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Abstract. The possibility of observing phenomena peculiar to long-range
interactions, and more specifically in the so-called Quasi-Stationary State (QSS)
regime is investigated within the framework of two devices, namely the Free-
Electron Laser (FEL) and the Collective Atomic Recoil Laser (CARL). The QSS
dynamics has been mostly studied using the Hamiltonian Mean-Field (HMF)
toy model, demonstrating in particular the presence of first versus second order
phase transitions from magnetized to unmagnetized regimes in the case of HMF.
Here, we give evidence of the strong connections between the HMF model and
the dynamics of the two mentioned devices, and we discuss the perspectives to
observe some specific QSS features experimentally. In particular, a dynamical
analog of the phase transition is present in the FEL and in the CARL in its
conservative regime. Regarding the dissipative CARL, a formal link is established
with the HMF model. For both FEL and CARL, calculations are performed
with reference to existing experimental devices, namely the FERMI@Elettra FEL
under construction at Sincrotrone Trieste (Italy) and the CARL system at LENS
in Florence (Italy).
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1. Introduction

Long-range interactions have now been shown to be central in a wide range of scientific
contexts such as astrophysics [1], hydrodynamics [2] or nuclear physics [3]. However,
the possibilities of investigating the long-range features via dedicated experiments are
more restricted: Non-neutral plasmas [4], cold atom and wave-particle systems [5] are
among the most serious candidates. The purpose of this paper is to investigate the
possibility of using existing set-ups based on the wave-particle interactions to probe
long-range features of the dynamics, in particular out-of-equilibrium transitions.

As an introduction to long-range interactions, let us start from the Hamiltonian
Mean-Field (HMF) model [6], a paradigmatic system on which many theoretical
studies focused. This one-dimensional model describes the interaction of a collection
of N particles on a circle through a collective field, which depends only on their phase
θj . This N -body dynamics is described by Hamiltonian:

H =

N
∑

j=1

(

p2j
2

+
ǫ

2N

N
∑

k=1

(1− cos (θj − θk))

)

, (1)

associated to the canonical bracket in (θj , pj). Here, ǫ = ±1 corresponds either
to a ferromagnetic (+) or an antiferromagnetic (-) system. In this model, the
particles are collectively interacting through the so-called magnetization M = Meiφ =
(
∑

j e
iθj )/N , since the dynamics of a single particle is given by:

θ̈j + ǫM sin(θj − φ) = 0. (2)

Long-range systems can exhibit interesting equilibrium features, such as ensemble
inequivalence (see e.g. [7] for the antiferromagnetic two-dimensional version of the
HMF model or [8] for a recent review). However, the HMF model mainly revealed
itself as a perfect playground to study out-of-equilibrium long-range features. Indeed,
starting from generic non-stationary initial conditions, the system will typically have
a fast transient dynamics until a nearly-stationary state, generally called Quasi-
Stationary State (QSS), is reached: Not only this QSS dynamics substantially differs
from the equilibrium one, but the system actually stays trapped in it for very long
times [6].

More specifically, several authors actually demonstrated that the lifetime of
the said QSS diverges when the number of particles in interaction increases. For
example, numerical works report that time of relaxation to equilibrium for the



CONTENTS 3

Hamiltonian Mean-Field model scales as N1.7 [9], in a regime of parameters yielding
homogeneous QSS. To gain insight into the emergence of QSS, one can resort to a
continuous picture, formal limit of the governing discrete Hamiltonian. A rigorous
mathematical procedure leads to the Vlasov equation for the evolution of the single
particle distribution function, the continuous representation of the particles density
in phase space which is recovered when making the number of bodies N tends to
infinity. The stability of QSS in the infinite N limit, suggests that these latter states
can be potentially interpreted as Vlasov stationary states, an operating ansatz that
opens up the perspective for further analytical progress, a fact on which we shall
return in the following. Operating in this context and by explicitly accounting for
finite size corrections beyond the idealized Vlasov picture, the authors of [10] proved
rigorously that the relaxation of the N -body system towards its deputed equilibrium,
as driven by microscopic collision effects, would occur on time scales larger than N , in
qualitative agreement with the numerical evidences commented above. Clearly, QSS
are supposedely the only regimes which are made experimentally accessible, in all
physical situations where a large number of microscopic constituents evolve in mutual
interaction. The experimental time of observation is in fact limited, and not sufficient
to allow for equilibration. In this perspective, to unravel the puzzle of QSS and so
build a comprehensive dynamical picture for their existence and evolution, represents
a major challenge, with undoubtedly many practical implications.

