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Inverse scattering at fixed energy on surfaces with Euclidean ends

On a fixed Riemann surface (M0, g0) with N Euclidean ends and genus g, we show that, under a topological condition, the scattering matrix SV (λ) at frequency λ > 0 for the operator ∆ + V determines the potential

for all γ > 0 and for some j ∈ {1, 2}, where d(z, z0) denotes the distance from z to a fixed point z0 ∈ M0. The topological condition is given by N ≥ max(2g + 1, 2) for j = 1 and by N ≥ g + 1 if j = 2. In R 2 this implies that the operator SV (λ) determines any C 1,α potential V such that V (z) = O(e -γ|z| 2 ) for all γ > 0.

S n-1 Φ V (λ, z, ω)f (ω)dω within those complex geometric optics solutions, where Φ V (λ, z, ω) = e iλω.z + e -iλω.z |z| -1 2 (n-1) a(λ, z, ω) are the perturbed plane wave solutions (here ω ∈ S n-1 and a ∈ L ∞ ). Unlike when n ≥ 3, the problem in dimension 2 is that the set of complex geometrical optics solutions of this type is not large enough to show that the Fourier transform of V 1 -V 2 is 0.

Introduction

The purpose of this paper is to prove an inverse scattering result at fixed frequency λ > 0 in dimension 2. The typical question one can ask is to show that the scattering matrix S V (λ) for the Schrödinger operator ∆ + V determines the potential. This is known to be false if V is only assumed to be Schwartz, by the example of Grinevich-Novikov [START_REF] Grinevich | Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials[END_REF], but it is also known to be true for exponentially decaying potentials (i.e. V ∈ e -γ|z| L ∞ (R 2 ) for some γ > 0) with norm smaller than a constant depending on the frequency λ, see Novikov [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF]. For other partial results we refer to [START_REF] Eskin | The inverse scattering problem in two dimensions at fixed energy[END_REF], [START_REF] Isakov | The inverse scattering at fixed energies in two dimensions[END_REF], [START_REF] Sun | Generic uniqueness for an inverse boundary value problem[END_REF], [START_REF] Sun | Generic uniqueness for formally determined inverse problems[END_REF], [START_REF] Sun | Recovery of singularities for formally determined inverse problems[END_REF]. The determinacy of V from S V (λ) when V is compactly supported, without any smallness assumption on the norm, follows from the recent work of Bukhgeim [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] on the inverse boundary problem after a standard reduction to the Dirichlet-to-Neumann operator on a large sphere (see [START_REF] Uhlmann | Inverse boundary value problems and applications[END_REF] for this reduction).

In dimensions n ≥ 3, it is proved in Novikov [START_REF] Novikov | The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential[END_REF] (see also [START_REF] Eskin | Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy[END_REF] for the case of magnetic Schrödinger operators) that the scattering matrix at a fixed frequency λ determines an exponentially decaying potential. When V is compactly supported this also follows directly from the result by Sylvester-Uhlmann [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] on the inverse boundary problem, by reducing to the Dirichlet-to-Neumann operator on a large sphere. Melrose [START_REF] Melrose | Geometric scattering theory[END_REF] gave a direct proof of the last result based on the methods of [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], and this proof was extended to exponentially decaying potentials in [START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF] and to the magnetic case in [START_REF] Päivärinta | Inverse scattering for the magnetic Schroedinger operator[END_REF]. In the geometric scattering setting, [START_REF] Joshi | Recovering asymptotics of metrics from fixed energy scattering data[END_REF][START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF] reconstruct the asymptotic expansion of a potential or metrics from the scattering operator at fixed frequency on asymptotically Euclidean/hyperbolic manifolds. Further results of this type are given in [START_REF] Weder | Completeness of averaged scattering solutions[END_REF][START_REF] Weder | On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity[END_REF].

The method for proving the determinacy of V from S V (λ) in [START_REF] Melrose | Geometric scattering theory[END_REF][START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF] is based on the construction of complex geometric optics solutions u(z) = e ρ.z (1 + r(ρ, z)) of (∆ + V -λ 2 )u = 0 with ρ ∈ C n , z ∈ R n , and the density of the oscillating scattering solutions u sc (z) =

The real novelty in the recent work of Bukhgeim [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] in dimension 2 is the construction of new complex geometric optics solutions (at least on a bounded domain Ω ⊂ C) of (∆ + V i )u i = 0 of the form u 1 = e Φ/h (1 + r 1 (h)) and u 2 = e -Φ/h (1 + r 2 (h)) with 0 < h ≪ 1 where Φ is a holomorphic function in C with a unique non-degenerate critical point at a fixed z 0 ∈ C (for instance Φ(z) = (z -z 0 ) 2 ), and ||r j (h)|| L p is small as h → 0 for p > 1. These solutions allow to use stationary phase at z 0 to get

Ω (V 1 -V 2 )u 1 u 2 = C(V 1 (z 0 ) -V 2 (z 0 ))h + o(h), C = 0
as h → 0 and thus, if the Dirichlet-to-Neumann operators on ∂Ω are the same, then V 1 (z 0 ) = V 2 (z 0 ).

One of the problems to extend this to inverse scattering is that a holomorphic function in C with a non-degenerate critical point needs to grow at least quadratically at infinity, which would somehow force to consider potentials V having Gaussian decay. On the other hand, if we allow the function to be meromorphic with simple poles, then we can construct such functions, having a single critical point at any given point p, for instance by considering Φ(z) = (z -p) 2 /z. Of course, with such Φ we then need to work on C\{0}, which is conformal to a surface with no hole but with 2 Euclidean ends, and Φ has linear growth in the ends. In general, on a surface with genus g and N Euclidean ends, we can use the Riemann-Roch theorem to construct holomorphic functions with linear or quadratic growth in the ends, the dimension of the space of such functions depending on g, N .

In the present work, we apply this idea to obtain an inverse scattering result for ∆ g 0 + V on a fixed Riemann surface (M 0 , g 0 ) with Euclidean ends, under some topological condition on M 0 and some decay condition on V .

Theorem 1.1. Let (M 0 , g 0 ) be a non-compact Riemann surface with genus g and N ends isometric to R 2 \ {|z| ≤ 1} with metric |dz| 2 . Let V 1 and V 2 be two potentials in C 1,α (M 0 ) with α > 0, and such that S V 1 (λ) = S V 2 (λ) for some λ > 0. Let d(z, z 0 ) denote the distance between z and a fixed point z 0 ∈ M 0 . (i) If N ≥ max(2g + 1, 2) and V i ∈ e -γd(•,z 0 ) L ∞ (M 0 ) for all γ > 0, then V 1 = V 2 . (ii) If N ≥ g + 1 and V i ∈ e -γd(•,z 0 ) 2 L ∞ (M 0 ) for all γ > 0, then

V 1 = V 2 .
In R 2 , where g = 0 and N = 1, we have an immediate corollary:

Corollary 1.2. Let λ > 0 and let V 1 , V 2 ∈ C 1,α (R 2 ) ∩ e -γ|z| 2 L ∞ (R 2 ) for all γ > 0. If the scattering matrices satisfy S V 1 (λ) = S V 2 (λ), then V 1 = V 2 .
This is an improvement on the result of Bukhgeim [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] which shows identifiability for compactly supported functions, and in a certain sense on the result of Novikov [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF] since it is assumed there that the potential has to be of small L ∞ norm.

The structure of the paper is as follows. In Section 2 we employ the Riemann-Roch theorem and a transversality argument to construct Morse holomorphic functions on (M 0 , g 0 ) with linear or quadratic growth in the ends. Section 3 considers Carleman estimates with harmonic weights on (M 0 , g 0 ), where suitable convexification and weights at the ends are required since the surface is non compact. Complex geometrical optics solutions are constructed in Section 4. Section 5 discusses direct scattering theory on surfaces with Euclidean ends and contains the proof that scattering solutions are dense in the set of suitable solutions, and Section 6 gives the proof of Theorem 1.1. Finally, there is an appendix discussing a Paley-Wiener type result for functions with Gaussian decay which is needed to prove density of scattering solutions.
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2. Holomorphic Morse functions on a surface with Euclidean ends 2.1. Riemann surfaces with Euclidean ends. Let (M 0 , g 0 ) be a non-compact connected smooth Riemannian surface with N ends E 1 , . . . , E N which are Euclidean, i.e. isometric to C \ {|z| ≤ 1} with metric |dz| 2 . By using a complex inversion z → 1/z, each end is also isometric to a pointed disk

E i ≃ {|z| ≤ 1, z = 0} with metric |dz| 2 |z| 4
thus conformal to the Euclidean metric on the pointed disk. The surface M 0 can then be compactified by adding the points corresponding to z = 0 in each pointed disk corresponding to an end E i , we obtain a closed Riemann surface M with a natural complex structure induced by that of M 0 , or equivalently a smooth conformal class on M induced by that of M 0 . Another way of thinking is to say that M 0 is the closed Riemann surface M with N points e 1 , . . . , e N removed. The Riemann surface M has holomorphic charts z α : U α → C and we will denote by z 1 , . . . z N the complex coordinates corresponding to the ends of M 0 , or equivalently to the neighbourhoods of the points e i . The Hodge star operator ⋆ acts on the cotangent bundle T * M , its eigenvalues are ±i and the respective eigenspaces T * 1,0 M := ker(⋆ + iId) and T * 0,1 M := ker(⋆ -iId) are sub-bundles of the complexified cotangent bundle CT * M and the splitting CT * M = T * 1,0 M ⊕ T * 0,1 M holds as complex vector spaces. Since ⋆ is conformally invariant on 1-forms on M , the complex structure depends only on the conformal class of g. 

