes on the real submanifold {|ξ|2 = λ2}, then F
−1
ξ→z(

F (ξ)
|ξ|2−λ2

) ∈ e−γ|z|
2
L∞(R2).

Proof. First by analyticity of F , one has that F vanishes on the complex hypersurface
Mλ := {ζ ∈ C

2; ζ.ζ = λ2} (see for instance the proof of Lemma 2.5 of [17]), and in particular
G(ζ) = F (ζ)/(ζ.ζ−λ2) is an analytic function on C

2. We will first prove that for each η ∈ R
2,

G(ξ + iη) ∈ L1(R2, dξ) ∩ L∞(R2, dξ) and

(26) ||G(ξ + iη)||L1(R2,dξ) ≤ Ce
|η|2

4γ .

If |η| ≤ 2 we choose the disc B := {ξ ∈ R
2; |ξ|2 < 2(4 + λ2)} and let ζ := ξ + iη. Then

||G(ξ + iη)||L1(B,dξ) and ||(ζ.ζ − λ2)−1||L2(R2\B,dξ) are uniformly bounded for |η| ≤ 2, and
we obtain by Cauchy-Schwarz that (26) holds for |η| ≤ 2. For the case |η| > 2 we define
Uη := {ξ ∈ R

2; |ζ.ζ − λ2| > |η|} and note that

sup
|η|>2

||(ζ.ζ − λ2)−1||L1(R2\Uη ,dξ) <∞,

sup
|η|>2

||(ζ.ζ − λ2)−1||L2(Uη ,dξ) <∞.

These results follow by decomposing the integration sets to parts where one can change
coordinates ξ1 + iξ2 to ξ̃1 + iξ̃2 := ζ.ζ − λ2, and by evaluating simple integrals. Then (26)
follows from Cauchy-Schwarz and the estimates for F .

Let η = 2γz, we use a contour deformation from R
2 to 2iγz + R

2 in C
2,

∫

R2

eiz.ξG(ξ)dξ =

∫

R2

eiz.(ξ+2iγz)G(ξ + 2iγz)dξ,

which is justified by the fact that G(ξ+ iη) ∈ L1(R2 ×K, dξ dη) for any compact set K in R
2

by the uniform bound (26). Now using (26) again shows that
∣∣∣
∫

R2

eiz.ξG(ξ)dξ
∣∣∣ ≤ Ce−γ|z|

2

which ends the proof. �

Corollary 7.3. Let f(z) ∈ e−γ|z|
2
L2(R2) ∩ e−γ|z|

2
L1(R2) for some γ > 0. Assume that its

Fourier transform f̂(ξ) vanishes on the sphere {|ξ| = |λ|}, then one has

F
−1
ξ→z

( f̂(ξ)

|ξ|2 − λ2

)
∈ e−γ|z|

2
L∞(R2).
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