An important step in explaining the presence of the QSS was eventually brought
by the theory of violent relaxation of Lynden-Bell (LB) [11]. This is a statistical based
theory, which self-consistently embeds knowledge of the governing Vlasov dynamics.
The approach is justified from first principles and allows to resolve the intermediate
regime of the discrete N -body evolution, when the system is presumably assimilable
to a continuum Vlasov model, before finite size corrections come eventually into play.
The theory is based on the maximization of the following entropic functional of the
distribution function (DF) f :

s[f̄ ] = −
∫

dpdθ

[

f̄

f0
ln

f̄

f0
+

(

1− f̄

f0

)

ln

(

1− f̄

f0

)]

, (3)

where f0 describes the initial state of the system, whereas f̄ stands for a coarse-grained
distribution function of the final state, that one wishes to recover via a predictive
approach. The above formulation holds for a two-step initial distribution function
(water bag): f at time 0 is equal to either zero or f0. Whereas the exact evolution
according to the Vlasov equation imposes that the DF is only allowed to take 0 and
f0 values at all times, the coarse-grained point-of-view implies a continuous DF f̄ that
is expected to be valid if one averages over small patches of phase space. As a side
comment we notice that the functional (3) can be readily generalized to account for a
continuous collection of different density levels, beyond the water-bag hypothesis.

The maximization of s is performed under the macroscopic constraints of
normalization, energy and momentum which are conserved by the dynamics. An
underlying hypothesis to the theory is that the system explores in an ergodic-like
fashion all states allowed by the constraints. The dynamical evolution of the Vlasov
equation departs from that of a system sampling the equilibrium microcanonical
ensemble, giving rise to different predictions which reflect the out-of-equilibrium
nature of the problem. The application of the above predictive strategy to the study
of the QSS dynamics of respectively HMF model [12], free-electron lasers [13] and
gravitational systems [14] has testified on its adequacy.
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The LB approach also brought some new insights into the HMF phenomenology.
For example, the abrupt change in the QSS magnetization when smoothly tuning the
initial state of the system was interpreted as an out-of-equilibrium phase transition,
which does not depend only on the energy of the system - as happens at equilibrium
- but also on the precise way the system is prepared. More specifically, the initial
magnetization of the system was shown to have an important role, and phase
transitions of both first and second order could be observed depending on the value
of this new parameter. This memory effect - the system keeps track of the detail of
its initial state for very long times - makes the QSS dynamics significantly richer than
the equilibrium one. For example, as regards the HMF model, an out-of-equilibrium
tricritical point was identified, which does not exist at equilibrium.

The purpose of this paper is to determine whether some of the QSS features
predicted for the HMF toy-model can be observed in experiments run for a dedicated
class of devices. Motivated by this working hypothesis, we shall turn to considering
the wide field of wave-particle interaction and focus in particular onto two different
experiments, namely the Free-Electron Laser (FEL) and the Collective Atomic Recoil
Laser (CARL). In both cases the dynamics reflects the long-range nature of the
interaction, along the lines depicted above with reference to the simplified HMF
setting. Operating in this framework, we will show that some features of the QSS
dynamics, as those previously outlined, may be observed in direct experiments.
Moreover, such properties though peculiar to the considered wave-particle dynamics,
bear some reminiscent traits of the HMF model, to which both FEL and CARL
are intimately connected. Eventually, the associated experimental set-ups are briefly
detailed, based on existing machines and current technology.

Section 2 is devoted to FELs. The aim of such devices is to produce high-power
short-wavelength light pulses by exploiting the radiation emitted by ultra-relativistic
electrons when passing through the static and periodic magnetic field generated by
an undulator. Starting from generic initial conditions, the wave power grows to a
maximum, and then starts oscillating, keeping a lively exchange of energy with the
particles, over times diverging with the number of particles, a characteristics of the
QSS. As for the case of HMF, the QSS of a FEL depends not only on the energy
of the system, but also on the details of its initial state. Thus, after presenting the
FERMI@Elettra FEL, we discuss how to manipulate the electron beam to produce the
sought different initial states. Finally, the dynamical transition present in the system
is described.