In holomorphic coordinates z = x + iy in a chart U α ,
∂f = ∂ z f dz, ∂f = ∂ z f dz, with ∂ z := 1 2 (∂ x -i∂ y ) and ∂ z := 1 2 (∂ x + i∂ y ).
Similarly, one can define the ∂ and ∂ operators from CΛ 1 to CΛ 2 by setting

∂(ω 1,0 + ω 0,1 ) := dω 0,1 , ∂(ω 1,0 + ω 0,1 ) := dω 1,0 if ω 0,1 ∈ T * 0,1 M and ω 1,0 ∈ T * 1,0 M . In coordinates this is simply ∂(udz + vdz) = ∂v ∧ dz, ∂(udz + vdz) = ∂u ∧ dz.
If g is a metric on M whose conformal class induces the complex structure T * 1,0 M , there is a natural operator, the Laplacian acting on functions and defined by ∆f := -2i ⋆ ∂∂f = d * d where d * is the adjoint of d through the metric g and ⋆ is the Hodge star operator mapping Λ 2 to Λ 0 and induced by g as well.

2.2. Holomorphic functions. We are going to construct Carleman weights given by holomorphic functions on M 0 which grow at most linearly or quadratically in the ends. We will use the Riemann-Roch theorem, following ideas of [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF], however, the difference in the present case is that we have very little freedom to construct these holomorphic functions, simply because there is just a finite dimensional space of such functions by Riemann-Roch. For the convenience of the reader, and to fix notations, we recall the usual Riemann-Roch index theorem (see Farkas-Kra [START_REF] Farkas | Riemann surfaces[END_REF] for more details). A divisor D on M is an element

D = (p 1 , n 1 ), . . . , (p k , n k ) ∈ (M × Z) k ,
where k ∈ N which will also be denoted D = k i=1 p n i i or D = p∈M p α(p) where α(p) = 0 for all p except α(p i ) = n i . The inverse divisor of D is defined to be D -1 := p∈M p -α(p) and the degree of the divisor D is defined by deg(D) := k i=1 n i = p∈M α(p). A non-zero meromorphic function on M is said to have divisor D if (f ) := p∈M p ord(p) is equal to D, where ord(p) denotes the order of p as a pole or zero of f (with positive sign convention for zeros). Notice that in this case we have deg(f ) = 0. For divisors D ′ = p∈M p α ′ (p) and D = p∈M p α(p) , we say that Notice also that for any divisor D with deg(D) > 0, one has r(D) = 0 since deg(f ) = 0 for all f meromorphic. By [START_REF] Farkas | Riemann surfaces[END_REF]Th. p70], let D be a divisor, then for any non-zero meromorphic 1-form ω on M , one has

D ′ ≥ D if α ′ (p) ≥ α(p)
(2) i(D) = r(D(ω) -1 )
which is thus independent of ω. For instance, if D = 1, we know that the only holomorphic function on M is 1 and one has 1 = r(1) = r((ω) -1 ) -g + 1 and thus r((ω) -1 ) = g if ω is a non-zero meromorphic 1 form. Now if D = (ω), we obtain again from (1)

g = r((ω) -1 ) = 2 -g + deg((ω))
which gives deg((ω)) = 2(g -1) for any non-zero meromorphic 1-form ω. In particular, if D is a divisor such that deg(D) > 2(g -1), then we get deg(D(ω) -1 ) = deg(D) -2(g -1) > 0 and thus i(D) = r(D(ω) -1 ) = 0, which implies by (1) Proof. Let first g ≥ 1, so that N ≥ 2g + 1. By the discussion before the Lemma, we know that there are at least g + 2 linearly independent (over C) meromorphic functions f 0 , . . . , f g+1 on M with at most simple poles, all contained in {e 1 , . . . , e 2g+1 }. Without loss of generality, one can set f 0 = 1 and by linear combinations we can assume that

(3) deg(D) > 2(g -1) =⇒ r(D -1 ) = deg(D) -g + 1 ≥ g.
f 1 (z 0 ) = • • • = f g+1 (z 0 ) = 0. Now consider the divisor D j = e 1 .
. . e 2g+1 z -j 0 for j = 1, 2, with degree deg(D j ) = 2g + 1 -j, then by the Riemann-Roch formula (more precisely (3))

r(D -1 j ) = g + 2 -j. Thus, since r(D -1 1 ) > r(D - 1 
2 ) = g and using the assumption that g ≥ 1, we deduce that there is a function in span(f 1 , . . . , f g+1 ) which has a zero of order 2 at z 0 and a function which has a zero of order exactly 1 at z 0 . The same method clearly works if g = 0 by taking two points e 1 , e 2 instead of just e 1 .

If we allow double poles instead of simple poles, the proof of Lemma 2.1 shows the Lemma 2.2. Let e 1 , . . . , e N be distinct points on a closed Riemann surface M with genus g, and let z 0 be another point of M \ {e 1 , . . . , e N }. If N ≥ g + 1, then the following hold true: (i) there exists a meromorphic function f on M with at most double poles, all contained in {e 1 , . . . , e N }, such that ∂f (z 0 ) = 0, (ii) there exists a meromorphic function h on M with at most double poles, all contained in {e 1 , . . . , e N }, such that z 0 is a zero of order at least 2 of h.

2.3.

Morse holomorphic functions with prescribed critical points. We follow in this section the arguments used in [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF] to construct holomorphic functions with non-degenerate critical points (i.e. Morse holomorphic functions) on the surface M 0 with genus g and N ends, such that these functions have at most linear growth (resp. quadratic growth) in the ends if N ≥ max(2g +1, 2) (resp. if N ≥ g +1). We let H be the complex vector space spanned by the meromorphic functions on M with divisors larger or equal to e -1 1 . . . e -1 N (resp. by e -2 1 . . . e -2 N ) if we work with functions having linear growth (resp. quadratic growth), where e 1 , . . . e N ∈ M are points corresponding to the ends of M 0 as explained in Section 2. Note that H is a complex vector space of complex dimension greater or equal to N -g + 1 (resp. 2N -g + 1) for the e -1 1 . . . e -1 N divisor (resp. the e -2 1 . . . e -2 N divisor). We will also consider the real vector space H spanned by the real parts and imaginary parts of functions in H, this is a real vector space which admits a Lebesgue measure. We now prove the following Lemma 2.3. The set of functions u ∈ H which are not Morse in M 0 has measure 0 in H, in particular its complement is dense in H.

Proof. We use an argument very similar to that used by Uhlenbeck [START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF]. We start by defining m :

M 0 × H → T * M 0 by (p, u) → (p, du(p)) ∈ T * p M 0 . This is clearly a smooth map, linear in the second variable, moreover m u := m(., u) = (•, du(•)) is smooth on M 0 . The map u is a Morse function if and only if m u is transverse to the zero section, denoted T * 0 M 0 , of T * M 0 , i.e. if Image(D p m u ) + T mu(p) (T * 0 M 0 ) = T mu(p) (T * M 0 ), ∀p ∈ M 0 such that m u (p) = (p, 0
). This is equivalent to the fact that the Hessian of u at critical points is non-degenerate (see for instance Lemma 2.8 of [START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF]). We recall the following transversality result, the proof of which is contained in [24, Th.2] by replacing Sard-Smale theorem by the usual finite dimensional Sard theorem: Theorem 2.4. Let m : X × H → W be a C k map and X, W be smooth manifolds and H a finite dimensional vector space, if

W ′ ⊂ W is a submanifold such that k > max(1, dim X - dim W + dim W ′ ), then the transversality of the map m to W ′ implies that the complement of the set {u ∈ H; m u is transverse to W ′ } in H has Lebesgue measure 0.
We want to apply this result with X := M 0 , W := T * M 0 and W ′ := T * 0 M 0 , and with the map m as defined above. We have thus proved our Lemma if one can show that m is transverse to

W ′ . Let (p, u) such that m(p, u) = (p, 0) ∈ W ′ . Then identifying T (p,0) (T * M 0 ) with T p M 0 ⊕ T * p M 0 , one has Dm (p,u) (z, v) = (z, dv(p) + Hess p (u)z)
where Hess p (u) is the Hessian of u at the point p, viewed as a linear map from T p M 0 to T * p M 0 (note that this is different from the covariant Hessian defined by the Levi-Civita connection). To prove that m is transverse to

W ′ we need to show that (z, v) → (z, dv(p) + Hess p (u)z) is onto from T p M 0 ⊕ H to T p M 0 ⊕ T * p M 0 , which is realized if the map v → dv(p) from H to T * p M 0 is onto. But from Lemma 2.
1, we know that there exists a meromorphic function f with real part v = Re(f ) ∈ H such that v(p) = 0 and dv(p) = 0 as an element of T * p M 0 . We can then take v 1 := v and v 2 := Im(f ), which are functions of H such that dv 1 (p) and dv 2 (p) are linearly independent in T * p M 0 by the Cauchy-Riemann equation ∂f = 0. This shows our claim and ends the proof by using Theorem 2.4.

