
HAL Id: hal-00469631
https://hal.science/hal-00469631

Submitted on 2 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OLLAF: A Fine Grained Dynamically Reconfigurable
Architecture for OS Support

Bertrand Granado, Garcia Samuel

To cite this version:
Bertrand Granado, Garcia Samuel. OLLAF: A Fine Grained Dynamically Reconfigurable Archi-
tecture for OS Support. EURASIP Journal on Embedded Systems, 2009, 2009, pp.ID 574716.
�10.1155/2009/574716�. �hal-00469631�

https://hal.science/hal-00469631
https://hal.archives-ouvertes.fr

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 574716, 11 pages
doi:10.1155/2009/574716

Research Article

OLLAF: A Fine Grained Dynamically Reconfigurable Architecture
for OS Support

Samuel Garcia and Bertrand Granado

ETIS Laboratory, CNRS UMR8051, University of Cergy-Pontoise, ENSEA 6, Avenue du Ponceau, F 95000 Cergy-Pontoise, France

Correspondence should be addressed to Samuel Garcia, samuel.garcia@ensea.fr

Received 15 March 2009; Revised 24 June 2009; Accepted 22 September 2009

Recommended by Markus Rupp

Fine Grained Dynamically Reconfigurable Architecture (FGDRA) offers a flexibility for embedded systems with a great power
processing efficiency by exploiting optimizations opportunities at architectural level thanks to their fine configuration granularity.
But this increase design complexity that should be abstracted by tools and operating system. In order to have a usable solution, a
good inter-overlapping between tools, OS, and platform must exist. In this paper we present OLLAF, an FGDRA specially designed
to efficiently support an OS. The studies presented here show the contribution of this architecture in terms of hardware context
management and preemption support. Studies presented here show the gain that can be obtained, by using OLLAF instead of a
classical FPGA, in terms of context management and preemption overhead.

Copyright © 2009 S. Garcia and B. Granado. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Many modern applications, for example robots navigation,
have a dynamic behavior, but the hardware targets today are
still static and this dynamic behavior is managed in software.
This management is lowering the computation performances
in terms of time and expressivity. To obtain best perfor-
mances we need a dynamical computing paradigm. This
paradigm exists as DRA (Dynamically Reconfigurable Archi-
tecture), and some DRA components are already functionals.
A DRA component contains several types of resources: logic
cells, dedicated routing logic and input/output resources.
The logic cells implement functions that may be described
by the designer. The routing logic connects the logic cells
between them and is also configured by the designer. The I/O
resources allow communication outside the reconfigurable
area.

Several types of configurable components exist. For
example, fine grain architectures such as FPGA (Field
Programmable Gate Array) may adapt the functioning and
the routing at bit level. Other coarse grain architectures
may be adapted by reconfiguring dedicated operators (e.g.,
multipliers, ALU units, etc.) at coarser level (bit vectors).
In a DRA the functioning of the components may change

on line during run. FGDRA (Fine Grained Dynamically
Reconfigurable Architecture) could obtain very high per-
formances for a great number of algorithms because of its
bit level reconfiguration, but this level of reconfiguration
induces a great complexity. This complexity makes it hard
to use even for an expert and could be abstracted at some
level by two ways: at design time by providing design tools
and at run time by providing an operating system. This
operating system, in order to handle efficiently dynamic
applications, has to be able to respond rapidly to events.
This can be achieved by providing dedicated services like
hardware preemption that lowe configurations and contexts
transfer times. In our previous work [1], we demonstrated
that we need to adapt the operating system to an FGDRA,
but also we need to modify an FGDRA to have an efficient
operating system support.

In this paper we present OLLAF which is an FGDRA
specially designed to support dynamics applications and a
specific FGDRA operating system.

This paper will be organized as follows. First, an
explanation of the problematics of this work is presented
in Section 2. Section 3 presents the OLLAF FGDRA archi-
tecture and its particularities. In Section 4, an analysis of
preemption costs in OLLAF in comparison with others

2 EURASIP Journal on Embedded Systems

existing platforms, including commercial FPGA using sev-
eral preemption methods, is presented. Section 5 presents
application scenarios and compares context management
overhead using OLLAF competing with FPGA, especially the
Virtex family. Conclusions are then drawn in Section 6, as
well as perspectives on this work.

2. Context and Problematics

Fine Grained Dynamically Reconfigurable Architectures
(FGDRA) such as FPGAs, due to their fine reconfigura-
tion grain, allow to take better advantage of optimization
opportunities at architectural level. This feature leads in most
applications to a better performance/consumption factor
compared with other classical architectures. Moreover, the
ability to dynamically reconfigure itself at run time allows
FGDRA to reach a dynamicity very close to that encountered
using microprocessors.

The used model in a microprocessor development gains
its efficiency from a great overlapping between platforms,
tools, and OS. First between OS and tools, as most main
frame OS offer specifically adapted tools to support their
API. Also between tools and platform, as an example RISC
processors have an instruction set specifically adapted to the
output of most compilers. Finally, between platform and
OS then, by integrating some OS related component into
hardware, MMU is an example of such an overlapping. As
for microprocessors, for FGDRAs the keypoint to maximize
efficiency of a design model is the inter-overlapping between
platforms, tools, and OS.