Section 3 is dedicated to discussing the Collective Atomic Recoil Laser (CARL),
an experiment where a probe wave is amplified thanks to a grating of cold atoms
(back)scattering photons of an incident pump laser beam. As for the FEL, its dynamics
is dominated by long-range effects in the one-dimensional limit, an approximation
which holds for the CARL experiment based at the European Laboratory for Non-
linear Spectroscopy (LENS). We then focus on the conservative regime, when the
dynamics formally reduces to that of the FEL: The possibilities to observe for the
CARL the QSS phenomenology as depicted for the FEL is investigated. On the
other hand, when the wave amplification takes place in a cavity, a damping has to
be accomodated for: A formal link between this operational regime of CARL and
the HMF dynamics is drawn, as well as the experimental perspectives to detect the
associated out-of-equilibrium transitions.

Finally, in Section 4, we discuss the measurements that could be performed for
both CARL and FEL so to unravel the imprint of QSS that indirectly materializes in
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the existence of distinct out-of-equilibrium regimes.

2. The Free-Electron Laser as a long-range interacting system

FELs are powerful light sources able to deliver coherent pulses of photons over a large
and tunable wavelength range. To that aim, ultra-relativistic electrons of energy γ are
injected into the periodic magnetic field (of period λw and deflection parameter K)
produced by an undulator, where they start to wiggle and emit synchrotron radiation
around the following wavelength:

λ =
λw

2γ2

(

1 +K2
)

. (4)

The light produced by the electrons traps the electrons themselves, resulting in
a periodic modulation of the electrons’ density (see Fig.1) called bunching: This
bunching is the source of the coherent emission. Eventually, under a resonant condition
between the electrons and the wave, the strong interplay between coherent emission
and particle trapping inside the wave potential leads to the nonlinear growth of the
wave (see Fig.1) and to the emission of a powerful light pulse. Due to the high energy
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Figure 1. Left: Electron phase-space in the QSS regime (at t̄ = 50). Right:
Normalized laser intensity versus normalized time t̄. Simulations performed with
N = 8000 particles, starting with a waterbag with b0 = 0, ∆p = 0.05, and a
negligible intensity I0 = 10−6.

of the electrons (of order 1 GeV typically), the system can be in first approximation
considered as one-dimensional, since the angle of the cone of light radiated goes as the
inverse of the electrons energy. As for the radiation, it can generally be described by
a mean-field wave, leading to the set of equations [15]:

dθj
dt̄ = pj ,
dpj

dt̄ = −
(

Aeiθj +A∗e−iθj
)

,
dA
dt̄ = 1

N

∑

j e
−iθj + iδA.

(5)

θj is the phase of electron j with respect to the ponderomotive potential, pj its
normalized energy, whereas A stands for the complex amplitude of the synchrotron
radiation. The normalized variables are defined as θj = (k + kw)zj − ωt − δt̄,
with zj the position of particle j along the propagation axis, pj = (γj − γ0)/ργ0,
γ0 the average electron energy, k and ω the radiation wavenumber and frequency,
δ = (γ0 − γR)/ργ0 the detuning parameter and γR the resonant energy defined by
Eq.4. ρ = (I/IA)

1/3(λwaw/2πσ)
2/3/2γ0 is the so-called Pierce parameter, aw =

√
2K,
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I = ne2πσ
2ec the electron current, ne the electron density and IA = 17kA the Alfven

current. A corresponds to the normalized electric field of the wave, according to
A = E

√

ǫ0/(mc2γ0neǫ0ρ), while the rescaled time t̄ is given by t̄ = 2kwρz, with z the
position along the propagation axis.

Following the HMF approach, we focus on the waterbag initial conditions, since
they are a good description of the electron bunch as a first approximation [13]: the
initial wave is initially of amplitude zero, while the particles are bunched into an
homogeneous rectangle in the (θ, p) phase-space, i.e. spread between −∆θ and +∆θ
in phases, and between−∆p and +∆p in momenta. Experimentally, shaping the initial
electron bunch is part of the High Gain Harmonic Generation (HGHG) scheme [27],
where use is made of two distinct stages of interaction (see Fig.2): In the first undulator
sections, called the “modulator”, electrons interact with an external coherent light
source, e.g., a high power laser (called the “seed”). Such an interaction induces the
electron bunching at the seed wavelength, λseed, and at the harmonics of the latter.
In a second undulator section, tuned at one of the seed harmonics wavelength and
called the “radiator”, electrons emit coherently.