In particular, by the Cauchy-Riemann equation, this Lemma implies that the set of Morse functions in H is dense in H. We deduce Proposition 2.1. There exists a dense set of points p in M 0 such that there exists a Morse holomorphic function f ∈ H on M 0 which has a critical point at p. Proof. Let p be a point of M 0 and let u be a holomorphic function with a zero of order at least 2 at p, the existence is ensured by Lemma 2.1. Let B(p, η) be a any small ball of radius η > 0 near p, then by Lemma 2.3, for any ǫ > 0, we can approach u by a holomorphic Morse function u ǫ ∈ H ǫ which is at distance less than ǫ of u in a fixed norm on the finite dimensional space H. Rouché's theorem for ∂ z u ǫ and ∂ z u (which are viewed as functions locally near p) implies that ∂ z u ǫ has at least one zero of order exactly 1 in B(p, η) if ǫ is chosen small enough. Thus there is a Morse function in H with a critical point arbitrarily close to p. Remark 2.5. In the case where the surface M has genus 0 and N ends, we have an explicit formula for the function in Proposition 2.1: indeed M 0 is conformal to C \ {e 1 , . . . , e N -1 } for some e i ∈ C -i.e. the Riemann sphere minus N points -then the function f (z) = (z -z 0 ) 2 /(z -e 1 ) with z 0 ∈ {e 1 , . . . , e N -1 } has z 0 for unique critical point in C\{e 1 , . . . , e N -1 } and it is non-degenerate.

We end this section by the following Lemmas which will be used for the amplitude of the complex geometric optics solutions but not for the phase. Lemma 2.6. For any p 0 , p 1 , . . . p n ∈ M 0 some points of M 0 and L ∈ N, then there exists a function a(z) holomorphic on M 0 which vanishes to order L at all p j for j = 1, . . . , n and such that a(p 0 ) = 0. Moreover a(z) can be chosen to have at most polynomial growth in the ends, i.e. |a(z)| ≤ C|z| J for some J ∈ N.

Proof. It suffices to find on M some meromorphic function with divisor greater or equal to D := e -J 1 . . . e -J N p L 1 . . . p L n but not greater or equal to Dp 0 and this is insured by Riemann-Roch theorem as long as JN -nL ≥ 2g since then r(D) = -g + 1 + JN -nL and r(Dp

0 ) = -g + JN -nL. Lemma 2.7. Let {p 0 , p 1 , .., p n } ⊂ M 0 be a set of n + 1 disjoint points. Let c 0 , c 1 , . . . , c K ∈ C, L ∈ N,
and let z be a complex coordinate near p 0 such that p 0 = {z = 0}. Then there exists a holomorphic function f on M 0 with zeros of order at least L at each p j , such that

f (z) = c 0 + c 1 z + ... + c K z K + O(|z| K+1 ) in the coordinate z. Moreover f can be chosen so that there is J ∈ N such that, in the ends, |∂ ℓ z f (z)| = O(|z| J
) for all ℓ ∈ N 0 . Proof. The proof goes along the same lines as in Lemma 2.6. By induction on K and linear combinations, it suffices to prove it for c 0 = • • • = c K-1 = 0. As in the proof of Lemma 2.6, if J is taken large enough, there exists a function with divisor greater or equal to

D := e -J 1 . . . e -J N p K-1 0 p L 1 .
. . p L n but not greater or equal to Dp 0 . Then it suffices to multiply this function by c K times the inverse of the coefficient of z K in its Taylor expansion at z = 0.

2.4. Laplacian on weighted spaces. Let x be a smooth positive function on M 0 , which is equal to |z| -1 for |z| > r 0 in the ends E i ≃ {z ∈ C; |z| > 1}, where r 0 is a large fixed number. We now show that the Laplacian ∆ g 0 on a surface with Euclidean ends has a right inverse on the weighted spaces x -J L 2 (M 0 ) for J / ∈ N positive.

Lemma 2.8. For any J > -1 which is not an integer, there exists a continuous operator G mapping

x -J L 2 (M 0 ) to x -J-2 L 2 (M 0 ) such that ∆ g 0 G = Id.
Proof. Let g b := x 2 g 0 be a metric conformal to g 0 . The metric g b in the ends can be written

g b = dx 2 /x 2 + dθ 2 S 1 by using radial coordinates x = |z| -1 , θ = z/|z| ∈ S 1
, this is thus a b-metric in the sense of Melrose [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF], giving the surface a geometry of surface with cylindrical ends. Let us define for m ∈ N 0

H m b (M 0 ) := {u ∈ L 2 (M 0 ; dvol g b ); (x∂ x ) j ∂ k θ u ∈ L 2 (M 0 ; dvol g b ) for all j + k ≤ m}. The Laplacian has the form ∆ g b = -(x∂ x ) 2 + ∆ S 1 in
the ends, and the indicial roots of ∆ g b in the sense of Section 5.2 of [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF] are given by the complex numbers λ such that x -iλ ∆ g b x iλ is not invertible as an operator acting on the circle S 1 θ . Thus the indicial roots are the solutions of λ 2 + k 2 = 0 where k 2 runs over the eigenvalues of ∆ S 1 , that is, k ∈ Z. The roots are simple at ±ik ∈ iZ \ {0} and 0 is a double root. In Theorem 5.60 of [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF], Melrose proves that ∆ g b is Fredholm on x a H 2 b (M 0 ) if and only if -a is not the imaginary part of some indicial root, that is here a ∈ Z. For J > 0, the kernel of ∆ g b on the space x J H 2 b (M 0 ) is clearly trivial by an energy estimate. Thus ∆ g b :

x -J H 0 b (M 0 ) → x -J H -2 b (M 0
) is surjective for J > 0 and J ∈ Z, and the same then holds for ∆ g b :

x -J H 2 b (M 0 ) → x -J H 0 b (M 0 ) by elliptic regularity.
Now we can use Proposition 5.64 of [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF], which asserts, for all positive J ∈ Z, the existence of a pseudodifferential operator G b mapping continuously

x -J H 0 b (M 0 ) to x -J H 2 b (M 0 ) such that ∆ g b G b = Id. Thus if we set G = G b x -2 , we have ∆ g 0 G = Id and G maps continuously x -J+1 L 2 (M 0 ) to x -J-1 L 2 (M 0 ) (note that L 2 (M 0 ) = xH 0 b (M 0 )).
3. Carleman Estimate for Harmonic Weights with Critical Points 3.1. The linear weight case. In this section, we prove a Carleman estimate using harmonic weights with non-degenerate critical points, in a way similar to [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF]. Here however we need to work on a non compact surface and with weighted spaces. We first consider a Morse holomorphic function Φ ∈ H obtained from Proposition 2.1 with the condition that Φ has linear growth in the ends, which corresponds to the case where V ∈ e -γ/x L ∞ (M 0 ) for all γ > 0. The Carleman weight will be the harmonic function ϕ := Re(Φ). We let x be a positive smooth function on M 0 such that x = |z| -1 in the complex charts {z ∈ C; |z| > 1} ≃ E i covering the end E i .

Let δ ∈ (0, 1) be small and let us take ϕ 0 ∈ x -α L 2 (M 0 ) a solution of ∆ g 0 ϕ 0 = x 2-δ , a solution exists by Proposition 2.8 if α > 1 + δ. Actually, by using Proposition 5.61 of [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF], if we choose α < 2, then it is easy to see that ϕ 0 is smooth on M 0 and has polyhomogeneous expansion as |z| → ∞, with leading asymptotic in the end E i given by ϕ 0 = -x -δ /δ 2 + c i log(x) + d i + O(x) for some c i , d i which are smooth functions in S 1 . For ǫ > 0 small, we define the convexified weight ϕ ǫ := ϕ -h ǫ ϕ 0 .

We recall from the proof of Proposition 3.1 in [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF] the following estimate which is valid in any compact set K ⊂ M 0 : for all w ∈ C ∞ 0 (K), we have

(4) C ǫ 1 h w 2 L 2 + 1 h 2 w|dϕ| 2 L 2 + 1 h 2 w|dϕ ǫ | 2 L 2 + dw 2 L 2 (K) ≤ e ϕǫ/h ∆ g e -ϕǫ/h w 2 L 2
where C depends on K but not on h and ǫ.

