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6 LENS, Universitá di Firenze, via N. Carrara 1, I-50019 Sesto F.no(FI), Italy
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Abstract. The possibility of observing phenomena peculiar to long-range
interactions, and more specifically in the so-called Quasi-Stationary State (QSS)
regime is investigated within the framework of two devices, namely the Free-
Electron Laser (FEL) and the Collective Atomic Recoil Laser (CARL). The QSS
dynamics has been mostly studied using the Hamiltonian Mean-Field (HMF) toy
model, demonstrating in particular the presence of first versus second order out-of-
equilibrium phase transitions from magnetized to unmagnetized regimes. Here, we
give evidence of the strong connections between the HMFmodel and the dynamics
of the two mentioned devices, and we discuss the perspectives to observe some
specific QSS features experimentally. In particular, a dynamical analog of the
phase transition is present in the FEL and in the CARL in its conservative regime.
Regarding the dissipative CARL, a formal link is established with the HMFmodel.
For both FEL and CARL, calculations are performed with reference to existing
experimental devices, namely the FERMI@Elettra FEL under construction at
Sincrotrone Trieste (Italy) and the CARL system at LENS in Florence (Italy).
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1. Introduction

Long-range interactions have now been shown to be central in a wide range of scientific
contexts such as astrophysics [1], hydrodynamics [2] or nuclear physics [3]. However,
the possibilities of investigating the long-range features via dedicated experiments are
more restricted: Non-neutral plasmas [4], cold atom and wave-particle systems [5] are
among the most serious candidates. The purpose of this paper is to investigate the
possibility of using existing set-ups based on the wave-particle interactions to probe
long-range features of the dynamics, in particular out-of-equilibrium transitions.

As an introduction to long-range interactions, let us start from the Hamiltonian
Mean-Field (HMF) model [6], a paradigmatic system on which many theoretical
studies focused. This one-dimensional model describes the interaction of N particles
on a circle through a collective field, which depends only on their phase θj . This
N -body dynamics is described by the following Hamiltonian:

H =
N
∑

j=1

(

p2j
2

+
ǫ

2N

N
∑

k=1

(1− cos (θj − θk))

)

, (1)

associated to the canonical bracket in (θj , pj). Here, ǫ = ±1 corresponds either
to a ferromagnetic (+) or an antiferromagnetic (-) system. In this model, the
particles are collectively interacting through the so-called magnetization M = Meiφ =
(
∑

j e
iθj )/N , since the dynamics of a single particle is given by:

θ̈j + ǫM sin(θj − φ) = 0. (2)

Long-range systems can exhibit interesting equilibrium features, such as ensemble
inequivalence (see e.g. [7] for the antiferromagnetic two-dimensional version of the
HMF model or [8] for a recent review). However, the HMF model mainly revealed
itself as a perfect playground to study out-of-equilibrium long-range features. Indeed,
starting from generic non-stationary initial conditions, the system will typically have
a fast transient dynamics until a nearly-stationary state, generally called Quasi-
Stationary State (QSS), is reached: Not only this QSS dynamics substantially differs
from the equilibrium one, but the system actually stays trapped in it for very long
times [6].

More specifically, several authors actually demonstrated that the lifetime of
the said QSS diverges when the number of particles in interaction increases. For
example, numerical works report that the time of relaxation to equilibrium for the
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Hamiltonian Mean-Field model scales as N1.7 [9], in a regime of parameters yielding
homogeneous QSS. To gain insight into the emergence of QSS, one can resort to a
continuous picture, formal limit of the governing discrete Hamiltonian. A rigorous
mathematical procedure leads to the Vlasov equation for the evolution of the single
particle distribution function, the continuous representation of the particles density
in phase space which is recovered when making the number of bodies N tend to
infinity. The stability of QSS in the infinite N limit suggests that these latter
states can be potentially interpreted as Vlasov stationary states, an ansatz that
opens up the perspective for further analytical progress, a fact on which we shall
return in the following. Operating in this context and explicitly accounting for
finite size corrections beyond the idealized Vlasov picture, the authors of [10] proved
rigorously that the relaxation of the N -body system towards its deputed equilibrium,
as driven by microscopic collision effects, would occur on time scales larger than N ,
in qualitative agreement with the numerical evidences commented above. Clearly,
QSS are supposedly the only regimes which are made experimentally accessible, in all
physical situations where a large number of microscopic constituents evolve in mutual
interaction. The experimental time of observation is in fact limited, and not sufficient
to allow for equilibration. In this perspective, to unravel the puzzle of QSS and so
build a comprehensive dynamical picture for their existence and evolution, represents
a major challenge, with undoubtedly many practical implications.