Figure 2. Schematic layout of the HGHG scheme: The electron beam is
synchronized with the seed laser, which creates an energy modulation in the
former inside the modulator. In the dispersive section, the energy modulation
is converted into a spatial one, called micro-bunching. In the radiator, the micro-
bunched electron beam emits coherently.

In general, the wave grows, first quadratically, then exponentially, until it reaches
a maximum and starts oscillating around an average value Ī. As for the electrons,
they bunch together, thus allowing the coherent emission; the transfer of energy to
the wave leads to a decrease in the electrons energy, spoiling the resonant condition
(4). The amplification process stops when the particles are not any more in resonance
with the wave (saturation). Note however that when the energy spread ∆p is too large
(typically ∆p ≥ 1.5), the interplay between the wave and the electrons will not even
trigger, and the wave amplification will not happen.

The FERMI@ELETTRA is a new FEL, presently under construction at the
Sincrotrone Trieste laboratory. It aims at producing GW optical pulses in the
10 − 100nm range, thanks to the HGHG process: In this scheme, when considering
a jump from λseed in the modulator to its nth harmonic (λrad = λmod/n, with n an
integer) in the radiator,the bunching at the entrance of the radiator, is given by [27]

|bn| = | < einθ > | = e−
1

2
n2σ2

γd
2

Jn(nd∆γ), (6)

where <> is the average over the particles, Jn the n-th Bessel function of the first
kind, σγ the initial energy spread of the electron beam, and ∆γ the “coherent” energy
spread generated by the modulation (see [26] for details, and Tab.1 for the FERMI
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parameters). Here, d is the strength of the dispersive section, whose role is to convert
the energy modulation into a spatial one.

From now on, let us consider a HGHG configuration where the seed wave is
λmod = 200nm, associated to an harmonic jump of n = 2 (λrad = 100nm), with
electron injected at γ0 = 1760 into a z = 18.4-long radiator (see Tab.1 for the FERMI
FEL parameters). Then, the maximum bunching is reached when the Bessel function
J2 is maximized, that is for nd∆γ ≈ 3.05, and setting the n2σ2

γd
2 term close to zero.

Thus, a dispersive section strength of d = 0.63/(nσγ) leads to a decrease of 20% in |bn|
for the exponential term, and corresponds to a ∆γ ≈ 3.5σγ . The initial and coherent

energy spreads accumulating as σγ,tot =
√

σ2
γ + (∆γ)2/2, we get σγ,tot ≈ 0.12, whereas

the bunching factor created is |bn| ≈ 0.4.

Table 1. Main parameters of FERMI modulator and radiator sections.

Section Lw K γ0 ρ λ σγ

Modulator 3m 1-5 1760-2940 ∼ 3.10−3 800-100nm 0.035
Radiator 13.8-18.4m 1-5 1760-2940 ∼ 3.10−3 100-20 nm 0.035-0.5

As for the detuning, it is induced by shifting the resonant energy in the radiator
from the average electron energy γ0, according to the relation:

δ =
γ0 − γR
ργ0

. (7)

The Ī > 0 saturated regime of the FEL was shown to be accurately described by
the LB approach [13]: The intensity and bunching reached by the laser are in good
agreement with those determined by the maximization of entropy principle. It seems
however not to apply to the non-lasing regime, when the resonance between the wave
and the electrons is not satisfied anymore. A recent work [25] reported that regarding
the LB principle, two solutions of the maximization problem exist: the one associated
to a positive laser intensity is always entropically favored, but the system dynamics
can actually be trapped in the vicinity of a zero-intensity solution, where the electrons
stay unbunched.

This dynamical trapping exhibits striking similarities with the phase transition
encountered in HMF. Indeed, when monitoring control parameters such as the initial
bunching b0 or the energy spread ∆p, a transition from a Ī > 0 regime to a Ī ≈ 0
one occurs, which can be sharp or smooth (see [25]). Let us focus on the parameters
b0 and detuning δ: Fig.3 shows how the Ī > 0 regime may abruptly end for b0 = 0.1
or values of the detuning δ = 2 (top panels), whereas the transition to low-Ī regimes
is smooth for b0 = 0.5 or δ = 2.6 (bottom panels). It is worth noting that working
at finite undulator length does not modify substantially the transition characteristics
(dashed lines of Fig.3).