So for functions supported in the end E i , it clearly suffices to obtain a Carleman estimate in E i ≃ R 2 \ {|z| ≤ 1} by using the Euclidean coordinate z of the end. Proposition 3.1. Let δ ∈ (0, 1), and ϕ ǫ as above, then there exists C > 0 such that for all ǫ ≫ h > 0 small enough, and all u ∈ C ∞ 0 (E i )

h 2 ||e ϕǫ/h (∆ -λ 2 )e -ϕǫ/h u|| 2 L 2 ≥ C ǫ (||x 1-δ 2 u|| 2 L 2 + h 2 ||x 1-δ 2 du|| 2 L 2 ).
Proof. The metric g 0 can be extended to R 2 to be the Euclidean metric and we shall denote by ∆ the flat positive Laplacian on R 2 . Let us write P := ∆ g 0 -λ 2 , then the operator P h := h 2 e ϕǫ/h P e -ϕǫ/h is given by

P h = h 2 ∆ -|dϕ ǫ | 2 + 2h∇ϕ ǫ .∇ -h∆ϕ ǫ -h 2 λ 2 ,
following the notation of [START_REF] Evans | Lectures on semiclassical analysis[END_REF]Chap. 4.3], it is a semiclassical operator in S 0 ( ξ 2 ) with semiclassical full Weyl symbol

σ(P h ) := |ξ| 2 -|dϕ ǫ | 2 -h 2 λ 2 + 2i dϕ ǫ , ξ = a + ib.
We can define 

A := (P h +P * h )/2 = h 2 ∆-|dϕ ǫ | 2 -h 2
∈ C ∞ 0 (E i ) (5) ||(A + iB)u|| 2 = (A 2 + B 2 + i[A, B])u, u .
It is easy to check that the operator ih -1 [A, B] is a semiclassical differential operator in S 0 ( ξ 2 ) with full semiclassical symbol

(6) {a, b}(ξ) = 4(D 2 ϕ ǫ (dϕ ǫ , dϕ ǫ ) + D 2 ϕ ǫ (ξ, ξ))
Let us now decompose the Hessian of ϕ ǫ in the basis (dϕ ǫ , θ) where θ is a covector orthogonal to dϕ ǫ and of norm |dϕ ǫ |. This yields coordinates ξ = ξ 0 dϕ ǫ + ξ 1 θ and there exist smooth functions M, N, K so that

D 2 ϕ ǫ (ξ, ξ) = |dϕ ǫ | 2 (M ξ 2 0 + N ξ 2 1 + 2Kξ 0 ξ 1 )
. Notice that ϕ ǫ has a polyhomogeneous expansion at infinity of the form

ϕ ǫ (z) = γ.z + h ǫ r δ δ 2 + c 1 log(r) + c 2 + c 3 r -1 + O(r -2 )
where r = |z|, ω = z/r, γ = (γ 1 , γ 2 ) ∈ R 2 and c i are some smooth functions on S 1 depending on h; in particular we have

dϕ ǫ = γ 1 dz 1 + γ 2 dz 2 + O(r -1+δ ), ∂ α z ∂ β z ϕ ǫ (z) = O(r -2+δ ) for all α + β ≥ 2 which implies that M, N, K ∈ r -2+δ L ∞ (E i ). Then one can write {a, b} =4|dϕ ǫ | 2 (M + M ξ 2 0 + N ξ 2 1 + 2Kξ 0 ξ 1 ) =4(N (a + h 2 λ 2 ) + ((M -N )ξ 0 + 2Kξ 1 )b/2 + (N + M )|dϕ ǫ | 2 )
and since M + N = Tr(D 2 ϕ ǫ ) = -∆ϕ ǫ = h∆ϕ 0 /ǫ we obtain [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF] 

{a, b} = 4|dϕ ǫ | 2 (c(z)(a + h 2 λ 2 ) + ℓ(z, ξ)b + h ǫ r -2+δ ), c(z) = N |dϕ ǫ | 2 , ℓ(z, ξ) = (M -N )ξ 0 + 2Kξ 1 2|dϕ ǫ | 2 .
Now, we take a smooth extension of |dϕ ǫ | 2 , a(z, ξ), ℓ(z, ξ) and r to z ∈ R 2 , this can done for instance by extending r as a smooth positive function on R 2 and then extending dϕ and dϕ 0 to smooth non vanishing 1-forms on R 2 (not necessarily exact) so that |dϕ ǫ | 2 is smooth positive (for small h) and polynomial in h and a, ℓ are of the same form as in {|z| > 1}. Let us define the symbol and quantized differential operator on R 2

e := 4|dϕ ǫ | 2 (c(z)(a + h 2 λ 2 ) + ℓ(z, ξ)b), E := Op h (e)
and write (8)

ih -1 r 1-δ 2 [A, B]r 1-δ 2 = hF + r 1-δ 2 Er 1-δ 2 - h ǫ (A 2 + B 2 ), with F := h -1 r 1-δ 2 (ih -1 [A, B] -E)r 1-δ 2 + 1 ǫ (A 2 + B 2 ).
We deduce from ( 6) and ( 7) the following Lemma 3.2. The operator F is a semiclassical differential operator in the class S 0 ( ξ 4 ) with semiclassical principal symbol

σ(F )(ξ) = 4|dϕ| 2 ǫ + 1 ǫ (|ξ| 2 -|dϕ| 2 ) 2 + 4 ǫ ( ξ, dϕ ) 2 .
By the semiclassical Gårding estimate, we obtain the Corollary 3.3. The operator F of Lemma 3.2 is such that there is a constant C so that

F u, u ≥ C ǫ (||u|| 2 L 2 + h 2 ||du|| 2 L 2 ).
Proof. It suffices to use that σ(F )(ξ) ≥ C ′ ǫ (1+|ξ| 4 ) for some C ′ > 0 and use the semiclassical Gårding estimate. 5) and using ( 8) and Corollary 3.3, we obtain that there exists C > 0 such that for all u ∈ C ∞ 0 (E i )

So by writing

i[A, B]u, u = ir 1-δ 2 [A, B]r 1-δ 2 r -1+ δ 2 u, r -1+ δ 2 u in (
||P h u|| 2 L 2 ≥ (A 2 + B 2 )u, u + Ch 2 ǫ (||r -1+ δ 2 u|| 2 L 2 + h 2 ||r -1+ δ 2 du|| 2 L 2 ) + h Eu, u - h 2 ǫ (||A(r -1+ δ 2 u)|| 2 L 2 + ||B(r -1+ δ 2 u)|| 2 L 2 ). (9) 
We observe that h

-1 [A, r -1+ δ 2 ]r 1+ δ 2 ∈ S 0 ( ξ ) and h -1 [B, r -1+ δ 2 ]r 1+ δ 2 ∈ hS 0 (1)
, and thus

||A(r -1+ δ 2 u)|| 2 L 2 +||B(r -1+ δ 2 u)|| 2 L 2 ) ≤ C ′ (||Au|| 2 L 2 +||Bu|| 2 L 2 +h 2 ||r -1+ δ 2 u|| 2 L 2 +h 4 ||r -1+ δ 2 du|| 2 L 2 )
for some C ′ > 0. Taking h small, this implies with ( 9) that there exists a new constant C > 0 such that [START_REF] Isakov | The inverse scattering at fixed energies in two dimensions[END_REF] ||P

h u|| 2 L 2 ≥ 1 2 (A 2 + B 2 )u, u + Ch 2 ǫ (||r -1+ δ 2 u|| 2 L 2 + h 2 ||r -1+ δ 2 du|| 2 L 2 ) + h Eu, u .
It remains to deal with h Eu, u : we first write

E = 4|dϕ ǫ | 2 (c(z)(A + h 2 λ 2 ) + Op h (ℓ)B) + hr -1+ δ 2 Sr -1+ δ 2
where S is a semiclassical differential operator in the class S 0 ( ξ ) by the decay estimates on c(z), ℓ(z, ξ) as z → ∞, then by Cauchy-Schwartz (and with L := Op h (ℓ))

| hEu, u | ≤Ch(||Au|| L 2 + h 2 ||r -1+ δ 2 u|| L 2 + h||Sr -1+ δ 2 u|| L 2 )||r -1+ δ 2 u|| L 2 + Ch||Bu|| L 2 ||Lu|| L 2 ≤ 1 4 ||Au|| 2 L 2 + h 2 ||Sr -1+ δ 2 u|| 2 L 2 + Ch 2 ||r -1+ δ 2 u|| 2 L 2 + 1 4 ||Bu|| 2 L 2 + Ch 2 ||Lu|| 2 L 2
where C is a constant independent of h, ǫ but may change from line to line. Now we observe that Lr 1-δ 2 and S are in S 0 ( ξ ) and thus

||Sr -1+ δ 2 u|| 2 L 2 + ||Lu|| 2 L 2 ≤ C(||r -1+ δ 2 u|| 2 L 2 + h 2 ||r -1+ δ 2 du|| 2 L 2
), which by [START_REF] Isakov | The inverse scattering at fixed energies in two dimensions[END_REF] implies that there exists C > 0 such that for all ǫ ≫ h > 0 with ǫ small enough

||P h u|| 2 L 2 ≥ Ch 2 ǫ (||r -1+ δ 2 u|| 2 L 2 + h 2 ||r -1+ δ 2 du|| 2 L 2 )
for all u ∈ C ∞ 0 (E i ) . The proof is complete.

Combining now Proposition 3.1 and (4), we obtain Proposition 3.4. Let (M 0 , g 0 ) be a Riemann surface with Euclidean ends with x a boundary defining function of the radial compactification M 0 and let ϕ ǫ = ϕ -h ǫ ϕ 0 where ϕ is a harmonic function with non-degenerate critical points and linear growth on M 0 and ϕ 0 satisfies ∆ g 0 ϕ 0 = x 2-δ as above. Then for all V ∈ x 1-δ 2 L ∞ (M 0 ) there exists an h 0 > 0, ǫ 0 and C > 0 such that for all 0 < h < h 0 , h ≪ ǫ < ǫ 0 and u ∈ C ∞ 0 (M 0 ), we have

(11) 1 h x 1-δ 2 u 2 L 2 + 1 h 2 x 1-δ 2 u|dϕ| 2 L 2 + x 1-δ 2 du 2 L 2 ≤ Cǫ e ϕǫ/h (∆ g + V -λ 2 )e -ϕǫ/h u 2 L 2
Proof. As in the proof of Proposition 3.1 in [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF], by taking ǫ small enough, we see that the combination of (4) and Proposition 3.1 shows that for any

w ∈ C ∞ 0 (M 0 ), C ǫ 1 h x 1-δ 2 w 2 L 2 + 1 h 2 x 1-δ 2 w|dϕ| 2 L 2 + 1 h 2 x 1-δ 2 w|dϕ ǫ | 2 L 2 + x 1-δ 2 dw 2 L 2 ≤ e ϕǫ h (∆ -λ 2 )e -ϕǫ h w 2 L 2
which ends the proof.

