This document must be cited according to its final version which is published in a conference proceeding as:
P. Dufour ${ }^{1}$, S. Flila ${ }^{1}$, H. Hammouri ${ }^{1}$,
< Nonlinear observers synthesis based on strongly persistent inputs», Proceedings of the 29th IEEE CSS Chinese Control Conference,

Paper 307, pp. 316-320,
Beijing, China, July 29-31, 2010
All open archive documents of Pascal Dufour are available at: http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008

The professional web page (Fr/En) of Pascal Dufour is: http://www.lagep.univ-lyon1.fr/signatures/dufour.pascal

The professional web page ($\mathrm{Fr} / \mathrm{En}$) of Hassan Hammouri is: http://www.lagep.univ-lyon1.fr/signatures/hammouri.hassan

This web site of this research team is: http://sites.google.com/site/snlepteam

Nonlinear observers synthesis based on strongly persistent inputs

P. Dufour S. Flila H. Hammouri presented by Pascal Dufour

Université de Lyon, France
Université Lyon 1
LAGEP UMR 5007 CNRS

$29^{\text {th }}$ IEEE Chinese Control Conference (CCC) 2010 July 29-31, Beijing, China

Motivations and objectives of this work

Design of a high gain observer is

- usually:
- based on normal forms,
- for non-linear system assumed to be observable independently on the input.
- Here :
- also based on normal forms,
- for nonlinear systems not observable independently on the input,
- conditions and proof of convergence of this observer are given, base on $u(t)$.

Class of systems considered

Let us take the following system with normal form :

$$
\left\{\begin{array}{l}
\dot{z}=A(u) z+g(u, z) \tag{1}\\
y=C z
\end{array}\right.
$$

where:

$$
\begin{align*}
& A(u)=\left(\begin{array}{cccc}
0 & a_{1}(u) & \ldots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \vdots & \ddots & a_{n-1}(u) \\
0 & 0 & \ldots & 0
\end{array}\right) \tag{2}\\
& g_{i}(u, z)=g_{i}\left(u, z_{1}, \ldots, z_{i}\right) \text { and } C=[1,0 \ldots, 0] \\
& z \in \mathbb{R}^{n}, u \in \mathbb{R}, y \in \mathbb{R}
\end{align*}
$$

Definition : Uniform observability

Definition

System (1) is uniformly observable (U.O.) if every input u (.) defined on any $\left[t_{0}, t_{0}+T\right]$ renders the system observable : \forall $x\left(t_{0}\right) \neq x^{\prime}\left(t_{0}\right)$, the associated outputs $y(x(0), u, t), y\left(x^{\prime}(0), u, t\right)$ are not identically equal on $\left[t_{0}, t_{0}+T\right]$.

If the system is U.O., it was shown (Gauthier-Kupka, SIAM-J. 1994) that $a(u) \neq 0$, for every u, an observer for (1) is :

$$
\begin{equation*}
\dot{\hat{z}}=A(u) \widehat{z}+g(u, \widehat{z})+K(C \widehat{z}-y) \tag{3}
\end{equation*}
$$

where K is a constant tuning gain.

Observer design problem tackled

- Here, systems (1) that are not U.O. are considered : the above observer synthesis cannot be applied.
- E.g., consider the following simple example :

$$
\left\{\begin{array}{l}
\dot{z}_{1}=u z_{2} \tag{4}\\
\dot{z}_{2}=0 \\
y=z_{1}
\end{array}\right.
$$

- This system follows the form (1) considered.
- But the input $u=0$ renders the system unobservable.
- Consequently, a constant gain observer (3) cannot be designed.

Grammian of observability G

- Consider the affine part of system (1) :

$$
\left\{\begin{array}{l}
\dot{z}=A(u) z \tag{5}\\
y=C z
\end{array}\right.
$$

- with $\phi_{u}(t, s)$ its transition matrix :

$$
\left.\frac{d\left(\phi_{u}(t, s)\right)}{d t}=A(u(t)) \phi_{u}(t, s)\right)
$$

- $\phi_{u}(s, s)=I=$ identity matrix.