The regions of parameters where each transition will occur is summarized in Fig.4
(left panel), where the diagram of saturated intensity is depicted as a function of both
parameters: It reveals that for b0 below some bc ≈ 0.3, as well as for δ below δc ≈ 2.3
(top panels), the transition is sharp, whereas beyond these values, it turns out to be
smooth. Thus, (bc, δc) represents the critical values of parameters beyond which the
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Figure 3. Intensity radiated versus control parameter (δ on the left [at fixed b0],
and b0 on the right [at fixed δ]). The intensity for the FEL (dashed lines) are
simulated using the FERMI parameters (γ0 = 1760, λ = 100nm, ρ = 4.35.10−3,
z = 18.4m, σγ,tot = 0.12); for the CARL (plain lines), the LENS parameters have
been used (ρC = 1000, t = 1µs and energy spread σp = 20~k). The saturated
intensity Ī of the QSS regime (dotted lines) is calculated as the average of the
intensity between t = 50 and 100. Simulations performed with N = 10000, and
no initial wave. In the last picture, the CARL curve is represented three times
larger.

transition from lasing to non-lasing turns into a smooth one: Although it is in no way
supported by an entropic approach as it was for HMF, it can be seen as a dynamical
version of the tricritical point present in the latter toy-model.

Regarding the possibilities to observe this peculiar phenomenology on the
FERMI@Elettra FEL, a similar phase diagram has been plotted on Fig.4 (right panel),
which accounts for the finite interaction length of the machine. It reveals that, despite
the deep saturation may not be well established within the undulator length available,
the two areas where a sharp vs. smooth transitions could be observed are quite well
separated.

3. The Collective Atomic Recoil Laser

CARL consists of a collection of cold two-level atoms driven by a far-detuned laser
pump of frequency ωp which radiates at the frequency ω ∼ ωp in the direction opposite
to the pump [16]. In both the FEL and CARL systems the radiation process arises
from a collective instability which originates from a symmetry breaking in the spatial
distribution, i.e. a self-bunching of particles which group in regions smaller than the
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Figure 4. Intensity as a function of (b0, δ) in the QSS regime (left), and at
the exit of the FERMI@Elettra FEL (center) and CARL of LENS (right). The
white lines represent the transition between the Ī > 0 regime and the Ī ≈ 0 one,
with a transition either sharp (plain line) or smooth (dashed line). Simulations
performed in the same conditions as Fig.3.

wavelength. In the limit in which the radiation pressure due to the pump laser can
be neglected (for instance by largely detuning the pump frequency from the atomic
resonance), the CARL is described by the same dimensionless FEL equations (5)

dθj
dt̄

= pj (8)

dpj
dt̄

= −
(

Aeiθj +A∗e−iθj
)

(9)

dA

dt̄
=

1

N

N
∑

i=1

e−iθj + iδA− κA, (10)

however with the presence of a damping term −κA in the field equation, accounting
for radiation losses from a ring cavity surrounding the atoms. Although CARL
and FELs evolve with a similar dynamics, the dimensionless variables of the two
systems, and consequently also the typical timescales, are very different. In CARL,
the phase and the normalized momentum of the atoms j are θj = 2k(zj(t) − 〈vz〉0t)
and pj = m(vzj(t) − 〈vz〉0)/(2~kρC) (where zj(t) and vzj(t) are position and
velocity of the jth atom along the direction of the scattered field and 〈vz〉0 is the
average initial velocity), whereas A stands for the normalized complex amplitude
of the radiation field, A = (ǫ0/~ωnaρC)

1/2E0, where na is the atomic density.
The scaled time is t̄ = (8ωrecρC)t, where ωrec = ~k2/2m is the recoil frequency,
δ = (ω − ωp + 2k〈vz〉0)/(8ωrecρC) is the pump-probe detuning, κ = κc/(8ωrecρC) is
the scaled loss of a ring cavity with length Lcav, transmission T and κc = cT/Lcav,
and finally ρC = (Γ/8)(cσ0na/∆

2ω2

rec)
1/3(I/Isat)

1/3, where Γ is the natural decay rate
if the excited state, σ0 = 3λ2/2π is the scattering cross section, ∆ = ω0 − ωp is the
pump-atom detuning, I is the pump intensity and Isat = ~ωΓ/2σ2

0 is the saturation
intensity.