3.2.

The quadratic weight case for surfaces. In this section, ϕ has quadratic growth at infinity, which corresponds to the case where V ∈ e -γ/x 2 L ∞ for all γ > 0. The proof when ϕ has quadratic growth at infinity is even simpler than the linear growth case. We define ϕ 0 ∈ x -2 L ∞ to be a solution of ∆ g 0 ϕ 0 = 1, this is possible by Lemma 2.8 and one easily obtains from Proposition 5.61 of [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF] that ϕ 0 = -x -2 /4 + O(x -1 ) as x → 0. We let 4) in K is satisfied by Proposition 3.1 of [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF], it then remains to get the estimate in the ends E 1 , . . . , E N . But the exact same proof as in Lemma 3.1 and Lemma 3.2 of [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF] gives directly that for any

ϕ ǫ := ϕ -h ǫ ϕ 0 which satisfies ∆ g 0 ϕ ǫ /h = -1/ǫ. If K ⊂ M 0 is a compact set, the Carleman estimate (
w ∈ C ∞ 0 (E i ) (12) C ǫ 1 h w 2 L 2 + 1 h 2 w|dϕ| 2 L 2 + 1 h 2 w|dϕ ǫ | 2 L 2 + dw 2 L 2 ≤ e ϕǫ/h ∆ g 0 e -ϕǫ/h w 2 L 2
for some C > 0 independent of ǫ, h and it suffices to glue the estimates in K and in the ends E i as in Proposition 3.1 of [START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF], to obtain [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF] for any w ∈ C ∞ 0 (M 0 ). Then by using triangle inequality

||e ϕǫ/h (∆ g 0 + V -λ 2 )e -ϕǫ/h u|| L 2 ≤ ||e ϕǫ/h ∆ g 0 e -ϕǫ/h u|| L 2 + C||u|| L 2
for some C depending on λ, ||V || L ∞ , we see that the V -λ 2 term can be absorbed by the left hand side of ( 12) and we finally deduce Proposition 3.5. Let (M 0 , g 0 ) be a Riemann surface with Euclidean ends and let ϕ ǫ = ϕ -h ǫ ϕ 0 where ϕ is a harmonic function with non-degenerate critical points and quadratic growth on M 0 and ϕ 0 satisfies

∆ g 0 ϕ 0 = 1 with ϕ 0 ∈ x -2 L ∞ (M 0 ). Then for all V ∈ L ∞ there exists an h 0 > 0, ǫ 0 and C > 0 such that for all 0 < h < h 0 , h ≪ ǫ < ǫ 0 and u ∈ C ∞ 0 (M 0 ) C ǫ 1 h u 2 L 2 + 1 h 2 ||u|dϕ||| 2 L 2 + du 2 L 2 ≤ e ϕǫ/h (∆ g 0 + V -λ 2 )e -ϕǫ/h u 2 L 2 .
The main difference with the linear weight case is that one can use a convexification which has quadratic growth at infinity which allows to absorb the λ 2 term, while it was not the case for the linearly growing weights.

Complex Geometric Optics on a Riemann Surface with Euclidean ends

As in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF][START_REF] Imanuvilov | Global uniqueness from partial Cauchy data in two dimensions[END_REF][START_REF] Guillarmou | Calderón inverse problem for Schrodinger operator on Riemann surfaces[END_REF], the method for identifying the potential at a point p is to construct complex geometric optic solutions depending on a small parameter h > 0, with phase a Morse holomorphic function with a non-degenerate critical point at p, and then to apply the stationary phase method. Here, in addition, we need the phase to be of linear growth at infinity if V ∈ e -γ/x L ∞ for all γ > 0 while the phase has to be of quadratic growth at infinity if V ∈ e -γ/x 2 L ∞ for all γ > 0.

We shall now assume that M 0 is a non-compact surface with genus g with N ends equipped with a metric g 0 which is Euclidean in the ends, and V is a C 1,α function in M 0 . Moreover, if V ∈ e -γ/x L ∞ for all γ > 0, we ask that N ≥ max(2g + 1, 2) while if V ∈ e -γ/x 2 L ∞ for all γ > 0, we assume that N ≥ g + 1. As above, let us use a smooth positive function x which is equal to 1 in a large compact set of M 0 and is equal to x = |z| -1 in the regions |z| > r 0 of the ends E i ≃ {z ∈ C; |z| > 1}, where r 0 is a fixed large number. This function is a boundary defining function of the radial compactification of M 0 in the sense of Melrose [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF].

To construct the complex geometric optics solutions, we will need to work with the weighted spaces x -α L 2 (M 0 ) where α ∈ R + .

Let H be the finite dimensional complex vector space defined in the beginning of Section 2.3. Choose p ∈ M 0 such that there exists a Morse holomorphic function Φ = ϕ + iψ ∈ H on M 0 , with a critical point at p; there is a dense set of such points by Proposition 2.1. The purpose of this section is to construct solutions u on M 0 of (∆ -λ 2 + V )u = 0 of the form [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF] u = e Φ/h (a + r 1 + r 2 )

for h > 0 small, where a ∈ x -J+1 L 2 with J ∈ R + \ N is a holomorphic function on M 0 , obtained by Lemma 2.6, such that a(p) = 0 and a vanishing to order L (for some fixed large L) at all other critical points of Φ, and finally r 1 , r 2 will be remainder terms which are small as h → 0 and have particular properties near the critical points of Φ. More precisely, e ϕ 0 /ǫ r 2 will be a o L 2 (h) and r 1 will be a O x -J L 2 (h) but with an explicit expression, which can be used to obtain sufficient information in order to apply the stationary phase method.

4.0.1. Construction of r 1 . We want to construct

r 1 = O x -J L 2 (h) which satisfies e -Φ/h (∆ g 0 -λ 2 + V )e Φ/h (a + r 1 ) = O x -J L 2 (h) for some large J ∈ R + \ N so that a ∈ x -J+1 L 2 .
Let G be the operator of Lemma 2.8, mapping continuously x -J+1 L 2 (M 0 ) to x -J-1 L 2 (M 0 ). Then clearly ∂∂G = i 2 ⋆ -1 when acting on x -J+1 L 2 , here ⋆ -1 is the inverse of ⋆ mapping functions to 2-forms. First, we will search for r 1 satisfying ( 14)

e -2iψ/h ∂e 2iψ/h r 1 = -∂G(a(V -λ 2 )) + ω + O x -J H 1 (h)
with ω ∈ x -J L 2 (M 0 ) a holomorphic 1-form on M 0 and r 1 x -J L 2 = O(h). Indeed, using the fact that Φ is holomorphic we have

e -Φ/h ∆ g 0 e Φ/h = -2i ⋆ ∂e -Φ/h ∂e Φ/h = -2i ⋆ ∂e -1 h (Φ-Φ) ∂e 1 h (Φ-Φ) = -2i ⋆ ∂e -2iψ/h ∂e 2iψ/h
and applying -2i ⋆ ∂ to [START_REF] Melrose | Geometric scattering theory[END_REF], this gives

e -Φ/h (∆ g 0 + V )e Φ/h r 1 = -a(V -λ 2 ) + O x -J L 2 (h).
Writing -∂G(a(V -λ 2 )) =: c(z)dz in local complex coordinates, c(z) is C 2,α by elliptic regularity and we have 2i∂

z c(z) = a(V -λ 2 ), therefore ∂ z ∂ z c(p ′ ) = ∂ 2 z c(p ′ ) = 0 at each critical point p ′ =
p by construction of the function a. Therefore, we deduce that at each critical point p ′ = p, c(z) has Taylor series expansion 2 j=0 c j z j + O(|z| 2+α ). That is, all the lower order terms of the Taylor expansion of c(z) around p ′ are polynomials of z only. By Lemma 2.7, and possibly by taking J larger, there exists a holomorphic function f ∈ x -J L 2 such that ω := ∂f has Taylor expansion equal to that of ∂G(a(V -λ 2 )) at all critical points p ′ = p of Φ. We deduce that, if b := -∂G(a(V -λ 2 )) + ω = b(z)dz, we have ( 15)

|∂ m z ∂ ℓ z b(z)| = O(|z| 2+α-ℓ-m ), for ℓ + m ≤ 2, at critical points p ′ = p |b(z)| = O(|z|), if p ′ = p.
Now, we let χ 1 ∈ C ∞ 0 (M 0 ) be a cutoff function supported in a small neighbourhood U p of the critical point p and identically 1 near p, and χ ∈ C ∞ 0 (M 0 ) is defined similarly with χ = 1 on the support of χ 1 . We will construct r 1 to be a sum r 1 = r 11 + hr 12 where r 11 is a compactly supported approximate solution of ( 14) near the critical point p of Φ and r 12 is correction term supported away from p. We define locally in complex coordinates centered at p and containing the support of χ (16)

r 11 := χe -2iψ/h R(e 2iψ/h χ 1 b)
where

Rf (z) := -(2πi) -1 R 2 1 z- ξ f d ξ ∧ dξ for f ∈ L ∞ compactly
supported is the classical Cauchy operator inverting locally ∂ z (r 11 is extended by 0 outside the neighbourhood of p). The function r 11 is in C 3,α (M 0 ) and we have