This article presents a study of our original FGDRA called
OLLAF specifically designed to enhance the efficiency of OS
services necessary to manage such an architecture. OLLAF
has a great inter-overlapping between OS and platform. This
particular study mainly focuses on the contribution of this
architecture in terms of configuration management overhead
compared to other existing FGDRA solutions.

2.1. Problematics. Several studies have been led around
FGDRA management that demonstrated the interest of using
an operating system to manage such a platform.

Few of them actually propose to bring some mod-
ifications to the FGDRA itself in order to enhance the
efficiency of some particular services as fast reconfiguration
or task relocation. But most of recent studies concentrate
on implementing an OS to manage an already existing
commercially available FPGA, most often from the Virtex
family. This FPGA family is actually the only recent industrial
FPGA family to allow partial reconfiguration thanks to an
interface called ICAP.

In a previous study, we presented a method allowing to
drastically decrease preemption overhead of a FPGA based
task, using a Virtex FPGA [1]. In this previous work, as
in the one presented here, we made difference between
configuration, which relates to the configuration bitstream,
and context. Context is the data that have to be saved by
the operating system, prior to a preemption, in order to
be able to resume the task later without any data loss. In

this previous study, we thus proposed a method to manage
context, configuration being managed in a traditional way.
Conclusions of this study were encouraging but revealed that
if we want to go further, we have to work at architecture
level. That is why we proposed an architecture called OLLAF
[2] specially designed to answer to problematics related
to FGDRA management by an operating system. Among
those, we wanted to address problems such as context
management and task configuration loading speed, these two
features being of primary concern for an efficient preemptive
management of the system.

2.2. Related Works. Several researchs have been led in the
field of OS for FGDRA [3–6]. All those studies present an OS
more or less customized to enable specific FGDRA related
services. Example of such services are partial reconfiguration
management, hardware task preemption, or hardware task
migration. They are all designed on top of a commercial
FPGA coupled with a microprocessor. This microprocessor
may be a softcore processor, an embedded hardwired core or
even an external processor.

Some works have also been published about the design of
a specific architecture for dynamical reconfiguration. In [7]
authors discuss about the first multicontext reconfigurable
device. This concept has been implemented by NEC on the
Dynamically Reconfigurable Logic Engine (DRLE) [8]. At
the same period, the concept of Dynamically Programmable
Gate Arrays (DPGA) was introduced, it was proposed in
[9] to implement a DPGA in the same die as a classic
microprocessor to form one of the first System on Chip
(SoC) including dynamically reconfigurable logic. In 1995,
Xilinx even applied a patent on multicontext programmable
device proposed as an XC4000E FPGA with multiple con-
figuration planes [10]. In [11], authors study the use of
a configuration cache, this feature is provided to lower
costly external transfers. This paper shows the advantages
of coupling configuration caches, partial reconfiguration and
multiple configuration planes.

More recently, in [12], authors propose to add special
material to an FGDRA to support OS services, they worked
on top of a classic FPGA. The work presented in this paper
try to take advantage of those previous works both about
hardware reconfigurable platform and OS for FGDRA.

Our previous work on OS for FGDRA was related to
preemption of hardware task on FPGA [1]. For that purpose
we have explored the use of a scanpath at task level. In order
to accelerate the context transfer, we explore the possibility
of using multiple parallel scanpaths. We also provided the
Context Management Unit or CMU, which is a small IP
that manage the whole process of saving and restoring task
contexts.

In that study both the CMU and the scanpath were
built to be implemented on top of any available FPGA.
This approach showed number of limitations that could
be summarized in this way: implementing this kind of OS
related material on top of the existing FPGA introduces
unacceptable overhead on both the tasks and the OS services.
Differently said, most of OS related materials should be as
much as possible hardwired inside the FGDRA.

EURASIP Journal on Embedded Systems 3

3. OLLAF Architecture Overview

3.1. Specifications of an FGDRA with OS Support. We have
designed an FGDRA with OS support following those
specifications.

It should first address the problem of the configuration
speed of a task. This is one of the primary concerns because
if the system spend more time configuring itself than actually
running tasks its efficiency will be poor. The configuration
speed will thus have a big impact on the scheduling strategy.

In order to enable more choice on scheduling scheme,
and to match some real time requirements, our FGDRA
platform must also include preemption facilities. For the
same reasons as configuration, the speed of context saving
and restoring processes will be one of our primary concerns.
On this particular point, previous work we have discussed in
Section 2 will be adapted and reused.

Scheduling on a classical microprocessor is just a matter
of time. The problem is to distribute the computation time
between different tasks. In the case of an FGDRA the system
must distribute both computation time and computation
resources. Scheduling in such a system is then no more
a one-dimensional problem, but a three-dimensional one.
One dimension is the time and the two others represent the
surface of reconfigurable resources. Performing an efficient
scheduling at run time for minimizing processing time is
then a very hard problem that the FGDRA should help
getting close to solve. The primary concern on this subject is
to ensure an easy task relocation. For that, the reconfigurable
logic core should be splited into several equivalent blocks.
This will allow to move a task from one block to any another
block, or from a group of blocks to another group of blocks of
the same size and the same form factor, without any change
on the configuration data. The size of those blocks would be
a tradeoff between flexibility and scheduling efficiency.

