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INVERSE SCATTERING AT FIXED ENERGY ON SURFACES WITH
EUCLIDEAN ENDS

COLIN GUILLARMOU, MIKKO SALO, AND LEO TZOU

ABSTRACT. On a fixed Riemann surface (Mo, go) with N Euclidean ends and genus g, we
show that, under a topological condition, the scattering matrix Sy (\) at frequency A > 0

for the operator A 4+ V determines the potential V if V € C%* (M) N e~ 74:20)" [,%°(M)
for all v > 0 and for some j € {1, 2}, where d(z, z0) denotes the distance from z to a fixed
point zg € My. The topological condition is given by N > max(2g + 1,2) for j = 1 and by
N > g+1if j = 2. In R? this implies that the operator Sy (\) determines any C**® potential
V such that V(z) = 0(6_7‘2‘2) for all v > 0.

1. INTRODUCTION

The purpose of this paper is to prove an inverse scattering result at fixed frequency A > 0
in dimension 2. The typical question one can ask is to show that the scattering matrix Sy ()
for the Schrodinger operator A+ V determines the potential. This is known to be false if V' is
only assumed to be Schwartz, by the example of Grinevich-Novikov [(], but it is also known
to be true for exponentially decaying potentials (i.e. V € e V*IL>°(R?) for some v > 0) with
norm smaller than a constant depending on the frequency \, see Novikov [[[J]. For other
partial results we refer to [{], [L0], [I9], [Rd], [B1]. The determinacy of V from Sy (\) when
V' is compactly supported, without any smallness assumption on the norm, follows from the
recent work of Bukhgeim [fl] on the inverse boundary problem after a standard reduction to
the Dirichlet-to-Neumann operator on a large sphere (see 28] for this reduction).

In dimensions n > 3, it is proved in Novikov [1f] (see also [[J] for the case of magnetic
Schrodinger operators) that the scattering matrix at a fixed frequency A determines an expo-
nentially decaying potential. When V is compactly supported this also follows directly from
the result by Sylvester-Uhlmann [RJ] on the inverse boundary problem, by reducing to the
Dirichlet-to-Neumann operator on a large sphere. Melrose [[4] gave a direct proof of the last
result based on the methods of [R2], and this proof was extended to exponentially decaying
potentials in [26] and to the magnetic case in [[L7]. In the geometric scattering setting, [[L1], [L9]
reconstruct the asymptotic expansion of a potential or metrics from the scattering operator
at fixed frequency on asymptotically Euclidean/hyperbolic manifolds. Further results of this
type are given in [27, Pg].

The method for proving the determinacy of V' from Sy (A) in [[4, is based on the
construction of complex geometric optics solutions u(z) = e”*(1+17(p, 2)) of (A+V —A\)u =
0 with p € C™", z € R", and the density of the oscillating scattering solutions wus.(z) =
fsn—l Dy (N, z,w) f(w)dw within those complex geometric optics solutions, where ®y (A, z,w) =
ez 4 e_i)‘w'z|z|7%(”71)a()\,z,w) are the perturbed plane wave solutions (here w € S"~!
and a € L*). Unlike when n > 3, the problem in dimension 2 is that the set of complex
geometrical optics solutions of this type is not large enough to show that the Fourier transform
of Vi — V5 is 0.
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The real novelty in the recent work of Bukhgeim [f] in dimension 2 is the construction of new
complex geometric optics solutions (at least on a bounded domain Q C C) of (A + V;)u; =0
of the form u; = e®/"(1 4+ r1(h)) and uy = e~ ®/"(1 4 r3(h)) with 0 < h < 1 where ® is a
holomorphic function in C with a unique non-degenerate critical point at a fixed zy € C (for
instance ®(z) = (2 — 20)?), and ||r;(h)||r» is small as h — 0 for p > 1. These solutions allow
to use stationary phase at zg to get

/Q (Vi — Va)urtiz = C(Vi(z0) — Va(zo))h + o(h), C #0

as h — 0 and thus, if the Dirichlet-to-Neumann operators on 9f2 are the same, then Vj(zp) =
VQ(ZO).

One of the problems to extend this to inverse scattering is that a holomorphic function
in C with a non-degenerate critical point needs to grow at least quadratically at infinity,
which would somehow force to consider potentials V' having Gaussian decay. On the other
hand, if we allow the function to be meromorphic with simple poles, then we can construct
such functions, having a single critical point at any given point p, for instance by considering
®(2) = (z—p)?/z. Of course, with such ® we then need to work on C\ {0}, which is conformal
to a surface with no hole but with 2 Euclidean ends, and ® has linear growth in the ends.
In general, on a surface with genus ¢ and N Euclidean ends, we can use the Riemann-Roch
theorem to construct holomorphic functions with linear or quadratic growth in the ends, the
dimension of the space of such functions depending on g, V.

In the present work, we apply this idea to obtain an inverse scattering result for Ay, + V'
on a fixed Riemann surface (Mjy, gg) with Euclidean ends, under some topological condition
on My and some decay condition on V.

Theorem 1.1. Let (My,go) be a non-compact Riemann surface with genus g and N ends
isometric to R?\ {|z| < 1} with metric |dz|?. Let V4 and Va be two potentials in C1(My)
with a > 0, and such that Sy, (A\) = Sv,(A) for some X\ > 0. Let d(z,zy) denote the distance
between z and a fixed point zy € M.
(i) If N > max(2g + 1,2) and V; € e 7420) L°(My) for all v > 0, then Vi = Va.
(ii) If N > g+ 1 and V; € e~ 420" L®°(My) for all v > 0, then Vi = Va.

In R?, where ¢ = 0 and N = 1, we have an immediate corollary:

Corollary 1.2. Let A > 0 and let Vi, Vo € CY2(R2) N e 2 Lo(R2) for all v > 0. If the
scattering matrices satisfy Sy, (\) = Sy, (\), then Vi = V5.

This is an improvement on the result of Bukhgeim [fl] which shows identifiability for com-
pactly supported functions, and in a certain sense on the result of Novikov [[[f] since it is
assumed there that the potential has to be of small L*° norm.

The structure of the paper is as follows. In Section f] we employ the Riemann-Roch theorem
and a transversality argument to construct Morse holomorphic functions on (M, gg) with
linear or quadratic growth in the ends. Section [J considers Carleman estimates with harmonic
weights on (M, go), where suitable convexification and weights at the ends are required since
the surface is non compact. Complex geometrical optics solutions are constructed in Section
. Section | discusses direct scattering theory on surfaces with Euclidean ends and contains
the proof that scattering solutions are dense in the set of suitable solutions, and Section
f gives the proof of Theorem [I.I]. Finally, there is an appendix discussing a Paley-Wiener
type result for functions with Gaussian decay which is needed to prove density of scattering
solutions.
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2. HOLOMORPHIC MORSE FUNCTIONS ON A SURFACE WITH EUCLIDEAN ENDS

2.1. Riemann surfaces with Euclidean ends. Let (M, gp) be a non-compact connected
smooth Riemannian surface with N ends Fi,..., Eny which are Euclidean, i.e. isometric to
C\ {|z| < 1} with metric |dz|>. By using a complex inversion z — 1/z, each end is also
isometric to a pointed disk