(17) e -2iψ/h ∂(e 2iψ/h r 11 ) = χ 1 (-∂G(a(V -λ 2 )) + ω) + η with η := e -2iψ/h R(e 2iψ/h χ 1 b)∂χ.
We then construct r 12 by observing that b vanishes to order 2 + α at critical points of Φ other than p (from ( 15)), and ∂χ = 0 in a neighbourhood of any critical point of ψ, so we can find r 12 satisfying (18)

2ir 12 ∂ψ = (1 -χ 1 )b.
This is possible since both ∂ψ and the right hand side are valued in T * 1,0 M 0 and ∂ψ has finitely many isolated zeroes on M 0 : r 12 is then a function which is in C 2,α (M 0 \ P ) where P := {p 1 , . . . , p n } is the set of critical points other than p, it extends to a function in C 1,α (M 0 ) and it satisfies in local complex coordinates z at each p j |∂ β z ∂ γ z r 12 (z)| ≤ C|z| 1+α-β-γ , β + γ ≤ 2 by using also the fact that ∂ψ can be locally be considered as a smooth function with a zero of order 1 at each p j . Moreover b ∈ x -J H 2 (M 0 ) thus r 1 ∈ x -J H 2 (M 0 ) and we have 

e -2iψ/h ∂(e 2iψ/h r 1 ) = b + h∂r 12 + η = -∂G(a(V -λ 2 )) + ω + h∂r 12 + η.
||η|| H 2 (M 0 ) = O(| log h|), η H 1 (M 0 ) ≤ O(h| log h|), ||x J ∂r 12 || H 1 (M 0 ) = O(1), ||x J r 1 || L 2 = O(h), ||x J (r 1 -h r 12 )|| L 2 = o(h)
where r 12 solves 2i r 12 ∂ψ = b.

Proof. The proof is exactly the same as the proof of Lemma 4.2 in [START_REF] Guillarmou | Calderón inverse problem with partial data on Riemann surfaces[END_REF], except that one needs to add the weight x J to have bounded integrals.

As a direct consequence, we have Corollary 4.2. With r 1 = r 11 + hr 12 , there exists J > 0 such that

||e -Φ/h (∆ g 0 -λ 2 + V )e Φ/h (a + r 1 )|| x -J L 2 (M 0 ) = O(h| log h|).
4.0.2. Construction of r 2 . In this section, we complete the construction of the complex geometric optic solutions. We deal with the general case of surfaces and we shall show the following Proposition 4.1. If ϕ 0 is the subharmonic function constructed in Section 3, then for ǫ small enough there exist solutions to (∆ g 0 -λ2 + V )u = 0 of the form u = e Φ/h (a + r 1 + r 2 ) with r 1 = r 11 + hr 12 constructed in the previous section and r 2 ∈ e -ϕ 0 /ǫ L 2 satisfying e ϕ 0 /ǫ r 2 L 2 ≤ Ch 3/2 | log h|. This is a consequence of the following Lemma (which follows from the Carleman estimate obtained in Section 3 above)

Lemma 4.3. Let δ ∈ (0, 1), V ∈ x 1-δ 2 L ∞ (M 0 )
, and ϕ ǫ = ϕ-h ǫ ϕ 0 a weight with linear growth at infinity as in Proposition 3.4. For all f ∈ L 2 (M 0 ) and all h > 0 small enough, there exists a solution v ∈ L 2 (M 0 ) to the equation

(19) e -ϕǫ/h (∆ g -λ 2 + V )e ϕǫ/h v = x 1-δ 2 f satisfying v L 2 (M 0 ) ≤ Ch 1 2 f L 2 (M 0 ) .
If ϕ ǫ has quadratic growth at infinity, the same result is true when V ∈ L ∞ (M 0 ) but x 1-δ 2 f can be replaced by f ∈ L 2 in [START_REF] Sun | Generic uniqueness for an inverse boundary value problem[END_REF].

Proof. The proof is based on a duality argument. Let P h := e ϕǫ/h (∆ g -λ 2 + V )e -ϕǫ/h and for all h > 0 the real vector space A := {u ∈ x -1+ δ 2 H 1 (M 0 ); P h u ∈ L 2 (M 0 )} equipped with the real scalar product (u, w) A := P h u, P h w L 2 . By the Carleman estimate of Proposition 3.4, the space A is a Hilbert space equipped with the scalar product above if h < h 0 , and thus the linear functional L : w → M 0 x 1-δ 2 f w dvol g 0 on A is continuous with norm bounded by Ch 1 2 ||f || L 2 by Proposition 3.4, and by Riesz theorem there is an element u ∈ A such that (., u) A = L and with norm bounded by the norm of L. It remains to take v := P h u which solves P * h v = x 1-δ 2 f where P * h = e -ϕǫ/h (∆ g -λ 2 + V )e ϕǫ/h is the adjoint of P h and v satisfies the desired norm estimate. The proof when the weight ϕ ǫ has quadratic growth at infinity is the same, but improves slightly due to the Carleman estimate of Proposition 3.5.

Proof of Proposition 4.1. We first solve the equation (∆ + V -λ 2 )e ϕǫ/h r 2 = x 1-δ by using Lemma 4.3 and the fact that for J large, there is C > 0 such that for all h < h 0 ||x -1+ δ 2 e -ϕǫ/h (∆ + V -λ 2 )e Φ/h (a + r 1 )|| L 2 ≤ C||x J e -Φ/h (∆ -λ 2 + V )e Φ/h (a + r 1 )|| L 2 since x -J-1 e ϕ 0 /ǫ ∈ L ∞ (M 0 ) for all J (recall that ϕ 0 ∼ -x -δ /δ 2 as x → 0). But now the right hand side is bounded by O(h| log h|) according to Corollary 4.2, therefore we set r 2 := -e -iψ/h-ϕ 0 /ǫ r 2 which satisfies (∆ g 0 -λ 2 + V )e Φ/h (a + r 1 + r 2 ) = 0 and, by Lemma 4.3, the norm estimate ||e ϕ 0 /ǫ r 2 || L 2 ≤ O(h 3/2 | log h|).

Scattering on surface with Euclidean ends

Let (M 0 , g 0 ) be a surface with Euclidean ends and V ∈ e -γ/x L ∞ (M 0 ) for some γ. The scattering theory in this setting is described for instance in Melrose [START_REF] Melrose | Geometric scattering theory[END_REF], here we will follow this presentation (see also Section 3 in Uhlmann-Vasy [START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF] for the R n case). First, using standard methods in scattering theory, we define the resolvent on the continuous spectrum as follows Lemma 5.1. The resolvent R V (λ) := (∆ g 0 +V -λ 2 ) -1 admits a meromorphic extension from {Im(λ) < 0} to {Im(λ) ≤ A, Re(λ) = 0}, as a family of operators mapping e -γ/x L 2 (M 0 ) to e γ/x L 2 (M 0 ) for any γ > A. Moreover, for λ ∈ R \ {0} not a pole, R V (λ) maps continuously x α L 2 to x -α L 2 for any α > 1/2.

Proof. The statement is known for V = 0 and M 0 = R 2 by using the explicit formula of the resolvent convolution kernel on R 2 in terms of Hankel functions (see for instance [START_REF] Melrose | Geometric scattering theory[END_REF]), we shall denote R 0 (λ) this continued resolvent. More precisely, for all A > 0, the operator R 0 (λ) continues analytically from {Im(λ) < 0} to {Im(λ) ≤ A, Re(λ) = 0} as a family of bounded operators mapping e -γ/x L 2 to e γ/x L 2 for any γ > A. Now we can set χ ∈ C ∞ 0 (M 0 ) such that 1 -χ is supported in the ends E i , and let χ 0 , χ 1 ∈ C ∞ 0 (M 0 ) such that (1 -χ 0 ) = 1 on the support of (1 -χ) and χ 1 = 1 on the support of χ. Let λ 0 ∈ -iR + with iλ 0 ≫ 0, then the resolvent R 0 (λ 0 ) is well defined from L 2 (M 0 ) to H 2 (M 0 ) since the Laplacian is essentially self-adjoint [START_REF] Taylor | Partial differential equations II[END_REF]Proposition 8.2.4], and we have a parametrix

E(λ) := (1 -χ 0 )R 0 (λ)(1 -χ) + χ 1 R 0 (λ 0 )χ which satisfies (∆ g 0 -λ 2 + V )E(λ) = 1 + K(λ), K(λ) := ([∆ g 0 , χ 1 ] -(λ 2 -λ 2 0 )χ 1 )R 0 (λ 0 )χ -[∆ g 0 , χ 0 ]R 0 (λ)(1 -χ) + V E(λ)
, where here we use the notation R 0 (λ) for an integral kernel on M 0 , which in the charts {z ∈ R 2 ; |z| > 1} corresponding the ends E 1 , . . . E N , is given by the integral kernel of (∆ R 2λ 2 ) -1 . Using the explicit expression of the convolution kernel of R 0 (λ) in the ends (see for instance Section 1.5 of [START_REF] Melrose | Geometric scattering theory[END_REF]) and the decay assumption on V , it is direct to see that for Im(λ) < A, Re(λ) = 0, the map λ → K(λ) a is compact analytic family of bounded operators from e -γ/x L 2 to e -γ/x L 2 for any γ > A. Moreover 1 + K(λ 0 ) is invertible since ||K(λ 0 )|| L 2 →L 2 ≤ 1/2 if iλ 0 is large enough. Then by analytic Fredholm theory, the resolvent R V (λ) has an meromorphic extension to Im(λ) < A, Re(λ) = 0 as a bounded operator from e -γ/x L 2 to e γ/x L 2 if γ > A, given by

R V (λ) = E(λ)(1 + K(λ)) -1 . Now (1 + K(λ)) -1 = 1 + Q(λ) for some Q(λ) = -K(λ)(1 + K(λ)) -1
mapping e -γ/x L 2 to itself for any γ > A, which proves the mapping properties of R V (λ) on exponential weighted spaces. For the mapping properties on {Re(λ) = 0}, a similar argument works.