An important step forward explaining the presence of the QSS was eventually
attained thanks to the theory of violent relaxation of Lynden-Bell (LB) [11]. This is
a statistical theory which embeds self-consistently knowledge of the governing Vlasov
dynamics. The approach is justified from first principles and allows to resolve the
intermediate regime of the discrete N -body evolution, when the system is presumably
assimilable to a continuum Vlasov model, before finite size corrections come eventually
into play. The theory is based on the maximization of the following entropic functional
of the distribution function (DF) f̄ :

s[f̄ ] = −

∫

dpdθ

[

f̄

f0
ln

f̄

f0
+

(

1−
f̄

f0

)

ln

(

1−
f̄

f0

)]

, (3)

where f0 describes the initial state of the system, whereas f̄ stands for a coarse-grained
distribution function of the final state, that one wishes to recover via a predictive
approach. The above formulation holds for a two-step initial distribution function
(water bag): f at time 0 is equal to either zero or f0. Whereas the exact evolution
according to the Vlasov equation imposes that the DF is only allowed to take 0 and
f0 values at all times, the coarse-grained point-of-view implies a continuous DF f̄ that
is expected to be valid if one averages over small patches of phase space. As a side
comment we notice that the functional (3) can be readily generalized to account for a
continuous collection of different density levels, beyond the water-bag hypothesis.

The maximization of s is performed under the macroscopic constraints of
normalization, energy and momentum which are conserved by the dynamics. An
underlying hypothesis to the theory is that the system explores in an ergodic-like
fashion all states allowed by the constraints. The dynamical evolution of the Vlasov
equation departs from that of a system sampling the equilibrium microcanonical
ensemble, giving rise to different predictions which reflect the out-of-equilibrium nature
of the problem. The application of the above predictive strategy to the study of
the QSS dynamics of respectively the HMF model [12], free-electron lasers [13] and
gravitational systems [14] has confirmed its adequacy.
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The LB approach also brought some new insights into the HMF phenomenology.
For example, the abrupt change in the QSS magnetization when smoothly tuning the
initial state of the system was interpreted as an out-of-equilibrium phase transition,
which not only depends on the energy of the system - as it happens at equilibrium
- but also on the precise way the system is prepared. More specifically, the initial
magnetization of the system was shown to have an important role, and phase
transitions of both first and second order could be observed depending on the value
of this latter parameter. This memory effect - the system keeps track of the detail of
its initial state for very long times - makes the QSS dynamics significantly richer than
the equilibrium one. For example, as regards the HMF model, an out-of-equilibrium
tricritical point was identified, which does not exist at equilibrium.

The purpose of this paper is to determine whether some of the QSS features
predicted for the HMF toy-model can be observed in experiments run for a dedicated
class of devices. Motivated by this working hypothesis, we shall turn to considering
the wide field of wave-particle interaction and focus in particular onto two different
experiments, namely the Free-Electron Laser (FEL) and the Collective Atomic Recoil
Laser (CARL). In both cases the dynamics reflects the long-range nature of the
interaction, along the lines depicted above with reference to the simplified HMF
setting. Operating in this framework, we will show that some features of the QSS
dynamics, as those previously outlined, may be observed in direct experiments.
Moreover, such properties though peculiar to the considered wave-particle dynamics,
bear some reminiscent traits of the HMF model, to which both FEL and CARL
are intimately connected. Eventually, the associated experimental set-ups are briefly
detailed, based on existing machines and current technology.