2

E; ~ {|z| <1,z # 0} with metric ”634
thus conformal to the Euclidean metric on the pointed disk. The surface My can then be
compactified by adding the points corresponding to z = 0 in each pointed disk corresponding
to an end FE;, we obtain a closed Riemann surface M with a natural complex structure
induced by that of My, or equivalently a smooth conformal class on M induced by that of
My. Another way of thinking is to say that Mj is the closed Riemann surface M with N points
e1,...,eny removed. The Riemann surface M has holomorphic charts z,, : U, — C and we will
denote by z1,...zn the complex coordinates corresponding to the ends of My, or equivalently
to the neighbourhoods of the points e;. The Hodge star operator x acts on the cotangent
bundle 7% M, its eigenvalues are +i and the respective eigenspaces 17 (M := ker(x +4Id) and
151 M = ker(x — ild) are sub-bundles of the complexified cotangent bundle CT*M and the
splitting CT*M = Ty M & 15 M holds as complex vector spaces. Since * is conformally
invariant on 1-forms on M, the complex structure depends only on the conformal class of g.
In holomorphic coordinates z = = + iy in a chart U,, one has x(udx + vdy) = —vdx + udy
and
17 M|y, =~ Cdz, 15, M|y, ~ Cdz

where dz = dx + idy and dZ = dx — idy. We define the natural projections induced by the
splitting of CT™*M

1,0 - CI*M — TI*,OM’ o,1 - CI*M — T&IM.
The exterior derivative d defines the de Rham complex 0 — A? — A — A2 — 0 where A* :=

A*T*M denotes the real bundle of k-forms on M. Let us denote CA* the complexification of
A* | then the @ and 0 operators can be defined as differential operators @ : CA® — 17 oM and

d: CAO — T | M by
of :==modf, Of :=moadf,

they satisfy d = 0 + 0 and are expressed in holomorphic coordinates by
Of = 0.fdz, Of = 0.1 dz,

with 9, := 1(8, —i9,) and 0; := 3(d; +i0,). Similarly, one can define the 9 and d operators
from CA! to CA? by setting

(w10 +woi) = dwo1, Olwio+wor):=dwip
if wo1 €15, M and wy g € T (M. In coordinates this is simply

O(udz +vdz) = Qv Adz, O(udz +vdz) = Ou A dz.
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If g is a metric on M whose conformal class induces the complex structure TﬁOM , there is a
natural operator, the Laplacian acting on functions and defined by

Af = —2i%00f = d*d

where d* is the adjoint of d through the metric ¢ and x is the Hodge star operator mapping
A? to A° and induced by g as well.

2.2. Holomorphic functions. We are going to construct Carleman weights given by holo-
morphic functions on My which grow at most linearly or quadratically in the ends. We will
use the Riemann-Roch theorem, following ideas of [[], however, the difference in the present
case is that we have very little freedom to construct these holomorphic functions, simply
because there is just a finite dimensional space of such functions by Riemann-Roch. For
the convenience of the reader, and to fix notations, we recall the usual Riemann-Roch index
theorem (see Farkas-Kra [f]] for more details). A divisor D on M is an element

D= ((Pl,”l) (Pkank)) € (M x Z)k, where k € N

which will also be denoted D = HZ (piior D= Hpe M p*®) where a(p) = 0 for all p except

a(p;) = n;. The inverse divisor of D is defined to be D™1 := HpeMp_O‘(p) and the degree
of the divisor D is defined by deg(D) := Zle n; = pen @(p). A non-zero meromorphic
function on M is said to have divisor D if (f) := [[,cps p°d?P) is equal to D, where ord(p)
denotes the order of p as a pole or zero of f (with positive sign convention for zeros). Notice
that in this case we have deg(f) = 0. For divisors D' =[] 5, p¥® and D = [loens pP) | we

say that D’ > D if o/ (p) > a(p) for all p € M. The same exact notions apply for meromorphic
1-forms on M. Then we define for a divisor D

r(D) := dim({f meromorphic function on M;(f) > D} U{0}),
i(D) := dim({u meromorphic 1 form on M;(u) > D} U{0}).

The Riemann-Roch theorem states the following identity: for any divisor D on the closed
Riemann surface M of genus g,

(1) r(D7Y) =i(D) +deg(D) — g + 1.

Notice also that for any divisor D with deg(D) > 0, one has r(D) = 0 since deg(f) = 0 for
all f meromorphic. By [}, Th. p70], let D be a divisor, then for any non-zero meromorphic
1-form w on M, one has

(2) i(D) =r(D(w)™)
which is thus independent of w. For instance, if D = 1, we know that the only holomorphic
function on M is 1 and one has 1 = r(1) = 7((w)™') — g+ 1 and thus r((w)™ ) =g if wis a
non-zero meromorphic 1 form. Now if D = (w), we obtain again from ([])

g=r(w)™") =2~ g+deg((w))

which gives deg((w)) = 2(g — 1) for any non-zero meromorphic 1-form w. In particular, if D
is a divisor such that deg(D) > 2(g — 1), then we get deg(D(w)™ ') = deg(D) —2(g — 1) > 0
and thus i(D) = 7(D(w)~!) = 0, which implies by ([l)

(3) deg(D) >2(g —1) = r(D™") =deg(D) —g+1 > g.

Now we deduce the
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Lemma 2.1. Let eq,...,en be distinct points on a closed Riemann surface M with genus g,
and let zy be another point of M \ {e1,...,exn}. If N > max(2g + 1,2), the following hold
true:

(i) there exists a meromorphic function f on M with at most simple poles, all contained in
{e1,...,en}, such that Of(zp) # 0,

(ii) there exists a meromorphic function h on M with at most simple poles, all contained in
{e1,...,en}, such that zy is a zero of order at least 2 of h.

Proof. Let first g > 1, so that NV > 2g+1. By the discussion before the Lemma, we know that
there are at least g + 2 linearly independent (over C) meromorphic functions fy,. .., fs+1 on
M with at most simple poles, all contained in {eq,...,es,+1}. Without loss of generality, one
can set fo = 1 and by linear combinations we can assume that fi(z0) = --- = fy4+1(20) = 0.
Now consider the divisor D; = €1 ...eg4112,° for j = 1,2, with degree deg(D;) =2g+1 — j,
then by the Riemann-Roch formula (more precisely ([))

r(D;Y) =g+2—j

Thus, since r(Dy > r(Dy 1) = g and using the assumption that g > 1, we deduce that there

is a function in span(fi,..., fg+1) which has a zero of order 2 at zy and a function which has
a zero of order exactly 1 at zg. The same method clearly works if ¢ = 0 by taking two points
e1, e9 instead of just eg. O

If we allow double poles instead of simple poles, the proof of Lemma P.1] shows the

Lemma 2.2. Let ey,...,en be distinct points on a closed Riemann surface M with genus g,
and let zy be another point of M \ {e1,...,enx}. If N > g+ 1, then the following hold true:
(i) there exists a meromorphic function f on M with at most double poles, all contained in
{e1,...,en}, such that Of(zp) # 0,

(ii) there exists a meromorphic function h on M with at most double poles, all contained in
{e1,...,en}, such that z is a zero of order at least 2 of h.

2.3. Morse holomorphic functions with prescribed critical points. We follow in this
section the arguments used in [[f] to construct holomorphic functions with non-degenerate
critical points (i.e. Morse holomorphic functions) on the surface My with genus g and N ends,
such that these functions have at most linear growth (resp. quadratic growth) in the ends if
N > max(2g+1,2) (resp. if N > g+1). We let H be the complex vector space spanned by the
meromorphic functions on M with divisors larger or equal to efl . 6;\71 (resp. by ef2 e 6;\[2)
if we work with functions having linear growth (resp. quadratic growth), where e1,...ey € M
are points corresponding to the ends of My as explained in Section . Note that H is a complex
vector space of complex dimension greater or equal to N — g + 1 (resp. 2N — g + 1) for the
efl . ejvl divisor (resp. the ef2 . 6;\[2 divisor). We will also consider the real vector space
H spanned by the real parts and imaginary parts of functions in JH, this is a real vector space
which admits a Lebesgue measure. We now prove the following

Lemma 2.3. The set of functions w € H which are not Morse in My has measure 0 in H,
i particular its complement is dense in H.