Another aspect of an operating system is to provide
intertask communication services. In our case we will dis-
tinguish two cases. First the case of a task running on top of
our FGDRA and communicating with another task running
on a different computing unit. This last case will not be
covered here as this problem concern a whole heterogeneous
platform, not only the particular FGDRA computing units.
The second case is when two, or more, tasks run on top of the
same FGDRA communicate together. This communication
channel should remain the same wherever the task is placed
on the FGDRA reconfigurable core and whatever the state
of those tasks is (running, pending, waiting,. . .). That means
that the FGDRA platform must provide a rationalized
communication medium including exchange memories.

The same arguments could also be applied to inputs/
outputs. Here again two cases exists; first the case of I/O being
a global resource of the whole platform; second the case of
special I/O directly bounding to the FGDRA.

3.2. Proposed Solutions. Figure 1 shows a global view of
OLLAF, our original FGDRA designed to support efficiently
OS services like preemption or configuration transfers.

In the center, stands the reconfigurable logic core of
the FGDRA. This core is a dual plane, an active plane

Application communication media

Reconfigurable
logic core

HW Sup
+

HW RTK
+

CCR
HCM

LCM

HCM

LCM

HCM

LCM

HCM

LCMC
M

U

C
M

U

C
M

U

C
M

U

Control bus

Figure 1: Global view of OLLAF.

and a hidden one, organized in columns. Each column
can be reconfigured separately and offers the same set
of services. A task is mapped on an integer number of
columns. This topology as been chosen for two reasons. First,
using a partial reconfiguration by column transforms the
scheduling problem into a two-dimensional problem (time +
1D surface) which will be easier to handle for minimizing the
processing time. Secondly as every column is the same and
offers the same set of services, tasks can be moved from one
column to another without any change on the configuration
data.

In the figure, at the bottom of each column you cannotice
two hardware blocks called CMU and HCM. The CMU is
an IP able to manage automatically task’s context saving and
restoring. The HCM standing for Hardware Configuration
Manager is pretty much the same but to handle configu-
ration data is also called bitstream. More details about this
controller can be found in [1]. On each column a local cache
memory named LCM is added. This memory is a first level of
cache memory to store contexts and configurations close to
the column where it might most probably be required. The
internal architecture of the core provides adequate materials
to work with CMU and HCM. More about this will be
discussed in the next section.

On the right of the figure stands a big block called
“HW Sup + HW RTK + CCR”. This block contains a
hardware supervisor running a custom real time kernel
specially adapted to handle FGDRA related OS services
and platform level communication services. In our first
prototype presented here, this hardware supervisor is a
classical 32 bits microprocessor. Along with this hardware
supervisor a central memory is provided for OS use only.
Basically this memory will store configurations and contexts
of every task that may run on the FGDRA. This supervisor
communicates with all columns using a dedicated control
bus. The hardware supervisor can initiate context transfers,
from and to the hidden plane, by writing in CMU’s and
HCM’s registers through this control bus.

Finally, on top of the Figure 1 you can see the application
communication medium. This communication medium
provides a communication port to each column. Those
communication ports will be directly bound to the recon-
figurable interconnection matrix of the core. If I/O had to

4 EURASIP Journal on Embedded Systems

ABCD (3..0)
A
B
C
D X

LUT
Clk
CE

Rst

D

C

CE
R DFF

Q

LX

QX

Figure 2: Functional, task designer point of view of LE.

be bound to the FGDRA they would be connected with
this communication medium in the same way reconfigurable
columns are.

This architecture has been developed as a VHDL model
in which the size and number of columns are generic
parameters.

3.3. Logic Core Overview. The OLLAF’s logic core is func-
tionally the same as logic fabric found in any common FPGA.
Each column is an array of Logic Elements surrounded
by a programmable interconnect network. Basic functional
architecture of an LE can be seen on Figure 2. It is composed
of an LUT and a D-FlipFlop. Several multiplexors and/or
programmable inverters can also be used.

All the material added to support OS in the reconfig-
urable logic core, concern the configuration memories. That
mean that in a user point of view, designing for OLLAF is
similar to designing for any common FPGA. This also mean
that if we want to improve the functionality of those LE the
results presented here will not change.

Configuration data and context data (Flipflops content)
constitutes two separate paths. A context swap can be
performed without any change in configuration. This can
be interesting for checkpointing or when running more than
one instance of the same task.

3.4. Configuration, Preemption, and OS Interaction. In previ-
ous sections an architectural view of our FGDRA has been
exposed. In this section, we discuss about the impact of this
architecture on OS services. We will here consider the three
services most specifically related to the FGDRA:

(i) First, the configuration management service: on the
hardware side, each column provides a HCM and a LCM.
That means that configurations have to be prefetched in
the LCM. The associated service running on the hardware
supervisor will thus need to take that into account. This
service must manage an intelligent cache to prefetch task
configuration on the columns where it might most probably
be mapped.