A corollary of this Lemma is the mapping property Corollary 5.2. For λ ∈ R \ {0} not a pole of R V (λ), and f ∈ e -γ/x L ∞ for some γ > 0, then there

exists v ∈ C ∞ (∂M 0 ) such that R V (λ)f -x 1 2 e -iλ/x v ∈ L 2 . Proof. Using the expression R V (λ) = E(λ)(1 + Q(λ))
of the proof of Lemma 5.1, it suffices to know the mapping property of E(λ) on e -γ/x L 2 , but since outside a compact set (i.e. in the ends) E(λ) is given by the free resolvent on R 2 , this amounts to proving the statement in R 2 , which is well-known: for instance, this is proved for f ∈ C ∞ 0 (R 2 ) in Section 1.7 [START_REF] Melrose | Geometric scattering theory[END_REF] but the proof extends easily to f ∈ e -γ/x L ∞ (R 2 ) since the only used assumption on f for applying a stationary phase argument is actually that the Fourier transform f (z) has a holomorphic extension in a complex neighbourhood of R 2 .

We also have a boundary pairing, the proof of which is exactly the same as [14, Lemma 2.2] (see also Proposition 3.1 of [START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF]).

Lemma 5.3. For λ > 0 and V ∈ e -γ/x L ∞ (M 0 ), if u ± ∈ x -α L 2 (M 0 ) for some α > 1/2 and (∆ g 0 -λ 2 + V )u ± ∈ x α L 2 (M 0 ) with u + -x 1 2 e iλ/x f ++ -x 1 2 e -iλ/x f +-∈ L 2 , u --x 1 2 e iλ/x f -+ -x 1 2 e -iλ/x f --∈ L 2 for some f ±± ∈ C ∞ (∂M 0 ), then u + , (∆ g 0 + V -λ 2 )u --(∆ g 0 + V -λ 2 )u + , u -= 2iλ ∂M 0 (f ++ f -+ -f +-f --)
where the volume form on ∂M 0 ≃ ⊔ N i=1 S 1 is induced by the metric x 2 g| T ∂M 0 . As a corollary, the same exact arguments as in Sections 2.2 to 2.5 in [START_REF] Melrose | Geometric scattering theory[END_REF] show 1 Corollary 5.4. The operator R V (λ) is analytic on λ ∈ R \ {0} as a bounded operator from

x α L 2 to x -α L 2 if α > 1/2.
In R 2 there is a Poisson operator P 0 (λ) mapping C ∞ (S 1 ) to x -α L 2 (R 2 ) for α > 1/2, which satisfies that for any f + ∈ C ∞ (S 1 ) there exists f -∈ C ∞ (S 1 ) such that

P 0 (λ)f + -x 1 2 e iλ/x f + -x 1 2 e -iλ/x f -∈ L 2 , (∆ -λ 2 )P 0 (λ)f + = 0.
We can therefore define in our case a similar Poisson operator P

V (λ) mapping C ∞ (∂M 0 ) to x -α L 2 for α > 1/2, by (20) 
P V (λ)f + := (1 -χ)P 0 (λ)f + -R V (λ)(∆ g 0 + V -λ 2 )(1 -χ)P 0 (λ)f +
where 1 -χ ∈ C ∞ (M 0 ) equals 1 in the ends E i and P 0 (λ) denotes here the Schwartz kernel of the Poisson operator on R 2 pulled back to each of the Euclidean ends E i of M 0 in the 1 In [START_REF] Melrose | Geometric scattering theory[END_REF], a unique continuation is used for Schwartz solutions of (∆ + Vλ 2 )u = 0 when V is a compactly supported potential on R n but the same result is also true in our setting, this is a consequence of a standard Carleman estimate.

obvious way. Then, since (∆ g 0 + V -λ 2 )(1 -χ)P 0 (λ)f + ∈ e -γ/x L 2 for all γ > 0, it suffices to use Corollaries 5.2 and 5.4 to see that it defines an analytic Poisson operator P

V (λ) on λ ∈ R \ {0} satisfying that for all f + ∈ C ∞ (∂M 0 ), there exists f -∈ C ∞ (∂M 0 ) such that (21) P V (λ)f + -x 1 2 e iλ/x f + -x 1 2 e -iλ/x f -∈ L 2 , (∆ + V -λ 2 )P V (λ)f + = 0.
Moreover, it is easily seen to be the unique solution of (21): indeed, if two such solutions exist then the difference is a solution u with asymptotic x 1 2 e -iλ/x f -+ L 2 for some f -∈ C ∞ (∂M 0 ), but applying Lemma 5.3 with u -= u + = u shows that f -= 0, thus u ∈ L 2 , which implies u = 0 by Corollary 5.4.

Definition 5.5. The scattering matrix S V (λ) : C ∞ (∂M 0 ) → C ∞ (∂M 0 ) for λ ∈ R \ {0} is defined to be the map S V (λ)f + := f -where f -is given by the asymptotic P V (λ)f + = x 1 2 e iλ/x f + + x 1 2 e -iλ/x f -+ g, with g ∈ L 2 .

We remark that, using Lemma 5.3 and the uniqueness of the Poisson operator, one easily deduces for λ ∈ R \ {0} [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] S V (λ) * = S V (-λ) = S V (λ) -1

where the scalar product on L 2 (∂M 0 ) is induced by the metric x 2 g 0 | T ∂M 0 .

We can now state a density result similar to Proposition 3.3 of [26]:

Proposition 5.6. If V ∈ e -γ 0 /x L ∞ (M 0 ) (resp. V ∈ e -γ 0 /x 2 L ∞ (M 0 )) for some γ 0 > 0, and λ ∈ R \ {0}, then for any 0 < γ < γ ′ < γ 0 the set

F := {P V (λ)f + ; f + ∈ C ∞ (∂M 0 )}
is dense in the null space of ∆ g 0 + V -λ 2 in e γ/x L 2 (M 0 ) for the topology of e γ ′ /x L 2 (M 0 ) (resp. in e γ/x 2 L 2 (M 0 ) for the topology of e γ ′ /x 2 L 2 (M 0 )).

Proof. First assume V ∈ e -γ 0 /x L ∞ (M 0 ). Let w ∈ e -γ ′ /x L 2 be orthogonal to F, and set u -:= R V (λ)w and u + = P V (λ)f ++ for some f ++ ∈ C ∞ (∂M 0 ). Then, define f --∈ C ∞ (∂M 0 ) by R V (λ)w -x 1 2 e -iλ/x f --∈ L 2 , and from Lemma 5.3 we obtain f +-, f --= 0 since w, P V (λ)f ++ = 0 by assumption. Since f +-= S V (λ)f ++ is arbitrary, then f --= 0 and u -∈ L 2 . In particular, from the parametrix constructed in the proof of Lemma 5.1

R V (λ)w -(1 -χ 0 )R 0 (λ)(1 -χ)(1 + Q(λ))w ∈ L 2
with (1 + Q(λ))w ∈ e -γ ′ /x L 2 . Since in each end, R 0 (λ) is the integral kernel of the free resolvent of the Euclidean Laplacian on R 2 and (1 -χ 0 ) and (1 -χ) are supported in the ends, we can view the term (1 -χ 0 )R 0 (λ)(1 -χ)(1 + Q(λ))w as a disjoint sum (over the ends) of functions on R 2 of the form [START_REF] Taylor | Partial differential equations II[END_REF] (1 -χ 0 (z)) 1 (2π) 2 R 2 e izξ (ξ 2 -λ 2 -i0) -1 f (ξ)dξ where in each end E i , f = (1-χ)(1+Q(λ))w ∈ e -γ ′ /x L 2 (E i ) can be considered as a function in e -γ ′ |z| L 2 (R 2 ). By the Paley-Wiener theorem, f is holomorphic in a strip U = {|Im(ξ)| < γ ′ } with bound sup η≤γ || f (• + iη)|| L 2 (R 2 ) < ∞ for all γ < γ ′ , so the fact that ( 23) is in L 2 implies that f vanishes at the real sphere {ξ ∈ R 2 ; ξ 2 = λ 2 }, and thus there exists h holomorphic in U such that f (ξ) = (ξ 2 -λ 2 )h(ξ) (see e.g. the proof of Lemma 2.5 in [START_REF] Päivärinta | Inverse scattering for the magnetic Schroedinger operator[END_REF]), and satisfying the same types of L 2 estimates as f in U on lines Im(ξ) = cst. By the Paley-Wiener theorem If F vanishes on the real submanifold {|ξ| 2 = λ 2 }, then F -1 ξ→z ( F (ξ) |ξ| 2 -λ 2 ) ∈ e -γ|z| 2 L ∞ (R 2 ). Proof. First by analyticity of F , one has that F vanishes on the complex hypersurface M λ := {ζ ∈ C 2 ; ζ.ζ = λ 2 } (see for instance the proof of Lemma 2.5 of [START_REF] Päivärinta | Inverse scattering for the magnetic Schroedinger operator[END_REF]), and in particular G(ζ) = F (ζ)/(ζ.ζ -λ 2 ) is an analytic function on C 2 . We will first prove that for each η ∈ R 2 , G(ξ + iη) ∈ L 1 (R 2 , dξ) ∩ L ∞ (R 2 , dξ) and ( 26) which ends the proof.