Proof. We use an argument very similar to that used by Uhlenbeck [R4]. We start by defining
m : Mo x H — T*My by (p,u) + (p,du(p)) € T, Mp. This is clearly a smooth map, linear
in the second variable, moreover m,, := m(.,u) = (-,du(-)) is smooth on Mj. The map u is a
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Morse function if and only if m,, is transverse to the zero section, denoted Ty My, of T™* My,
ie. if

Image(Dpmy,) + Tn(p) (T My) = Ton(p) (T*My), Vp € My such that m,(p) = (p,0).

This is equivalent to the fact that the Hessian of u at critical points is non-degenerate (see for
instance Lemma 2.8 of [24]). We recall the following transversality result, the proof of which
is contained in [24, Th.2] by replacing Sard-Smale theorem by the usual finite dimensional
Sard theorem:

Theorem 2.4. Let m: X x H — W be a C* map and X, W be smooth manifolds and H a
finite dimensional vector space, if W' C W is a submanifold such that k > max(1,dim X —
dim W + dim W), then the transversality of the map m to W' implies that the complement
of the set {u € H;m,, is transverse to W'} in H has Lebesgue measure 0.

We want to apply this result with X := My, W := T*My and W' := Tj My, and with
the map m as defined above. We have thus proved our Lemma if one can show that m is
transverse to W'. Let (p,u) such that m(p,u) = (p,0) € W'. Then identifying T, o) (7" Mo)
with T}, Mo @ T}, My, one has

Dm(pm)(z,v) = (z,dv(p) + Hess,(u)z)

where Hess,(u) is the Hessian of u at the point p, viewed as a linear map from 7}, My to Ty Mo
(note that this is different from the covariant Hessian defined by the Levi-Civita connection).
To prove that m is transverse to W’ we need to show that (z,v) — (z,dv(p) + Hessp(u)z) is
onto from T,My & H to T,My & T, My, which is realized if the map v — dv(p) from H to
Ty My is onto. But from Lemma .1, we know that there exists a meromorphic function f
with real part v = Re(f) € H such that v(p) = 0 and dv(p) # 0 as an element of T; My. We
can then take vy := v and v9 := Im(f), which are functions of H such that dvy(p) and dvs(p)
are linearly independent in T;; My by the Cauchy-Riemann equation d0f = 0. This shows our
claim and ends the proof by using Theorem P.4. O

In particular, by the Cauchy-Riemann equation, this Lemma implies that the set of Morse
functions in H is dense in H. We deduce

Proposition 2.1. There exists a dense set of points p in My such that there exists a Morse
holomorphic function f € H on My which has a critical point at p.

Proof. Let p be a point of My and let u be a holomorphic function with a zero of order at
least 2 at p, the existence is ensured by Lemma R.1. Let B(p,n) be a any small ball of radius
n > 0 near p, then by Lemma R.3, for any € > 0, we can approach u by a holomorphic Morse
function u, € H, which is at distance less than € of u in a fixed norm on the finite dimensional
space H. Rouché’s theorem for d,u. and 0,u (which are viewed as functions locally near p)
implies that 0,u, has at least one zero of order exactly 1 in B(p,n) if € is chosen small enough.
Thus there is a Morse function in H with a critical point arbitrarily close to p. ([l

Remark 2.5. In the case where the surface M has genus 0 and N ends, we have an explicit
formula for the function in Proposition [2.1: indeed My is conformal to C\ {e1,...,en_1}
for some e; € C - i.e. the Riemann sphere minus N points - then the function f(z) =
(2—20)%/(z—e1) with 2o € {e1,...,en_1} has 29 for unique critical point in C\{e1,...,en_1}
and it is non-degenerate.
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We end this section by the following Lemmas which will be used for the amplitude of the
complex geometric optics solutions but not for the phase.

Lemma 2.6. For any po,p1,---pn € My some points of My and L € N, then there exists a
function a(z) holomorphic on My which vanishes to order L at all p; for j =1,...,n and
such that a(pg) # 0. Moreover a(z) can be chosen to have at most polynomial growth in the
ends, i.e. |a(z)| < C|z|’ for some J € N.

Proof. It suffices to find on M some meromorphic function with divisor greater or equal to
D = el_‘] . e]_v‘]plL . pﬁ but not greater or equal to Dpg and this is insured by Riemann-
Roch theorem as long as JN — nL > 2g since then r(D) = —g+ 1+ JN —nL and r(Dpg) =
—g+ JN —nL. O

Lemma 2.7. Let {po,p1,..,pn} C My be a set of n+1 disjoint points. Let cy,cy,...,cx € C,
L € N, and let z be a complex coordinate near py such that pg = {z = 0}. Then there
exists a holomorphic function f on My with zeros of order at least L at each pj;, such that
f(z) =co+c1z+ ... + ez + O(]z|KFY) in the coordinate z. Moreover f can be chosen so
that there is J € N such that, in the ends, |05 f(2)| = O(|z|”) for all £ € Ny.

Proof. The proof goes along the same lines as in Lemma P.. By induction on K and

linear combinations, it suffices to prove it for ¢g = -+ = ¢cx_1 = 0. As in the proof of
Lemma E, if J is taken large enough, there exists a function with divisor greater or equal to
—J K—1_L

D:=e”...eN Py P1 ...pL but not greater or equal to Dpg. Then it suffices to multiply

this function by cx times the inverse of the coefficient of 2% in its Taylor expansion at z = 0.
O

2.4. Laplacian on weighted spaces. Let z be a smooth positive function on My, which is
equal to |z|7! for |z| > ro in the ends E; ~ {z € C;|z| > 1}, where 7 is a large fixed number.
We now show that the Laplacian Ay on a surface with Euclidean ends has a right inverse on
the weighted spaces x~7 L?(My) for J ¢ N positive.

Lemma 2.8. For any J > —1 which is not an integer, there exists a continuous operator G
mapping =7 L*(My) to x=772L?(My) such that Ay G = 1d.

Proof. Let gy := 2%gy be a metric conformal to gg. The metric g, in the ends can be written
g = dz?/a* + df%, by using radial coordinates x = 2|71, = z/|z| € S', this is thus a
b-metric in the sense of Melrose [[L3], giving the surface a geometry of surface with cylindrical
ends. Let us define for m € Ny

H"(My) := {u € L*(My;dvoly, ); (20,)705u € L*(My;dvoly,) for all j + &k < m}.

The Laplacian has the form A, = —(29;)? + Ag in the ends, and the indicial roots of Ay,
in the sense of Section 5.2 of [[J] are given by the complex numbers A such that x=* Ay, % is
not invertible as an operator acting on the circle 591. Thus the indicial roots are the solutions
of A2 4 k? = 0 where k2 runs over the eigenvalues of Ag1, that is, k € Z. The roots are simple
at +ik € iZ\ {0} and 0 is a double root. In Theorem 5.60 of [I3], Melrose proves that A, is
Fredholm on z*H. g(MO) if and only if —a is not the imaginary part of some indicial root, that
is here a ¢ Z. For J > 0, the kernel of Ay, on the space xJHg(MO) is clearly trivial by an
energy estimate. Thus Ay, : 2=/ HP (M) — x*JHb_Z(MO) is surjective for J > 0 and J ¢ Z,
and the same then holds for Ay, : 77/ HZ(My) — z~/ H)(My) by elliptic regularity.
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Now we can use Proposition 5.64 of [[L3], which asserts, for all positive J ¢ Z, the existence
of a pseudodifferential operator Gj, mapping continuously z~7 HP (M) to 2=/ HZ(My) such
that Ay, Gy = Id. Thus if we set G = Gpr~—2, we have AyyG = 1d and G maps continuously
/L2 (M) to =7 71L%(My) (note that L*(My) = zHY(My)). O

3. CARLEMAN ESTIMATE FOR HARMONIC WEIGHTS WITH CRITICAL POINTS

3.1. The linear weight case. In this section, we prove a Carleman estimate using harmonic
weights with non-degenerate critical points, in a way similar to []. Here however we need to
work on a non compact surface and with weighted spaces. We first consider a Morse holo-
morphic function ® € H obtained from Proposition R.1 with the condition that ® has linear
growth in the ends, which corresponds to the case where V € e=7/* L (M) for all 4 > 0. The
Carleman weight will be the harmonic function ¢ := Re(®). We let x be a positive smooth
function on My such that o = |z|~! in the complex charts {z € C;|z| > 1} ~ E; covering the
end F;.