There have been different experiments that have observed the CARL effect in
room temperature gases [17], cold atomic samples from Magneto-Optical traps (MOT)
[18, 19, 20] or Bose-Einstein condensates (BEC) [21, 22]. These experiments were also
performed using very different optical configurations, from inside high finesse optical
cavities [18] to the absence of any cavity [21]. However, all these experiments very
closely followed the predictions of Eqs. (8 - 10).
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Figure 5. Schematics of superradiant light scattering from a Bose-Einstein
condensate. An elongated BEC is illuminated by a far off-resonant laser beam
(pump beam) with frequency ω and wavevector ~k directed along its axial direction.

After backscattering of photons with ~ks ≃ −
~k and the subsequent recoil of atoms,

a matter wave grating forms, due to the quantum interference between the two
momentum components of the wavefunction of the condensate. The effect of this
grating is to further scatter the incident light in a self-amplifying process.

The CARL experiment at LENS [23] is realized with a cigar-shaped BEC of 87Rb
produced in a Ioffe-Pritchard magnetic trap by means of RF-induced evaporative
cooling. After 2 ms of free expansion, when the magnetic trap field is completely
switched off and the atomic cloud still has an elongated shape (at this time the radial
and axial sizes of the condensate are typically 10 and 70 µm, respectively), a square
pulse of light is applied along the z -axis (see Fig.5). The size of the laser beams is
larger than 0.5 mm, far larger than the condensate free fall during the interaction with
light. In this geometry the CARL process causes the pump light to be backscattered
and the self-amplified matter-wave propagates in the same direction as the incident
light.

This experiment allows for a great flexibility in the preparation of the initial
state of the system: for example, it is possible to prepare the atoms in an initially
bunched state by imposing an electro-magnetic standing wave before the pump laser
is activated. Regarding the momenta spread, it can be varied by cooling only partially
the atoms. Finally, the detuning can be induced by giving the atoms an initial
momentum, which can be up to 1000~k.

Table 2. Main parameters of LENS CARL.

ωrec ρC t δ κ ∆p

5000Hz 100-1000 1µs-5ms -5 - 5 0.025-105 0.01-5

Back to the dynamical equations (8 - 10), it is clear that if the dissipation term κ is
small (κ ≪ 1), the CARL is governed by the same equations as the FEL. In particular,
when monitoring the initial bunching and the detuning parameter, it should exhibit a
dynamical transition similar to the one described in Sec.2, . Simulations realized for a
good cavity (κ = 0.025) indeed reveal that the sharp/smooth transitions could indeed
be observed in the relevant range of parameters (see Fig.4).

On the other hand, the CARL amplification process can be realized inside a ring
cavity. In this configuration, the pump and probe light fields are counterpropagating
modes of the ring cavity and the interaction time of the light fields with the atoms
can be enhanced by several orders of magnitude, which supports the amplification.
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Consequently, most of the CARL experiments carried out up to date employed ring
cavities [18, 19, 22].

This is however at the cost of a damping of the wave inside the cavity, modelled
by the κ > 0 term in Eq.(10). In this case, if the dissipation is large enough (κ ∼ 1), an
adiabatic treatment of the wave dynamics can be performed [24, 23], which corresponds
to setting dA/dt = 0, which yields

A =
1

κ− iδ

1

N

∑

j

e−iθj . (11)

Plugging this expression into the particles equations of motion (9), we get the following
equation for the momentum of particle j (the equation for its position is unchanged):

ṗj =
2

δ2 + κ2

1

N

∑

m

(δ sin (θj − θm)− κ cos (θj − θm)) . (12)

If we now consider the extra limit where the detuning δ is large with respect to κ
(|δ| ≫ κ), Eq.(12) simply turns into

ṗj =
2

δ

1

N

∑

m

sin (θj − θm). (13)

Then, using the following normalization

θ̃j = θj , p̃j = pj
√

|δ|/2,
t̃ = t̄

√

|δ|/2, H̃ = |δ|H/2,
(14)

the system can be mapped into the HMF model (1). Anew, ǫ = −sign(δ) positive
(negative) describes an (anti)ferromagnetic interaction. Numerical simulations
confirm that in the above mentioned limit, despite small differences in the dynamics,
the CARL and HMF yield similar QSS regimes (see Fig.6).