(ii) Second, the preemption service: the same principle
must be applicable here as those applied for configuration
management, except that contexts also have to be saved. The
context management service must ensure that there never
exists more than one valid context for each task in the
entire FGDRA. Contexts must thus be transferred as soon
as possible from LCM to the centralized global memory of

CSrs

D + clk

CSin + CSclk

DFF
1

DFF
2

Q

CSout

Figure 3: Dual plane configuration memory.

the hardware supervisor. This service will also have a big
impact on the scheduling service as the ability to perform
preemption with a very low overhead allows the use of more
flexible scheduling algorithms.

(iii) Finally the scheduling service, and in particular the
space management part of the scheduling: it takes advantage
of the column topology and the centralized communication
scheme. The reconfigurable resource could then be managed
as a virtual infinite space containing an undetermined
number of columns. The job is to dynamically map the
virtual space into the real space (the actual reconfigurable
logic core of the FGDRA).

3.5. Context Management Scheme. In [1], we proposed a
context management scheme based on a scanpath, a local
context memory and the CMU. The context management
scheme in OLLAF is slightly different in two ways. First, every
context management related material is hardwired. Second,
we added two more stages in order to even lower preemption
overhead and to ensure the consistency of the system.

As context management materials are added at hardware
level and no more at task level, it needed to be splited
differently. As the programmable logic core is column based,
it was natural to implement context management at columns
level. A CMU and a LCM have then been added to each
column, and one scanpath is provided for each column’s set
of flipflops.

In order to lower preemption overhead, our recon-
figurable logic core uses a dual plane, an active plane
and a hidden plane. Flipflops used in logic elements are
thus replaced with two flipflops with switching material.
Architecture of this dual plane flipflops can be seen on
Figure 3. Run and scan are then no more two working modes
but two parallel planes which can be swapped as well. With
this topology, the context of a task can be shifted in while
the previous task is still running, and shifted out while the
next one is already running. The effective task switching
overhead is then taken down to one clock cycle as illustrated
in Figure 5.

Contexts are transferred by the CMU into LCM in the
hidden plane with a scanpath. Because the context of every
column can be transferred in parallel, LCM is placed at
column level. It is particularly useful when a task uses more
than one column. In the first prototype, those memories can
store 3 configurations and 3 contexts. LCM optimizes access
to a bigger memory called the Central Context Repository
(CCR).

EURASIP Journal on Embedded Systems 5

Dual plane

CMU

LCM

Control bus

CCR

Speed
Size

(nb of context)

1 (+1 active)

∼10

>100

Fixed
1 clk

Fixed
depending on
column size

(1 clk/logic element)

Random
bus access speed

Figure 4: Context memories hierarchy.

1 Tclk overhead

1 2

T1 T2

T2 config. transfert

T2 context restore T1 context save

Cur. active plane

Execution

Config. scan

Context scan

Time axe

Plane 1
Plane 2

Figure 5: Typical preemption scenario.

CCR is a large memory space storing the context of each
task instance run by the system. LCM should then store
context of tasks who are most likely to be the next to be run
on the corresponding column.

After a preemption of the corresponding task, a context
can be stored in more than one LCM in addition to the
copy stored in the CCR. In such situation, care must be
taken to ensure the consistency of the task execution. For
that purpose, contexts are tagged by the CMU each time
a context saving is performed with a version number. The
operating system keeps track of this version number and
also increments it each time a context saving is performed.
In this way the system can then check for the validity of a
context before a context restoration. The system must also
try to update the context copy in the CCR as short as possible
after a context saving is performed with a write-through
policy.

Dual plane, LCM and CCR form a complex mem-
ory hierarchy specially designed to optimize preemption
overhead as seen on Figure 4. The same memory scheme
is also used for configuration management except that a
configuration does not change during execution so it does
not need to be saved and then no versioning control is
required here. The programmable logic core uses a dual
configuration plane equivalent to the dual plane used for
context. Each column has an HCM which is a simplified
version of the CMU (without saving mechanism). LCM is

designed to be able to store an integer number of both
contexts and configurations.

In best case, preemption overhead can then be bound to
one clock cycle.

A scenario of a typical preemption is presented in
Figure 5. In this scenario we consider the case where context
and configuration of both tasks are already stored into LCM.
Let us consider that a task T1 is preempted to run another
task T2, scenario of task preemption is then as follows:

(i) T1 is running and the scheduler decides to preempt it
to run T2 instead,

(ii) T2 is configuration and eventual context are shifted
on the hidden plane,

(iii) once the transfer is completed the two configuration
planes are switched,

(iv) now T2 is running and T1’s context can be shifted out
to be saved,

(v) T1’s context is updated as soon as possible in the
CCR.

4. Preemption Cost Analysis

4.1. OLLAF versus Other FPGA Based Works. This section
presents an analytic comparison of preemption management
efficiency on different solutions using commercial FPGA

6 EURASIP Journal on Embedded Systems

platform and on our FGDRA OLLAF. The comparison was
made on six different management method to transfer the
context and the configuration for the preemption incuding
the methods in use in OLLAF.