Let 6 € (0,1) be small and let us take ¢y € 2~ “L?(Mp) a solution of Ay e = x>,
a solution exists by Proposition g if &« > 1+ 4. Actually, by using Proposition 5.61
of [[J], if we choose a < 2, then it is easy to see that ¢ is smooth on My and has
polyhomogeneous expansion as |z| — oo, with leading asymptotic in the end E; given by
0o = —x7%/6% + ¢;log(z) + d; + O(x) for some ¢;, d; which are smooth functions in S'. For
€ > 0 small, we define the convexified weight ¢, := ¢ — %gpo.

We recall from the proof of Proposition 3.1 in [ the following estimate which is valid in
any compact set K C My: for all w € C§°(K), we have

Cr1

4 = (—

@ 2(

1 1 _
= (Sl + s loldellZs + 55 loldoel s + dwlBagr) ) < s/ Age=# w2,
where C depends on K but not on h and e.

So for functions supported in the end F;, it clearly suffices to obtain a Carleman estimate
in E; ~ R?\ {|z] < 1} by using the Euclidean coordinate z of the end.

Proposition 3.1. Let § € (0,1), and @, as above, then there exists C > 0 such that for all
€ > h > 0 small enough, and all u € C§°(E;)

C
Rl /M (A = X)e¢ Mo = Z(llat 2l 72 + Bla’ 2 dull7).

Proof. The metric gy can be extended to R? to be the Euclidean metric and we shall denote
by A the flat positive Laplacian on R%. Let us write P := Ay — A2, then the operator
Py, := h2e#</hpe=¢</l ig given by

P, = h?A — |dpe|* + 2hV ..V — hAp, — h?)\?,
following the notation of [, Chap. 4.3], it is a semiclassical operator in S°((£)?) with semi-
classical full Weyl symbol

o(Py) = [€]* — |dpc|* — h*N* + 2i(depe, &) = a +ib.

We can define A := (P, +P})/2 = h2A—|dp|*—h*\? and B := (P, — P})/2i = —2ihV .V +
ihAp, which have respective semiclassical full symbols a and b, i.e. A = Opp(a) and B =
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Opy,(b) for the Weyl quantization. Notice that A, B are symmetric operators, thus for all

(5) I[(A+iB)u||> = (A% + B® +i[A, B))u, u).

It is easy to check that the operator ih~'[A, B] is a semiclassical differential operator in
SY((£)?) with full semiclassical symbol

(6) {a,b}(€) = UD*pe(dpe, dpe) + D*pe(€,€))

Let us now decompose the Hessian of ¢, in the basis (de, ) where 6 is a covector orthogonal
to dye and of norm |dp.|. This yields coordinates § = ydpe + 16 and there exist smooth
functions M, N, K so that

D*p(€,€) = |dpc|H(ME& + NET + 2K &o&y).

Notice that ¢, has a polyhomogeneous expansion at infinity of the form

hro
0e(z) =v.z+ 5 + ¢ log(r) + ¢o + esr L+ O(r7?)

where r = |z|,w = 2/r,7 = (71,72) € R? and ¢; are some smooth functions on S* depending
on h; in particular we have

dpe = y1dz1 + yadzg + O(r~119), 8?6?@6(,2) =0 2*%) forall a+ 8 >2
which implies that M, N, K € r~2*°L>°(E;). Then one can write
{a,b} =dldip*(M + M& + NEE + 2K6061)
=4(N(a+h2A%) + (M — N)&o + 2K£1)b/2 + (N + M)|dec|?)
and since M + N = Tr(D?p.) = —Ap. = hAgq/e we obtain

{a,b} = 4ldoc|*(c(2)(a + h*A?) + £(z,§)b + %7“_2*'5)7

@ N (M — N)& +2K€,

Now, we take a smooth extension of |dpc|?, a(z,€),4(z,€) and 7 to z € R?, this can done
for instance by extending r as a smooth positive function on R? and then extending dy and
dpp to smooth non vanishing 1-forms on R? (not necessarily exact) so that |dpe|? is smooth
positive (for small i) and polynomial in h and a, ¢ are of the same form as in {|z| > 1}. Let
us define the symbol and quantized differential operator on R?

e := 4ldp|*(c(2)(a + h*X?) + £(2,€)b), E := Opy(e)

and write

h
i3 [A, Bl =8 = hF + 8 - DA 4 B2,

€

(8)
with F = h=lr=8 ih=1[A, B] — E)r'=% + 1(42 1 B2).
€

We deduce from () and ([j) the following
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Lemma 3.2. The operator F is a semiclassical differential operator in the class S°((€)*) with
semiclassical principal symbol

o(F)(€) 20 ~ ) + 2 ({6, dg))

By the semiclassical Garding estimate, we obtain the

_ 4ldyl?

Corollary 3.3. The operator F' of Lemma [3.3 is such that there is a constant C' so that
C
(Fu,up = —([[ull2 + h¥[dul[72).
Proof. Tt suffices to use that o(F)(§) > %(1—}—\5 |4) for some C’ > 0 and use the semiclassical
Garding estimate. O
So by writing (i[A, Blu,u) = <ir17%[A, B]rlfgergu,r*H%u) in (f) and using (§) and
Corollary B.J, we obtain that there exists C' > 0 such that for all u € C§°(E;)
2 2 2 cn? —1+3 112 20, =143 5112
Pral B2 (A2 + B2, + S (Sl + 0% Sdul ) + h( B, )
h2

€

We observe that hil[A,r_H%]rH% € S°((¢)) and hil[Bﬂ"_H_%]rH

1489 148
([ACT* 2|22 + [[BOr~ 2 u)llZ2).

N

€ hSY(1), and thus
s [ ) )
IAGT 20|22+ 1B T 2u)l|22) < O'([Aul|Zo | Bul 02| Ir = 2 ul 2 +h%|r =2 dul[7,)

for some C’ > 0. Taking h small, this implies with (f]) that there exists a new constant C' > 0
such that
2 Loa2 2 ch? —143 112 20— 142 5112

(10)  [[Prullze 2 5((A% + BY)u,u) + ——([lr™ " 2ullzz + h7lr "2 dul[72) + h{Eu, u).

It remains to deal with h{(Eu,u): we first write E = 4|dp.|*(c(2)(A + h2A2) + Op, (/) B) +
hr~1+5Sr=1+3 where S is a semiclassical differential operator in the class S°((¢)) by the
decay estimates on ¢(z),#(z,§) as z — oo, then by Cauchy-Schwartz (and with L := Op;,(¢))
(o2, )| <Ch(||Aullzz + B2 |l 2ull e + blISr= 2ull2) I~ 2ul| e + ChI|Bul ]| Lul| 2

1 1
<7l Aullze + W2)ISr= 3 ulF + CR?|lr= 3ul|Fa + J1|Bullf + CR?||Lul|7,

where C is a constant independent of h, e but may change from line to line. Now we observe
[
that Lr'=2 and S are in S°((¢)) and thus

) ) )
18~ 2ulZs + || Lull2 < C(llr™ 2 ullz. + h|lr ™ 2 dul|22),
which by ([[0) implies that there exists C' > 0 such that for all € > h > 0 with ¢ small enough
Ch?