||G(ξ + iη)|| L 1 (R 2 ,dξ) ≤ Ce
Corollary 7.3. Let f (z) ∈ e -γ|z| 2 L 2 (R 2 ) ∩ e -γ|z| 2 L 1 (R 2 ) for some γ > 0. Assume that its Fourier transform f (ξ) vanishes on the sphere {|ξ| = |λ|}, then one has

F -1 ξ→z f (ξ) |ξ| 2 -λ 2 ∈ e -γ|z| 2 L ∞ (R 2 ).

  one has ⋆(udx + vdy) = -vdx + udy and T * 1,0 M | Uα ≃ Cdz, T * 0,1 M | Uα ≃ Cdz where dz = dx + idy and dz = dx -idy. We define the natural projections induced by the splitting of CT * M π 1,0 : CT * M → T * 1,0 M, π 0,1 : CT * M → T * 0,1 M. The exterior derivative d defines the de Rham complex 0 → Λ 0 → Λ 1 → Λ 2 → 0 where Λ k := Λ k T * M denotes the real bundle of k-forms on M . Let us denote CΛ k the complexification of Λ k , then the ∂ and ∂ operators can be defined as differential operators ∂ : CΛ 0 → T * 1,0 M and ∂ : CΛ0 → T * 0,1 M by ∂f := π 1,0 df, ∂f := π 0,1 df, they satisfy d = ∂ + ∂ and are expressed in holomorphic coordinates by

  for all p ∈ M . The same exact notions apply for meromorphic 1-forms on M . Then we define for a divisor D r(D) := dim({f meromorphic function on M ; (f ) ≥ D} ∪ {0}), i(D) := dim({u meromorphic 1 form on M ; (u) ≥ D} ∪ {0}). The Riemann-Roch theorem states the following identity: for any divisor D on the closed Riemann surface M of genus g, (1) r(D -1 ) = i(D) + deg(D) -g + 1.

  λ 2 and B := (P h -P * h )/2i = -2ih∇ϕ ǫ .∇+ ih∆ϕ ǫ which have respective semiclassical full symbols a and b, i.e. A = Op h (a) and B = Op h (b) for the Weyl quantization. Notice that A, B are symmetric operators, thus for all u
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 7222 Let F (ξ + iη) be a complex analytic function on R 2 + iR 2 = C 2 such that there is C > 0 and γ > 0 with||F (ξ + iη)|| L 2 (R 2 ,dξ) ≤ Ce |η| (ξ + iη)| ≤ Ce |η| 2 4γ .
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 222 If |η| ≤ 2 we choose the disc B := {ξ ∈ R 2 ; |ξ| 2 < 2(4 + λ 2 )} and letζ := ξ + iη. Then ||G(ξ + iη)|| L 1 (B,dξ) and ||(ζ.ζ -λ 2 ) -1 || L 2 (R2 \B,dξ) are uniformly bounded for |η| ≤ 2, and we obtain by Cauchy-Schwarz that (26) holds for |η| ≤ 2. For the case |η| > 2 we define Uη := {ξ ∈ R 2 ; |ζ.ζ -λ 2 | > |η|} and note that sup |η|>2 ||(ζ.ζ -λ 2 ) -1 || L 1 (R 2 \Uη,dξ) < ∞, sup |η|>2 ||(ζ.ζ -λ 2 ) -1 || L 2 (Uη,dξ) < ∞.These results follow by decomposing the integration sets to parts where one can change coordinates ξ 1 + iξ 2 to ξ1 + i ξ2 := ζ.ζ -λ 2 , and by evaluating simple integrals. Then[START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF] follows from Cauchy-Schwarz and the estimates for F .Let η = 2γz, we use a contour deformation fromR 2 to 2iγz + R 2 in C 2 , R iz.ξ G(ξ)dξ = R iz.(ξ+2iγz) G(ξ + 2iγz)dξ,which is justified by the fact that G(ξ + iη) ∈ L 1 (R 2 × K, dξ dη) for any compact set K in R 2 by the uniform bound[START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF]. Now using[START_REF] Uhlmann | Fixed energy inverse problem for exponentially decreasing potentials[END_REF] again shows that R iz.ξ G(ξ)dξ ≤ Ce -γ|z| 2

  Let e 1 , . . . , e N be distinct points on a closed Riemann surface M with genus g, and let z 0 be another point of M \ {e 1 , . . . , e N }.

	Lemma 2.1. If N ≥ max(2g + 1, 2), the following hold
	true:
	(i) there exists a meromorphic function f on M with at most simple poles, all contained in
	{e 1 , . . . , e N }, such that ∂f (z 0 ) = 0,
	(ii) there exists a meromorphic function h on M with at most simple poles, all contained in
	{e 1 , . . . , e N }, such that z 0 is a zero of order at least 2 of h.
	Now we deduce the

e -ϕǫ/h (∆ + V -λ 2 )e Φ/h (a + r 1 )

again, we deduce that [START_REF] Taylor | Partial differential equations II[END_REF] is in e -γ|z| L 2 and thus R V (λ)w ∈ e -γ/x L 2 (M 0 ) for any γ < γ ′ . Then if v ∈ e γ/x L 2 (M 0 ) and (∆ g 0 + V -λ 2 )v = 0, one has by integration by parts 0 = R V (λ)w, (∆ g 0 + V -λ 2 )v = w, v which ends the proof in the case V ∈ e -γ 0 /x L ∞ (M 0 ). The quadratic decay case V ∈ e -γ 0 /x 2 L ∞ (M 0 ) is exactly similar but instead of Paley-Wiener theorem, we use Corollary 7.3 and the inclusions e -γ ′ /x 2 L 2 ⊂ e -γ ′′ /x 2 L 1 ∩ e -γ ′′ /x 2 L 2 and e -γ ′ /x 2 L ∞ ⊂ e -γ/x 2 L 2 for all γ < γ ′′ < γ ′ . 6. Identifying the potential 6.1. The case of a surface. On a Riemann surface (M 0 , g 0 ) with N Euclidean ends and genus g, we assume that V 1 , V 2 ∈ C 1,α (M 0 ) are two real valued potentials such that the respective scattering operators S V 1 (λ) and S V 2 (λ) agree for a fixed λ > 0. We also assume that for all γ > 0

By considering the asymptotics of u 1 := P V 1 (λ)f 1 and P V 2 (-λ)f 2 for f i ∈ C ∞ (∂M 0 ) we easily have by integration by parts that

by using [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF]. From Proposition 5.6, this implies by density that, if V ∈ e -γ/x L ∞ (resp.

V ∈ e -γ/x 2 L ∞ for all γ > 0), then for all solutions u i of (∆

We shall now use our complex geometric optics solutions as special solutions in the weighted space e

Let p ∈ M 0 be such that, using Proposition 2.1, we can choose a holomorphic Morse function Φ = ϕ + iψ with linear or quadratic growth on M 0 (depending on the topological assumption), with a critical point at p. Then for the complex geometric optics solutions u 1 , u 2 with phase Φ constructed in Section 4, the identity (25) holds true. We will then deduce the Proposition 6.1. Let λ ∈ (0, ∞) and assume that

Proof. Let u 1 and u 2 be solutions on M 0 to (∆ g + V j -λ 2 )u j = 0 constructed in Section 4 with phase Φ for u 1 and -Φ for u 2 , thus of the form

We have the identity

Then by using the estimates in Lemma 4.1 and Proposition 4.1 we have, as h → 0,

where r j 12 ∈ L ∞ (M 0 ) are defined in Lemma 4.1, with the superscript j refering to the solution for the potential V j ; in particular these functions r j 12 are independent of h.

and using the C 1,α regularity assumption on V i , one can use stationary phase for the V i (p) term and integration by parts to gain a power of h for the V i (•) -V i (p) term (see the proof of Lemma 5.4 in [START_REF] Guillarmou | Calderón inverse problem with partial data on Riemann surfaces[END_REF] for details) to deduce

for some C = 0. Therefore,

Now to deal with the middle terms, it suffices to apply a Riemann-Lebesgue type argument like Lemma 5.3 of [START_REF] Guillarmou | Calderón inverse problem with partial data on Riemann surfaces[END_REF] to deduce that it is a o(h). The argument is simply to approximate the amplitude in the L 1 (M 0 ) norm by a smooth compactly supported function and then use stationary phase to deal with the smooth function. We have thus proved that V 1 (p) = V 2 (p) by taking h → 0.

Appendix

To obtain mapping properties of the resolvent of ∆ R 2 acting on functions with Gaussian decay, we shall give two Lemmas on Fourier transforms of functions with Gaussian decay. Lemma 7.1. Let f (z) ∈ e -γ|z| 2 L 2 (R 2 ) for some γ > 0. Then the Fourier transform f (ξ) extends analytically to C 2 and for all ξ, η ∈ R 2 ,

Proof. The first statement is clear. For the bound, we write f (ξ + iη) = e