The six considered methods are

XIL: a solution based on the Xilinx XAPP290 [13] using
ICAP interface to transfer both context and configuration
and using the readback bitstream for context extraction,

Scan: a solution using a simple scanpath for context transfer
as described in both [1, 14], and using ICAP interface for
configuration transfer,

PCS8: a solution that is similar to Scan solution but using 8
parallel scanpath as described in [1] to transfer the context,
ICAP interface is still used for configuration transfer,

DPScan: a solution that uses a dual plane scanpath similar
to the one used in OLLAF for context transfer and ICAP for
configuration transfer. This method is also studied in [14],
referred as a shadow Scan Chain,

MM: a solution that uses ICAP for configuration transfer
and the memory mapped solution proposed in [14] for
context transfer,

OLLAF: a solution that use separate dual plane scanpath for
configuration transfer and context transfer as used in the
FGDRA architecture proposed in this article.

We defines the preemption overhead H as the cost of a
preemption for the system in terms of time, expressed as a
number of clock cycles or “tclk”. In the same way, all transfer
times are expressed and estimated in number of clock cycle
as we want to focus on the architectural view only. Task sizes
will be parameterized as n, the number of flipflops used.

Preemption overhead can be due to context transfers
(two transfers: one from the previously running task to
save it is context and one to the next task to restore it is
context), configuration transfers (to configure the next task)
and eventually context’s data extraction (if the context’s data
are spreaded among other data as in the XIL solution).

The five first solution uses the ICAP interface as config-
uration transfer method. Using this method, transfers are
made as configuration bitstream. A configuration bistream
contains both a configuration and a context. In the same
way, for the XIL solution that also use the ICAP interface
for context saving, the readback bitsteam contains both
a configuration and an context. In this case only context
is useful. But we need to transfer both configuration and
context and then to spend some extra time to extract the
context.

According to [14], we can estimate that for an n flipflop
IP, and so an n bits context, the configuration is 20n bits. That
means a typical ICAP bitstream of 21n bits.

Analytic expression of H for each case are estimated as
follows.

XIL. Assuming that it uses a 32-bit-width access bus, the
ICAP interface can transfers 32 bits per clock cycle. A
complete preemption process will require the transfer of two
complete bistreams at this rate. In [14], authors estimate that
it takes 20 clock cycles to extract each context bit from the
readback bitstream. This time should then also be taken into
acount for the preemption overhead

H = 21n
32

+
21n
32

+ 20n � 21.3n. (1)

Scan. Using a simple scanpath for context transfer requires
1 clock cycle per flipflop for each context transfer. As we use
the ICAP interface for configuration transfer, as mentioned
earlier, that implies the effective transfer of a complete
bitstream. That means that the context of the next task is
transfered two time even if only one of them contains the
real useful data

H = 21n
32

+ 2n � 2.66n. (2)

PCS8. Using 8 parallel scanpath requires 1 clock cycle for 8
flipflops. The configuration transfer remains the same as for
the previous solution

H = 21n
32

+
2n
8
� 0.9n. (3)

DPScan. Using a double plane scanpath, the context trans-
fers can be hidden, the cost of those transfers is then always
1 clock cycle. The configuration transfer remains the same as
for the previous solutions

H = 21n
32

+ 1 � 0.66n + 1. (4)

MM. Using 32-bit-memory access, this case is similar to
the PCS8 but using 32 parallel paths instead of 8. The
configuration transfer remains the same as for the previous
solutions

H = 21n
32

+
2n
32
� 0.69n. (5)

OLLAF. In OLLAF, both context and configuration transfers
could be hidden so the total cost of the preemption is always
1 clock cycle whatever the size of the task

H = 1. (6)

As a point of comparison, considering a typical operating
system clock tick of 10 ms and assuming a typical clock
frequency of 100 MHz, the OS tick is 106 tclk.

To make our comparison, we consider two tasks T1 and
T2. We consider a DES56 cryptographic IP that requires 862
flipflops and a 16-tap-FIR filter that requires 563 flipflops.
Both of those IPs can be found in www.opencores.org. To ease
the computation we will consider two tasks using the average
number of flipflops of the two considered IP. So for T1 and
T2, we got n = (862 + 563)/2 � 713. Table 1 shows the
overhead H for each presented method.

EURASIP Journal on Embedded Systems 7

Table 1: Comparison of task preemption overhead for 713 flipflops task.

XIL Scan PCS8 DPScan MM OLLAF

H (tclk) 15188 1897 642 472 492 1

Table 2: Comparison of task preemption overhead for a whole 1M flipflops FGDRA.

XIL Scan PCS8 DPScan MM OLLAF

H (tclk) 21.3× 106 2.66× 106 900× 103 660× 103 690× 103 1

Those results show that in this case, using our method
leads to a preemption overhead around 500 times smaller
than using the best other method.

If we now consider that not only one task is preempted
but the whole FGDRA surface, assuming a 1 Million LE’s
logic core, estimation of overhead for each method is shown
in Table 2. In the XIL case the preemption overhead is
about 20 times more than the tick period, which is not
acceptable. Those results show clearly the benefit of OLLAF
over actual FPGA concerning preemption. Using actual
methods, preemption overhead is linearly dependent on the
size of the task. In OLLAF, this overhead do not depends on
the size of the task and is always of only one clock cycle.