148 148
1Bl > S a2, + 2 2)

for all w € C§°(E;) . The proof is complete. O

Combining now Proposition B.J] and (f]), we obtain
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Proposition 3.4. Let (My, go) be a Riemann surface with Euclidean ends with x a boundary

defining function of the radial compactification Mg and let p. = ¢ — %gpo where © is a

harmonic function with non-degenerate critical points and linear growth on My and g satisfies
)

Agopo = 2279 as above. Then for all V € xl_ELOO(MO) there exists an hyg > 0, ¢y and C > 0

such that for all 0 < h < hg, h < € < ¢y and u € C§°(My), we have

1-9

1 1 _s _s -
(1) 3l SullZs + o llaSuldllZs + o~ Sdul3s < Oclle (g +V — X2/ ul,
Proof. As in the proof of Proposition 3.1 in [[], by taking e small enough, we see that the
combination of (f]) and Proposition B.1] shows that for any w € C§°(Mp),

/1 s 1 s 1 8 _é
Z(plle R0l + sl FwldpllEs + o5 lle S wlded 13 + o~ Sdw], )

< Jle (A = A)e” T w7

which ends the proof. O

3.2. The quadratic weight case for surfaces. In this section, ¢ has quadratic growth
at infinity, which corresponds to the case where V € e/ 2® 1% for all v > 0. The proof
when ¢ has quadratic growth at infinity is even simpler than the linear growth case. We
define g € £72L> to be a solution of Agopo = 1, this is possible by Lemma P.§ and one
easily obtains from Proposition 5.61 of [[[J] that ¢o = —272/4 4+ O(z~!) as o — 0. We let
Oe 1= — %gpo which satisfies Ag e /h = —1/e.

If K C My is a compact set, the Carleman estimate (H) in K is satisfied by Proposition 3.1
of [, it then remains to get the estimate in the ends Ej,..., Ey. But the exact same proof
as in Lemma 3.1 and Lemma 3.2 of [[i] gives directly that for any w € C§°(E;)

Cr1 1 1 _
(12) (G0l + oy luldl 32 + o lwldgcll2: + dwl3) < e/ Agye™> /w2,

for some C' > 0 independent of €, h and it suffices to glue the estimates in K and in the ends
E; as in Proposition 3.1 of [[d], to obtain ([J) for any w € C$°(Mp). Then by using triangle
inequality

16972 D gy + V = A2)e=2 /M 2 < [|e#/* A gye™ /][ 2 + Ol full 2

for some C' depending on A, ||V||ze, we see that the V — A? term can be absorbed by the left
hand side of ([J) and we finally deduce

Proposition 3.5. Let (My,g0) be a Riemann surface with Euclidean ends and let p. =
0 — %cpo where © is a harmonic function with non-degenerate critical points and quadratic
growth on My and ¢q satisfies Agypo = 1 with oo € 72L>®(My). Then for all V € L> there
exists an hg > 0, g and C > 0 such that for all0 < h < hy, h < € < €9 and u € C§°(Mpy)

Cr1 1 _
= (e + 5 lluldil 22 + ldull22) < 67 (Bgy + V = A2)e= e/ a3,

The main difference with the linear weight case is that one can use a convexification which
has quadratic growth at infinity which allows to absorb the A? term, while it was not the case
for the linearly growing weights.
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4. COMPLEX GEOMETRIC OPTICS ON A RIEMANN SURFACE WITH EUCLIDEAN ENDS

As in [fl, B, ], the method for identifying the potential at a point p is to construct com-
plex geometric optic solutions depending on a small parameter h > 0, with phase a Morse
holomorphic function with a non-degenerate critical point at p, and then to apply the sta-
tionary phase method. Here, in addition, we need the phase to be of linear growth at infinity
if Ve e /*L> for all v > 0 while the phase has to be of quadratic growth at infinity if
V € e/ L™ for all v > 0.

We shall now assume that My is a non-compact surface with genus g with NV ends equipped
with a metric go which is Euclidean in the ends, and V is a C1® function in My. Moreover,
if Ve e /"L for all v > 0, we ask that N > max(2g + 1,2) while if V' € e /**L*> for
all v > 0, we assume that N > g+ 1. As above, let us use a smooth positive function z
which is equal to 1 in a large compact set of My and is equal to z = |z|~! in the regions
|z| > ro of the ends E; ~ {z € C;|z| > 1}, where 7 is a fixed large number. This function is a
boundary defining function of the radial compactification of My in the sense of Melrose [[LJ].
To construct the complex geometric optics solutions, we will need to work with the weighted
spaces £~ “L?(My) where o € R.

Let H be the finite dimensional complex vector space defined in the beginning of Section
P.3. Choose p € My such that there exists a Morse holomorphic function ® = ¢ + i) € H
on My, with a critical point at p; there is a dense set of such points by Proposition R.1. The
purpose of this section is to construct solutions u on My of (A — A% + V)u = 0 of the form

(13) u = eq)/h(a—{—rl +79)

for h > 0 small, where a € x~/*1L? with J € R, \ N is a holomorphic function on My,
obtained by Lemma P.6, such that a(p) # 0 and a vanishing to order L (for some fixed large
L) at all other critical points of ®, and finally 71,79 will be remainder terms which are small
as h — 0 and have particular properties near the critical points of ®. More precisely, e#°/¢ry
will be a o72(h) and r; will be a O,-s72(h) but with an explicit expression, which can be
used to obtain sufficient information in order to apply the stationary phase method.

4.0.1. Construction of r1. We want to construct r; = O,-s2(h) which satisfies
eiq)/h(Ago — 224 V)eq)/h(a +71)=0,-s12(h)

for some large J € Ry \ N so that a € z=/F1L2.

Let G be the operator of Lemma P.§, mapping continuously x~/*1L2(My) to 2=/ =1 L?(Mj).
Then clearly 00G = %**1 when acting on z=/*1L2, here +~! is the inverse of x mapping
functions to 2-forms. First, we will search for r; satisfying

(14) e~ 22 /hy — —9G(a(V — A2)) + w4 Op—s g (h)

with w € 277 L?(Mp) a holomorphic 1-form on My and ||r1||,-sz2 = O(h). Indeed, using the
fact that ® is holomorphic we have

e_cb/hAgOe@/h = —2i% 0e /" 9e?/M = —2i % e~ w( P P)9en (2=P) = _2j x fe~2/h g2 /h
and applying —2i x 9 to ([[4), this gives
e~ PNy + V) ) = —a(V = A2) + O - 12(h).
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Writing —0G(a(V — A?)) =: ¢(z)dz in local complex coordinates, c(z) is C*% by elliptic
regularity and we have 2i0:c(z) = a(V — A\?), therefore 9,0:c(p’) = 92¢(p’) = 0 at each
critical point p’ # p by construction of the function a. Therefore, we deduce that at each
critical point p’ # p, ¢(z) has Taylor series expansion Z?:O cjz) 4+ O(|z|*T®). That is, all the
lower order terms of the Taylor expansion of ¢(z) around p’ are polynomials of z only. By
Lemma P.7, and possibly by taking J larger, there exists a holomorphic function f € 2~/ L?
such that w := df has Taylor expansion equal to that of 9G(a(V — A?)) at all critical points
p' # p of ®. We deduce that, if b := —0G (a(V — \?)) + w = b(2)dz, we have

10mb(2)| = O(|z]*T2~ ™),  for £+ m < 2, at critical points p’ # p
b(2)| = O(|z]), if p’ = p.