Section 2 is devoted to FELs. The aim of such devices is to produce high-power
short-wavelength light pulses by exploiting the radiation emitted by ultra-relativistic
electrons when passing through the static and periodic magnetic field generated by
an undulator. Starting from generic initial conditions, the wave power grows to a
maximum, and then starts oscillating, keeping a lively exchange of energy with the
particles, over times diverging with the number of particles, a characteristics of the
QSS. As for the case of HMF, the QSS of a FEL depends not only on the energy
of the system, but also on the details of its initial state. Thus, after presenting the
FERMI@Elettra FEL, we discuss how to manipulate the electron beam to produce the
sought different initial states. Finally, the dynamical transition present in the system
is described.

Section 3 is dedicated to discussing the Collective Atomic Recoil Laser (CARL),
an experiment where a probe wave is amplified thanks to a grating of cold atoms
(back)scattering photons of an incident pump laser beam. As for the FEL, its dynamics
is dominated by long-range effects in the one-dimensional limit, an approximation
which holds for the CARL experiment based at the European Laboratory for Non-
linear Spectroscopy (LENS). We then focus on the conservative regime, when the
dynamics formally reduces to that of the FEL: The possibilities to observe for the
CARL the QSS phenomenology as depicted for the FEL is investigated. On the
other hand, when the wave amplification takes place in a cavity, a damping has to
be accomodated for: A formal link between this operational regime of CARL and
the HMF dynamics is drawn, as well as the experimental perspectives to detect the
associated out-of-equilibrium transitions.

Finally, in Section 4, we discuss the measurements that could be performed
for both CARL and FEL in order to unravel the imprint of QSS that indirectly
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materializes in the existence of distinct out-of-equilibrium regimes.

2. The Free-Electron Laser as a long-range interacting system

FELs are powerful light sources able to deliver coherent pulses of photons over a large
and tunable wavelength range. To that aim, ultra-relativistic electrons of energy γ are
injected into the periodic magnetic field (of period λw and deflection parameter K)
produced by an undulator, where they start to wiggle and emit synchrotron radiation
around the following wavelength:

λ =
λw

2γ2

(

1 +K2
)

. (4)

The light produced by the electrons traps the electrons themselves, resulting in
a periodic modulation of the electrons’ density (see Fig.1) called bunching: This
bunching is the source of the coherent emission. Eventually, under a resonant condition
between the electrons and the wave, the strong interplay between coherent emission
and particle trapping inside the wave potential leads to the nonlinear growth of the
wave (see Fig.1) and to the emission of a powerful light pulse. Due to the high energy
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Figure 1. Left: Electron phase-space in the QSS regime (at t̄ = 50). Right:
Normalized laser intensity versus normalized time t̄. Simulations performed with
N = 8000 particles, starting with a waterbag with b0 = 0, ∆p = 0.05, and a
negligible intensity I0 = 10−6.

of the electrons (of order 1 GeV typically), the system can be in first approximation
considered as one-dimensional, since the angle of the cone of light radiated goes as the
inverse of the electrons energy. As for the radiation, it can generally be described by
a mean-field wave, leading to the set of equations [15]:

dθj
dt̄ = pj ,
dpj

dt̄ = −
(

Aeiθj +A∗e−iθj
)

,
dA
dt̄ = 1

N

∑

j e
−iθj + iδA.

(5)

where θj is the phase of electron j with respect to the ponderomotive potential, pj its
normalized energy, whereas A stands for the complex amplitude of the synchrotron
radiation. The normalized variables are defined as θj = (k + kw)zj − ωt − δt̄,
with zj the position of particle j along the propagation axis, pj = (γj − γ0)/ργ0,
γ0 the average electron energy, k and ω the radiation wavenumber and frequency,
δ = (γ0 − γR)/ργ0 the detuning parameter and γR the resonant energy defined
by Eq.(4). ρ = (I/IA)

1/3(λwaw/2πσ)
2/3/2γ0 is the so-called Pierce parameter,