In OLLAF, both context and configuration transfers are
hidden due to the use of dual plane. The latency L between
the moment a preemption is asked and the moment the new
task effectively begins to run can also be studied. This latency
only depends on the size of the columns. In the worst case
this latency will be far shorter than the OS tick period. OS
tick period being in any case the shortest time in which the
system must respond to an event, we can consider that this
latency will not affect the system at all.

5. Dynamic Applications Cases Studies

In this section, we will consider few applications cases to
demonstrate the contribution of the OLLAF architecture
especially for the implementation of dynamical applications.
Applications will be here presented as a task dependency
graph, each task being characterized by its execution time,
its size as a number of columns occupied, and eventually its
periodicity.

In this study, we consider an OLLAF prototype with four
columns. The study consists of comparing the execution of
a particular application case using three different context
transfer methods. The first considered context transfer
method will be the use of an ICAP-like interface, this will
be the reference method as it is the one considered in most
of today’s works on reconfigurable computing. The second
consider method will be the method used in the OLLAF
architecture as presented earlier. We will here consider using
LCM of a size of 3 configurations and 3 contexts. Then in
order to study in more detail the contribution of dual planes
and of the LCM we will also considered a method consisting
on an OLLAF like architecture but using only one plane. As
the use of a dual planes will have a major impact on the
reconfigurable logic core’s performance, this last case is of
primary concern to justify this cost.

TM TL1 TL0

LCM

LCM

LCM

LCM

Conf plane

Conf plane

Conf plane

Conf plane

Exec plane

Exec plane

Exec plane

Exec plane
C

C
R

Figure 6: Memory view of the considered implementation of
OLLAF.

Table 3: Transfer times and lengths in clock periods for each level.

TM TL1 TL0

Tr. length (#Tclk) 53760 16384 1

Transfer Time 537.6μs 16.38μs 10 ns

Figure 6 shows a hierarchy memory view of OLLAF.
CCR is the main memory, LCM constitute the local column
caches and then the dual plane is the higher and very fast
level. TL0, TL1 and TM represent the three transfer levels in
OLLAF architecture. The “ICAP” like case will imply only
TM , the “OLLAF simple” one will imply TM and TL1, and
finally the OLLAF case will involve the three transfer levels.
Each transfer level is characterized by the time necessary to
transfer the whole context of one column. In this study we
choose to use a reconfigurable logic core composed of four
columns of 16384 Logic Elements each. Using this layout, the
context and configuration of a column comports 1680 Kbits.
Table 3 gives transfer time for one column’s context and
configuration in clock period assuming a working frequency
of 100 MHz. Those parameters will be useful as the study
will now consist on counting the number of transfers at each
level for every different application case and transfer method
case. We will thus study the temporal cost of context transfers
for a whole sequence of each application case. We have to
distinguish two cases, the very first execution, where caches

8 EURASIP Journal on Embedded Systems

T1

T2

T3

P = 40 ms

T = 40 ms
S = 1

T = 10 ms
S = 3

T = 15 ms
S = 2

Figure 7: First case: simple linear application.

T1

T2

T3 T4

P = 40 ms

T = 40 ms
S = 1

T = 10 ms
S = 3

?

T = 15 ms
S = 2

T = 10 ms
S = 2

Figure 8: Second case: two dynamically chosen tasks.

are empty, and every later executions of the sequence, where
caches and planes already contain contexts configurations.

Applications presented here involves each a first task T1
which has a periodicity of 40 ms, each time execution of this
task finish, the remaining sequence begin (creation of task
T2 . . .) and a new instance of T1 is ran. This correspond
to a typical real time imaging system, a task is in charge of
capturing a picture, then each time a picture as been fully
captured, this picture is being processed by a set of other
tasks, while the next picture is being captured.

5.1. Considered Cases. The first case as seen on Figure 7 is
an application composed of three linearly dependent tasks.
It presents no particular dynamicity and thus will serve as a
reference case.

The second considered case, as seen on Figure 8, presents
a dynamical branch. By that we mean that depending on the
result of task T2’s processing, the system may run T3 or T4.
By those two last tasks presenting different characteristics,
the overall behavior of the system will be different depending
on input data. This is a typical example of dynamic
application, in those cases, the system management must be
performed online. In order to study such a dynamical case,
we gave a probability for each possible case. Here we consider

that probability of task T3 is 20% while the probability of T4
is 80%. Those probabilities are given randomly in order to
be able to perform a statistical study of this application. In
real case those probabilities may not be known in advance as
it depends on input data, we could then consider having an
online profiling in order to improve efficiency of the caching
system, but this is beyond the scope of this article. One
could note that MPEG encoding algorithm is an example of
algorithm presenting this kind of dynamicity.