Now, we let x1 € C§°(Mp) be a cutoff function supported in a small neighbourhood U, of the
critical point p and identically 1 near p, and x € C§°(Mp) is defined similarly with x =1 on
the support of x1. We will construct r1 to be a sum r1 = r11 + hri2 where 711 is a compactly
supported approximate solution of ([[4) near the critical point p of ® and ryy is correction
term supported away from p. We define locally in complex coordinates centered at p and
containing the support of y

(15)

(16) 11 1= X672iw/hR(62w/hX1b)

where Rf(z) := —(2mi)~! fR2 2%5 fdé N d€ for f € L™ compactly supported is the classical

Cauchy operator inverting locally 9, (r17 is extended by 0 outside the neighbourhood of p).

The function 717 is in C3%(Mp) and we have

e 2RV ) = x1 (=G (a(V = \2)) + w) + 1
(17) . —2ip/h py 200k
with n:=e R(e x1b)0x.

We then construct 15 by observing that b vanishes to order 2+ « at critical points of ® other
than p (from ([[)), and dx = 0 in a neighbourhood of any critical point of v, so we can find
rio satisfying

(18) 22'7“1261[) == (1 - Xl)b-
This is possible since both ¢ and the right hand side are valued in 77 My and 9¢ has
finitely many isolated zeroes on My: 712 is then a function which is in C%%(My \ P) where

P :={p1,...,pn} is the set of critical points other than p, it extends to a function in C'»*( M)
and it satisfies in local complex coordinates z at each p;

10207 r15(2)| < Clz|' TP, B+y<2

by using also the fact that 0¢ can be locally be considered as a smooth function with a zero
of order 1 at each p;. Moreover b € 2~/ H%(My) thus r; € =7/ H?(Mp) and we have

e 2WIh (2 ) = b+ hdrig + 1 = =G (a(V — \?)) + w + hdryp + 1.
Lemma 4.1. The following estimates hold true

1115200 = O(log l), |1l (agyy < OChllog hl), [ Or1a] [ 1 (asg) = O(1),
l&771]| 2 = O(h), ||z (r1 = h1a)l[ 2 = o(h)

where 19 solves 2ir190Y = b.
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Proof. The proof is exactly the same as the proof of Lemma 4.2 in [§], except that one
needs to add the weight z7 to have bounded integrals. O

As a direct consequence, we have
Corollary 4.2. With r1 = ri11 + hrie, there exists J > 0 such that
He*q’/h(Ag0 — X+ V)e® M (a + TO|lz-722(015) = O(h|log h).

4.0.2. Construction of ro. In this section, we complete the construction of the complex geo-
metric optic solutions. We deal with the general case of surfaces and we shall show the
following

Proposition 4.1. If ¢ is the subharmonic function constructed in Section[d, then for e small
enough there exist solutions to (Agzy — A2+ V)u = 0 of the form u = e®/"(a + ry + r2) with
71 = 111+ hrie constructed in the previous section and ro € e~#/€L? satisfying He“"O/ErgHLz <
Ch*/|log h|.

This is a consequence of the following Lemma (which follows from the Carleman estimate
obtained in Section f§ above)

Lemma 4.3. Leté € (0,1), V € xl_%LOO(MO), and p. = o — %gpo a weight with linear growth
at infinity as in Proposition B4 For all f € L?(My) and all h > 0 small enough, there exists
a solution v € L*(My) to the equation

(19) eI (Ay — N2+ V)e#/hy = 2175 f
satisfying
lollz2(a) < CRENF L2
If ve has quadratic growth at infinity, the same result is true when V € L*(My) but xlfgf
can be replaced by f € L* in (19).

Proof. The proof is based on a duality argument. Let P, := e‘pe/h(Ag — A2+ V)e_‘pe/h and
for all h > 0 the real vector space A := {u € x_H%Hl(MO); Pyu € L*(My)} equipped with
the real scalar product
(u,w)q := (Ppu, Phw)pe.

By the Carleman estimate of Proposition B.4, the space A is a Hilbert space equipped with the
scalar product above if h < hg, and thus the linear functional L : w — | Mo 213 fwdvolg, on
A is continuous with norm bounded by Ch%H fllz2 by Proposition B.4, and by Riesz theorem
there is an element u € A such that (.,u)4 = L and with norm bounded by the norm of L. It
remains to take v := Pju which solves Pv = xlfgf where Py = e_“"e/h(Ag — A2 4 V)epe/h
is the adjoint of P, and v satisfies the desired norm estimate. The proof when the weight

e has quadratic growth at infinity is the same, but improves slightly due to the Carleman
estimate of Proposition B.5. g

Proof of Proposition f.1. We first solve the equation
(A 4V — \2)epe/hpy = g3 el <x71+%67‘p6/h(A +V =22 Ma+ rl))
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by using Lemma [l and the fact that for J large, there is C' > 0 such that for all h < hg
|z 2 /M A 4+ V = X2)e® M (a + 1) |2 < Cllae” (A = X2+ V)e® M (a + )| 2

since x7/~le¥o/¢ ¢ L®(My) for all J (recall that ¢y ~ —27%/6% as 2 — 0). But now
the right hand side is bounded by O(h|log h|) according to Corollary [L.9, therefore we set
ro 1= —e "W/h=¥0/eF, which satisfies (Ag, — A2 +V)e®/?(a+r1 +r2) = 0 and, by Lemma [I.3,
the norm estimate ||e#0/¢ry||2 < O(h3/?|log hl). O

5. SCATTERING ON SURFACE WITH EUCLIDEAN ENDS

Let (My, go) be a surface with Euclidean ends and V' € e~7/*L®(M,) for some . The
scattering theory in this setting is described for instance in Melrose [I4], here we will follow
this presentation (see also Section 3 in Uhlmann-Vasy [Rf] for the R"™ case). First, using
standard methods in scattering theory, we define the resolvent on the continuous spectrum
as follows

Lemma 5.1. The resolvent Ry (\) := (Agy+V —A?) "1 admits a meromorphic extension from
{Im()\) < 0} to {Im()\) < A,Re()\) # 0}, as a family of operators mapping e~/ L?(My) to
eV L2(My) for any v > A. Moreover, for A € R\ {0} not a pole, Ry ()\) maps continuously
L2 to x=*L? for any o > 1/2.