10 20 30 40 50
0

0.5

1

t̄

|b
|

10 20 30 40 50
0

0.5

1

t̄

|b
|

Figure 6. Comparison between the dynamics of the CARL (plain lines) and
HMF (dashed lines) dynamics, in magnetized regime (left: b0 = 0, ∆p̃ = 0.1) and
unmagnetized regime (right: b0 = 0.94, ∆p̃ = 1.5). Simulations performed with
N = 10000 particles; CARL parameters: κ = 1 and δ = −4.

This formally links the CARL dynamics to the HMF model, in either its
ferromagnetic or antiferromagnetic form, making in particular the bridge between
the rich phenomenology predicted for the HMF model and a possible experimental
realization. For example, regarding the ferromagnetic case, Fig.7 depicts the phase
diagram of HMF in the (b0, U) plane as predicted by the LB prescription, and those
obtained by direct N -body simulations of both the CARL dynamics and the HMF
model. They reveal an excellent agreement between the CARL phase diagram and
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its reduced counterpart, the HMF, as well as with the Lynden-Bell approach. Note
that the presence of fringes in the large U part in the diagrams are due to the short
time considered: yet, although the QSS regime is not well established, the transition
line is already present and in good agreement with the LB prescription. This allows
to conclude on the presence of an out-of-equilibrium phase transition in the CARL
device, such as predicted for the HMF model [28].
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Figure 7. Bunching factor as a function of the initial bunching and energy of
the system, as predicted by Lynden-Bell’s violent relaxation approach (left), and
by N-body simulations of the CARL (center) and HMF (right) dynamics at finite
length. The white line stands for the transition as predicted by Lynden-Bell, of
the first order type below Mc ≈ 0.17, and of the second order kind above. N-body
simulations realized with N = 10000 until t̄ = 40; CARL simulations performed
with κ = 0.5 and δ = −5. Note that the energy U here refers to the normalized

energy U = ∆p̃2/6 + (1 − b2
0
)/2.

4. On the possibility to observe the QSS signature

In this paper, we investigated the out-of-equilibrium dynamics of two long-range
models which admit corresponding experimental implementations. We shall now
conclude the discussion by elaborating on the experimental possibilities to verify the
correcteness of the proposed picture and in particular detect the predicted phase
transitions.

As concerns the FEL, the particles phase-space is not experimentally accessible
since the electrons have relativistic energies. However, by monitoring the laser
intensity should be in principle possible to detect the transition, as demonstrated
in Sec.2. Depending on the specific initial condition, ultimately characterized by an
assigned electron bunching amount, the laser can gain in potency or, alternatively,
keep its off mode. Experimentwise, by setting the initial bunching at either zero (no
interaction in the modulator) or high values (b0 ≈ 0.4), and tuning the electrons
energy, one should in principle observe either a sharp or a smooth transition, as
indicated by the simulations results. This is an interesting feature, indirect signature
of the QSS existence, which bears an intringuing similarity with the HMF behaviour.
In this latter case, however, the presence of an out-of-equilibrium phase transition of
both first and second order types was demonstrated on solid theoretical grounds. A
similar theoretical justification is still lacking with reference to the FEL model.

The CARL device, in the regime of small dissipation, is predicted to exhibit
a transition, similar to that displayed by the FEL. Again, and in analogy with the
above, we suggest that the presence of the transition could be successfully evidenced by
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recording the radiated intensity, under different experimental conditions. In addition,
the CARL could also allow to access direct information on the particles dynamics in
phase space: First, the atoms density can be recorded, and the presence of fringes
used to quantify the degree of bunching. Then, letting the atoms expand after the
CARL process ends, and recording their late positions, one can resolve the momentum
distribution: Such a diagnostic would translate into an independent tool to bring into
evidence the transition between distinct dynamical regimes.

Finally, it is when operating the CARL device in the dissipative HMF-like regime
that the possibility to measure the phase-space structures could result of paramount
importance. The fringes, which means bunching, are in principle strongly correlated
to the radiated power (see Eq.11). By accessing the distribution of momenta one could
eventually detect the two bumps that are predicted to occur in presence unbunched
QSS, and which are believed to correspond to counter-propagating clusters of particles.
More generally, and with reference to the ferromagnetic case [12, 29] we shall be
interested in accurately investigating the overall velocity profile whose characteristics
have been object of vigorous debates [30, 31].
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