In the last considered case, on Figure 9, dynamicity is
not in which task will be executed next but in how many
instances of a same task will be executed. This can be
seen as dynamic thread creation. This kind of case can be
found on some computer vision algorithm where a first
task is detecting objects and then a particular treatment is
being applied on each detected object. As we cannot know
in advance how many objects will be detected, treatments
applied on each of those objects must be dynamically
created. In this particular case, we consider that the system
can handle from 0 up to 4 objects in each scene. That
mean that depending on input data, from 0 up to 4
instances of the task Tdyn can be created and executed. The
probabilities for each possible number of object detected are
shown on the probability graph on Figure 9, we chosen a
Gaussian like probability figure which is a typical realistic
distribution.

This case is particularly interesting for many reasons.
First the loading condition of the task T2 dynamically

depends on the previous iteration of the sequence. As an
example, if no object has been detected in the previous scene,
then no Tdyn has been created and thus T2 is still fully
operational into the active plane, it may only eventually have
to be reseted. If now 3 or more objects has been detected and
thus all the three free columns has been used, then the full
context of T2 have to be loaded from the second plane or in
some cases from the local caches.

Another interesting aspect occurs when 4 objects are
detected and so 4 Tdyn are created and must be executed.
In that case if three first Tdyn are executed, one on each
free column, and then the fourth is executed on one random
column, then a new image will be arrived before processing
of the current one is finished, in other terms, the deadline
is missed. However, by scheduling those four Tdyn instances
using a simple round robin algorithm with a quantum time
of 5 ms, real time treatment can be achieved. It should be
noticed that this scheduling is only possible if preemption is
allowed by the platform.

5.2. Results. Tables 4, 5, and 6 show execution results for
each presented application case in terms of transfer cost.
For each case, we show the number of transfers that occurs
per sequence iteration at each possible stage depending on
the considered architecture. We also give the Total time
spent in transferring context. Those results do not take into
account transfers that are hidden due to a parallelization with
the execution of a task in the considered column, as those
transfers do not present any temporal cost for the system.
Concerning level TL1 and TL0, multiple transfers can occur

EURASIP Journal on Embedded Systems 9

T1

T2

P = 40 ms

T = 40 ms
S = 1

T = 10 ms
S = 3

Create #?

Tdyn Tdyn Tdyn · · ·

T = 15 ms
S = 1

P
ro

ba
bi

lit
y

(%
)

40

30

20

10

0

0 1 2 3 4

dynamical task created

Figure 9: Third case: dynamical creation of multiple instances of a task.

Table 4: Results for case 1 execution.

First iteration Next iterations

#TM #TL1 #TL0 Total time #TM #TL1 #TL0 Total time

ICAP-like 3 — — 1.61 ms 4 — — 2.15 ms

OLLAF simple 1 2 — 570 μs 0 1 — 32.8 μs

OLLAF 1 1 3 554 μs 0 0 2 20 ns

Table 5: Results for case 2 execution.

First iteration Next iterations

#TM #TL1 #TL0 Total time #TM #TL1 #TL0 Total time

ICAP-like 3 — — 1.61 ms 4 — — 2.15 ms

OLLAF simple 3 2 — 1.65 ms 0 1 — 32.8 μs

OLLAF 1 2 3 570 μs 0 0.5 2 8.21 μs

Table 6: Results for last case execution.

First iteration Next iterations

#TM #TL1 #TL0 Total time #TM #TL1 #TL0 Total time

ICAP-like 6.6 — — 3.55 ms 5.5 — — 2.96 ms

OLLAF simple 1 3.2 — 590 μs 0 3.1 — 50.8 μs

OLLAF 1 1 3.2 554 μs 0 0 2.1 21 ns

in parallel (one on each column), in those cases only one
transfer is counted as the temporal cost is always of one
transfer at considered stage.

Considering the results using OLLAF, for the first
iteration of the sequence, give information about the con-
tribution of the dual planes while the results for the next
iterations using “OLLAF simple” give information about the
contribution of the LCM only. If we now consider the result
for next iterations using OLLAF, we can see that a major gain
is obtained by combining LCM and a dual planes. In the cases

considered here, this gain is a factor between 103 for case 2
and 106 for case 1 and 3 compared to the ICAP solution.

We also have to consider the scalability of proposed
solutions. Transfers at level TL0 are not dependent of either
column size or number of columns in the considered
platform. TL1 transfer time depend on the size of each
column but not on the number of columns in use. TM
transfers not only depends on the column size but also on
the number of column as all transfers at this level share the
same source memory (CCR) and the same bus. We can see

10 EURASIP Journal on Embedded Systems

Case 1 Case 2 Case 3
1

103

106

To
ta

lt
ra

n
sf

er
ti

m
e

(l
og

10
(n

s)
)

OLLAF
OLLAF simple
ICAP like

Figure 10: Summary of Total transfer cost per sequence.

that using the classical approach will face some scalability
issues while OLLAF offer a far better scalability potential as
transfers cost is far less dependent on the platform size.

Figure 10 gives a summarized view of results. It present
the total transfer cost per sequence iteration in normal
execution (i.e., not for the first execution). Results are
presented here in nanoseconds using a decimal logarithmic
scale. This figure reveal the contribution of the OLLAF
architecture in terms of context transfer overhead reduction.
In all the three cases, OLLAF is the best solution. Case 3
shows that it is well adapted to dynamic applications.