Proof. The statement is known for V = 0 and My = R? by using the explicit formula of the
resolvent convolution kernel on R? in terms of Hankel functions (see for instance [[[4]), we
shall denote Ro(\) this continued resolvent. More precisely, for all A > 0, the operator Ry(\)
continues analytically from {Im(\) < 0} to {Im(\) < A,Re(\) # 0} as a family of bounded
operators mapping e~ 7/*L? to €¥/*L? for any v > A. Now we can set x € C5°(Mp) such
that 1 — x is supported in the ends E;, and let xo,x1 € C§°(Mp) such that (1 —xo) =1 on
the support of (1 — x) and x; = 1 on the support of x. Let \g € —iR with iA\g > 0, then
the resolvent Rg()\g) is well defined from L?(My) to H?(My) since the Laplacian is essentially
self-adjoint [23, Proposition 8.2.4], and we have a parametrix

E(A) == (1 —=x0)Ro(A)(1 —x) + x1R0(Ao)x
which satisfies
(Ayy =N +V)EW\) =1+ K(N),
K(A) = ([Agy, x1] = (A2 = A5)x1) Ro(Mo)x — [Agys xol Ro(A)(1 = x) + VE(N),

where here we use the notation Ry(A) for an integral kernel on Mj, which in the charts
{z € R?;|z| > 1} corresponding the ends E1, ... Ey, is given by the integral kernel of (Ag2 —
A?)~1. Using the explicit expression of the convolution kernel of Rg(\) in the ends (see
for instance Section 1.5 of [I4]) and the decay assumption on V, it is direct to see that
for Im(\) < A,Re(A) # 0, the map A — K(X) a is compact analytic family of bounded
operators from e~ V/*L? to e~ /*L? for any v > A. Moreover 1+ K()\) is invertible since
|| (Mo)|lr2—r2 < 1/2if i)g is large enough. Then by analytic Fredholm theory, the resolvent
Ry (M) has an meromorphic extension to Im(\) < A,Re(\) # 0 as a bounded operator from
e /T2 to e/FL2 if v > A, given by

Ry(\) = EQ)(1 + K(\)™L
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Now (1 4+ K(\)™! =1+ Q()\) for some Q(A\) = —K(\)(1 + K()\))~! mapping e 7/*L? to
itself for any 7 > A, which proves the mapping properties of Ry (\) on exponential weighted
spaces. For the mapping properties on {Re(\) = 0}, a similar argument works. O

A corollary of this Lemma is the mapping property

Corollary 5.2. For A € R\ {0} not a pole of Ry ()\), and f € e=V/*L>® for some v > 0, then
there exists v € C*°(OM) such that
Ry(N)f — wze My € 2

Proof. Using the expression Ry (\) = E(A)(14 Q(X)) of the proof of Lemma .1}, it suffices to
know the mapping property of E(\) on e "/*L2 but since outside a compact set (i.e. in the
ends) F()) is given by the free resolvent on R?, this amounts to proving the statement in R?,
which is well-known: for instance, this is proved for f € C$°(R?) in Section 1.7 [[I4] but the
proof extends easily to f € e~/ [,°°(R?) since the only used assumption on f for applying
a stationary phase argument is actually that the Fourier transform f (z) has a holomorphic
extension in a complex neighbourhood of R2. ([l

We also have a boundary pairing, the proof of which is exactly the same as [[4, Lemma
2.2] (see also Proposition 3.1 of [P6]).

Lemma 5.3. For A > 0 and V € e "/*L>®(My), if ux € z~“L*(My) for some a > 1/2 and
(Agy — N2+ V)ug € 2°L?(My) with
uy — xéei)\/a:erJr _ xée—ik/meri e u — x%e’“/mf,Jr _ x%e_“/xf,, cI?
for some fiyr € C®°(OMy), then
(g, (Dgy +V = 2u_) = ((Agy +V = N )up,u-) = 20 - (fesft = fr-F—)
0
where the volume form on OM( ~ I_Iij\LlS1 1s induced by the metric x29|T8M0‘

As a corollary, the same exact arguments as in Sections 2.2 to 2.5 in [I4] showﬂ
Corollary 5.4. The operator Ry (X) is analytic on A € R\ {0} as a bounded operator from
2L?% to 27 L% if a > 1/2.

In R? there is a Poisson operator Py()\) mapping C*°(S!) to 2~*L?(R?) for a > 1/2, which
satisfies that for any f, € C°°(S!) there exists f_ € C*°(S') such that

PoN)fs —a2e™ofy —aze ™7 f € L2, (A= MN)Ry(N)fy = 0.
We can therefore define in our case a similar Poisson operator Py/(\) mapping C*®(0Mj) to
r~“L? for a > 1/2, by
(20) Py(Nfy = (L= )RV F = By (W) (Ago +V = X)(1 =) PN f+
where 1 — x € C*®°(Mp) equals 1 in the ends E; and Py(\) denotes here the Schwartz kernel
of the Poisson operator on R? pulled back to each of the Euclidean ends E; of My in the

I [BL a unique continuation is used for Schwartz solutions of (A 4+V — A?)u = 0 when V is a compactly
supported potential on R™ but the same result is also true in our setting, this is a consequence of a standard
Carleman estimate.
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obvious way. Then, since (Ay +V — A2)(1 — x)Py(\) f+ € e /L2 for all v > 0, it suffices
to use Corollaries p.2 and .4 to see that it defines an analytic Poisson operator Py (A) on
A € R\ {0} satisfying that for all f, € C>°(0Mpy), there exists f_ € C>°(0My) such that

(21) Py fy —zzeMof —aiem™of e [P (A+V = A)Py(\)fy =0.

Moreover, it is easily seen to be the unique solution of (RI]): indeed, if two such solutions exist
then the difference is a solution u with asymptotic ﬂ:%e_”‘/gﬁf, + L? for some f_ € C>®(0My),
but applying Lemma .3 with u_ = u; = u shows that f_ = 0, thus u € L?, which implies
u = 0 by Corollary [.4.

Definition 5.5. The scattering matriz Sy (A\) : C®(OMg) — C*®(0Mg) for X € R\ {0} is
defined to be the map Sy () fy = f— where f_ is given by the asymptotic

Py N fy = x%ei)‘/xf+ + x%efi)‘/xf_ +g, with g€ L
We remark that, using Lemma .3 and the uniqueness of the Poisson operator, one easily
deduces for A € R\ {0}
(22) Sy(N)* =Sy (=) = Sv(\)!

where the scalar product on L?(OM,) is induced by the metric ngolTaMO.
We can now state a density result similar to Proposition 3.3 of R{]:

Proposition 5.6. If V € e 0/ L>(My) (resp. V € 6*70/5”2L°°(M0)) for some vo > 0, and
A € R\ {0}, then for any 0 < v <+ < o the set
T = {Pv(\) fs; fr € C(0Mo)}

is dense in the null space of Ay, +V — A2 in eV L2(My) for the topology of e“//JCLQ(MO)
(resp. in 67/12L2(M0) for the topology of 67//332L2(M0)).

Proof. First assume V € e~ 10/*L®(M;). Let w € e~7'/*L? be orthogonal to F, and set u_ :=
Ry(Mw and uy = Py(\)fiy for some fiy € C°(OMj). Then, define f__ € C*(0My)
by Ry (Mw — 22e~Mef € 2 and from Lemma we obtain (fy_,f-_) = 0 since
(w, Py (A\) f+4) = 0 by assumption. Since fi_ = Sy (A)fy is arbitrary, then f__ = 0 and
u_ € L?. In particular, from the parametrix constructed in the proof of Lemma [.1]

Ry(\w — (1 = x0)Ro(N) (1 = x)(L + Q(\)w € L?

with (1 + Q(\))w € e 7/*L2. Since in each end, Ro()\) is the integral kernel of the free
resolvent of the Euclidean Laplacian on R? and (1 — xo) and (1 — x) are supported in the
ends, we can view the term (1 — xo)Ro(M\)(1—x)(1+ Q(X))w as a disjoint sum (over the ends)
of functions on R? of the form

(23) (1= x| €6 = 2 —i0) ey

where in each end E;, f = (1—x)(1+Q(\)w € e~/ L?(E;) can be considered as a function in
e~V ?IL2(R2). By the Paley-Wiener theorem, f is holomorphic in a strip U = {|[Im(¢)| < ~'}
with bound sup, <, I1f(-+ in)||r2(r2) < oo for all ¥ < 9/, so the fact that (B3) is in L? implies
that f vanishes at the real sphere {¢ € R?;¢2 = A2}, and thus there exists h holomorphic in
U such that f(&) = (€2 = A\2)h(€) (see e.g. the proof of Lemma 2.5 in [[[7]), and satisfying the

A

same types of L? estimates as f in U on lines Im(¢) = cst. By the Paley-Wiener theorem
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again, we deduce that (B3) is in e "*IL? and thus Ry (\)w € e~ "/*L?*(Mp) for any vy < /.
Then if v € €7/ L2(Mp) and (A, +V — A?)v = 0, one has by integration by parts

0= (Ryv(Mw, (Ag, +V — )\2)v> = (w,v)

which ends the proof in the case V € e_“/O/JCLOO(MO). The quadratic decay case V €
e/ m2LOO(MO) is exactly similar but instead of Paley-Wiener theorem, we use Corollary
fF-d and the inclusions e VP2 C e LN e/ L2 and eV /P L € e/ L2 for all
v <A <A =

6. IDENTIFYING THE POTENTIAL

6.1. The case of a surface. On a Riemann surface (M, gp) with N Euclidean ends and
genus g, we assume that V;,Va € C1¥(Mj) are two real valued potentials such that the
respective scattering operators Sy, (A) and Sy, () agree for a fixed A > 0. We also assume
that for all v > 0

e EL(My)  if N > max(2g + 1,2)

[CIER { e T Lo (My) i N> g+ 1.