Those results not only prove the benefit of the OLLAF
architecture, but they also demonstrate that the use of LCM
allows to take better advantage of dual planes.

6. Conclusion

In this paper we presented a Fine Grained Dynamical-
ly Reconfigurable Architecture called OLLAF, specially
designed to enhance the efficiency of Operating System’s
services necessary to its management.

Case study considering several typical applications with
different degrees of dynamicity revealed that this architecture
permits to obtain a far better efficiency for task loading
and execution context saving services than actual FPGA
traditionally used as FGDRA in most recent studies. In
the best case, task switching can be achieved in just one
clock cycle. More realistic statistical analysis showed that
for any basic dynamic case considered, the OLLAF platform
always outperform commercially available solution by a
factor around 103 to 106 concerning contexts transfer costs.
The analysis showed that this result can be achieved thinks to
the combination of a dual planes and an LCM.

This feature allows fast preemption and thus permit to
handle dynamic applications efficiently. This also open the
door to lot of different scheduling strategies that cannot be
considered using classical architecture.

Future works will be led on the development of an online
scheduling service taking into account new possibilities
offered by OLLAF. We could include prediction mechanism
in this scheduler performing smart configurations and

contexts prefetch. Being able to predict in most cases the
future task that will run in a particular column will permit to
take even better advantage of the context and configuration
management scheme proposed in OLLAF.

This work contribute to make FGDRAs a much more
realistic option as universal computing resource, and make
them one possible solution to keep the evolution of electronic
system going in the more than moore fashion. For that
purpose, we claim that we have to put a lot of efforts to build
a strong consistence between design tools, Operating Systems
and platforms.

References

[1] S. Garcia, J. Prevotet, and B. Granado, “Hardware task context
management for fine grained dynamically reconfigurable
architecture,” in Proceedings of the Workshop on Design and
Architectures for Signal and Image Processing (DASIP ’07),
Grenoble, France, November 2007.

[2] S. Garcia and B. Granado, “OLLAF: a fine grained dynamically
reconfigurable architecture for os support,” in Proceedings of
the Workshop on Design and Architectures for Signal and Image
Processing (DASIP ’08), Grenoble, France, November 2008.

[3] H. Simmler, L. Levinson, and R. Männer, “Multitasking on
FPGA coprocessors,” in Proceedings of the 10th International
Conference on Field-Programmable Logic and Applications (FPL
’00), vol. 1896 of Lecture Notes in Computer Science, pp. 121–
130, Villach, Austria, August 2000.

[4] G. Chen, M. Kandemir, and U. Sezer, “Configuration-sensitive
process scheduling for FPGA-based computing platforms,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’04), vol. 1, pp. 486–493,
Paris, France, February 2004.

[5] H. Walder and M. Platzner, “Reconfigurable hardware oper-
ating systems: from design concepts to realizations,” in
Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA ’03), pp. 284–
287, 2003.

[6] G. Wigley, D. Kearney, and D. Warren, “Introducing recon-
figme: an operating system for reconfigurable computing,”
in Proceedings of the 12th International Conference on Field
Programmable Logic and Application (FPL ’02), vol. 2438, pp.
687–697, Montpellier, France, September 2002.

[7] X.-P. Ling and H. Amano, “Wasmii : a data driven computer
on virtuel hardware,” in Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, pp. 33–42, Napa,
Calif, USA, April 1993.

[8] Y. Shibata, M. Uno, H. Amano, K. Furuta, T. Fujii, and M.
Motomura, “A virtual hardware system on a dynamically
reconfigurable logic device,” in Proceedings of the IEEE Sympo-
sium on FPGAs for Custom Computing Machines (FCCM ’00),
Napa Valley, Calif, USA, April 2000.

[9] A. DeHon, “DPGA-coupled microprocessors: commodity ICs
for the early 21st century,” in Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines (FCCM ’94), pp.
31–39, Napa Valley, Calif, USA, April 1994.

[10] Xilinx, “Time multiplexed programmable logic device,” US
patent no. 5646545, 1997.

[11] Z. Li, K. Compton, and S. Hauck, “Configuration caching
techniques for FPGA,” in Proceedings of the IEEE Symposium
on FPGA for Custom Computing Machines (FCCM ’00), Napa
Valley, Calif, USA, April 2000.

EURASIP Journal on Embedded Systems 11

[12] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauw-
ereins, “Designing an operating system for a heterogeneous
reconfigurable SoC,” in Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS ’03), p.
174, Nice, France, April 2003.

[13] Xilinx, “Two flows for partial reconfiguration: module based
or difference based,” Xilinx, Application Note, Virtex, Virtex-
E, Virtex-II, Virtex-II Pro Families XAPP290 (v1.2), Septem-
ber 2004.

[14] D. Koch, C. Haubelt, and J. Teich, “Efficient hardware check-
pointing: concepts, overhead analysis, and implementation,”
in Proceedings of the 17th International Conference on Field
Programmable Logic and Applications (FPL ’07), Amsterdam,
The Netherlands, August 2007.