By considering the asymptotics of u1 := Py, (A)f1 and Py, (=) fo for f; € C®(0Mg) we easily
have by integration by parts that

/ (V1 — Vz)ulu_g dVOlgo = — 21\ - SV1 ()\)flﬁ — fl.SVQ(—)\)fQ
(24) My OMyg

=200 [ (S0 = ST =0

Mo
by using (B9). From Proposition .6, this implies by density that, if V' € e~ 7/ZL> (resp.
V € e /" L for all v > 0), then for all solutions u; of (Agy + Vi = A)u; = 0 in /% L2 (M)
(resp. u; € €7'/7° L2(My)) for some v/ > 0, we have

(25) / (Vi = Vo)uiuz dvolg, = 0.
My

We shall now use our complex geometric optics solutions as special solutions in the weighted
space e~ 7 /M L2(My) (resp. e~ 7V/h*L2(My)) for some v/ > 0 if V € e /ZL> (resp. V €
e*“//:’““QLOO) for all v > 0.

Let p € My be such that, using Proposition R.1, we can choose a holomorphic Morse
function ® = ¢ + i1y with linear or quadratic growth on My (depending on the topological
assumption), with a critical point at p. Then for the complex geometric optics solutions uy, ug
with phase ® constructed in Section [, the identity (BH) holds true. We will then deduce the

Proposition 6.1. Let A € (0,00) and assume that Sy, (\) = Sy, (A), then Vi(p) = Va(p).
Proof. Let u; and us be solutions on My to

(B +V; = X = 0
constructed in Section @ with phase ® for u; and —® for wus, thus of the form

up = e*Ma+r +73), uy=e ¥ Ma+ri+rd).
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We have the identity
/ ur (Vi — Va)ug dvolg, =0
Mo

Then by using the estimates in Lemma [£.] and Proposition [.1] we have, as h — 0,

/ 2/ a2 (Vy — Vo) dvoly, + h / W/ (@i, + arZ,) (Vi — Va) dvoly, + o(h) =0
My My
where ?{2 € L>®(Mjy) are defined in Lemma .1, with the superscript j refering to the solution
for the potential V}; in particular these functions 74, are independent of h.

By splitting V;(-) = (V;(-) — Vi(p)) + Vi(p) and using the C'1® regularity assumption on V;,
one can use stationary phase for the Vj(p) term and integration by parts to gain a power of
h for the V;(-) — V;(p) term (see the proof of Lemma 5.4 in [§] for details) to deduce

/ 2 a2(V; — Vy) dvoly, = Ch(Vi (p) — Va(p)) + o(h)
Mo
for some C' # 0. Therefore,
Ch(Vi(p) — Va(p)) + h / 2 @ty + arZ) (Vi — Va) dvoly, = o(h).

My

Now to deal with the middle terms, it suffices to apply a Riemann-Lebesgue type argument
like Lemma 5.3 of [}] to deduce that it is a o(h). The argument is simply to approximate
the amplitude in the L'(Mp) norm by a smooth compactly supported function and then use
stationary phase to deal with the smooth function. We have thus proved that Vi (p) = Va(p)
by taking h — 0. O

7. APPENDIX

To obtain mapping properties of the resolvent of Ap2 acting on functions with Gaussian
decay, we shall give two Lemmas on Fourier transforms of functions with Gaussian decay.

Lemma 7.1. Let f(z) € e P L2(R2) for some v > 0. Then the Fourier transform f(§)
extends analytically to C? and for all £, € R?,

~ B 2
I[f(§+in)|lL2®2,de) < 2me @ |e7 fll2®2y-
If f(z) € e P LY(R2) for some v > 0 then
. ) Inl* 2
sup | £(€ + in)| < e[| £l gy,
£€R?
Proof. The first statement is clear. For the bound, we write

2 2
o 7] [n]

f€+in) =et / e_if'ze_wz_%‘26“/|Z|2f(z)dz = eﬁffzﬁg(e_wz_%‘267‘2‘2]”(2’)).
R2

But the function e_ﬂz_%‘QewZ‘Qf(Z) is in L?(R?,dz) and its norm is bounded uniformly by
1€/ £|| 12, thus it suffices to use the Plancherel theorem to obtain the desired bound. The
L bound is similar. O
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Lemma 7.2. Let F(£+1in) be a complex analytic function on R? +iR? = C? such that there
is C >0 and v > 0 with
In? , In?
[|F(§+ i77)”L2(]R2,d§) < Ce* and sup |F({+in)| < Cer.
£€ER?

If F vanishes on the real submanifold {|¢|> = A2}, then F. (&) € e Loo(R2).

—2\EP-¥

Proof. First by analyticity of F, one has that F vanishes on the complex hypersurface
M)y, = {¢ € C%¢.¢ = A?} (see for instance the proof of Lemma 2.5 of [[7]), and in particular
G(¢) = F(¢)/(¢.¢—A?) is an analytic function on C2. We will first prove that for each n € R?
G(& +in) € LY(R?,d¢) N L°°(R?, d€) and

, In?
(26) |G(€ + in)||p1(2,ae) < Ce 7.

If || < 2 we choose the disc B := {¢ € R?;|¢]2 < 2(4 + A?)} and let ¢ := £ + . Then
IG(& + in)ll11(B.aey and [|(¢.C — A?*) 7| 2(r2\ ag) are uniformly bounded for |n| < 2, and
we obtain by Cauchy-Schwarz that () holds for || < 2. For the case |n| > 2 we define
U, = {€ € R%|(.C — A\?| > ||} and note that

sup [[(¢.¢ = X)) H|pwa\v, de) < 00,
|m|>2

sup [1(¢.¢ = X*) Mz, ) < 00
In[>2
These results follow by decomposing the integration sets to parts where one can change
coordinates &1 + i& to & + i€ = ¢.C — A2, and by evaluating simple integrals. Then (R6)
follows from Cauchy-Schwarz and the estimates for F.
Let = 27z, we use a contour deformation from R? to 2iyz + R? in C2,

/ e*0G()de = | NG + 2iyz)de,
R2 R2

which is justified by the fact that G(¢ +1in) € L'(R? x K, d¢ dn) for any compact set K in R?
by the uniform bound (P§). Now using (Pf) again shows that

| [ =] < e
RQ
which ends the proof. O

Corollary 7.3. Let f(z) € e "L2(R2) N e P LY(R2) for some v > 0. Assume that its
Fourier transform f (&) vanishes on the sphere {|¢| = |\|}, then one has

— f(g) —v]2|? 7 0
3’5—1>Z(|£|27_)\2) ce v L (R2)
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