Remark

1) u renders system (1) observable on $\left[t_{0}, t_{0}+T\right]$ iff it renders (5) observable on the same interval.
2) u renders system (5) observable on $\left[t_{0}, t_{0}+T\right]$ iff the grammian of observability is positive definite :

$$
\begin{equation*}
G\left(u, t_{0}, t_{0}+T\right)=\int_{t_{0}}^{t_{0}+T} \phi_{u}^{T}\left(t_{0}, t\right) C^{T} C \phi_{u}\left(t_{0}, t\right) d t \geq \alpha I \tag{6}
\end{equation*}
$$

Main result

In what follows, we will give a condition on $u(t)$ s.t. the following system :

$$
\left\{\begin{array}{l}
\dot{\hat{z}}=A(u) \widehat{z}+g(u, \widehat{z})-S^{-1} C^{T}(C \widehat{z}-y) \tag{7}\\
\dot{S}=-\theta S-A^{T}(u) S-S A(u)+C^{T} C
\end{array}\right.
$$

forms an observer for the non U.O. system (1), where $\theta>0$ is the tuning parameter of the observer.

From an observer gain condition to an input condition

- The gain of the observer (7) is based on the inverse of $S(t)$:

$$
\begin{align*}
& S(t)=e^{-\theta t} \Phi_{u}^{T}(0, t) S(0) \Phi_{u}(0, t)+ \\
& \int_{0}^{t} e^{-\theta(t-s)} \Phi_{u}^{T}(s, t) C^{T} C \Phi_{u}(s, t) d s \tag{8}
\end{align*}
$$

- To be inversed, $S(t)$ needs to be well conditioned.
- With bounded $u()+$. large θ : first term of $S(t)$ exp. $\rightarrow 0$, $S(t) \exp . \rightarrow \Psi(t, \theta)=\int_{0}^{t} e^{-\theta(t-s)} \Phi_{u}^{T}(s, t) C^{T} C \Phi_{u}(s, t) d s$
- Given $T, t-s \geq T+$ large $\theta: S(t) \exp . \rightarrow G(u, t-T, t)$
- Condition : to get a good conditioning of $S(t)$, the input u must render the system (1) observable on any $[t-T, t]$.

From an observer gain condition to an input condition

- This condition on u will now be described based on the diagonal coefficients $\Psi_{i i}$ of $\Psi(t, \theta)$.
- Since $A(u)$ is a nilpotent matrix and $C=[1,0, \ldots, 0]$, then :
- $\Psi_{11}(t, \theta)=\int_{0}^{t} e^{-\theta(t-s)} d s$
- For $i \geq 2, \Psi_{i j}(t, \theta)=$

$$
\begin{aligned}
& \int_{0}^{t} e^{-\theta(t-s)}\left(\int_{s}^{t} a_{1}\left(u\left(t_{1}\right)\right) \ldots a_{i-1}\left(u\left(t_{1}\right)\right) d t_{1} \ldots d t_{i-1}\right) \ldots \\
& \ldots\left(\int_{s}^{t} \int_{s}^{t_{1}} \ldots \int_{s}^{t_{i-2}} a_{1}\left(u\left(t_{1}\right)\right) \ldots a_{i-1}\left(u\left(t_{1}\right)\right) d t_{1} \ldots d t_{i-1}\right) d s
\end{aligned}
$$

- Let :

$$
\Gamma(t, \theta)=\left(\begin{array}{ccc}
\Psi_{11}(t, \theta) & \ldots & 0 \tag{9}\\
\vdots & \ddots & \vdots \\
0 & \ldots & \Psi_{n n}(t, \theta)
\end{array}\right)
$$

Definition : Strongly persistent input

Definition

A bounded input $u($.$) is said to be strongly persistent if :$ $\exists \theta_{0}>0 ; \exists t_{0} \geq 0 ; \forall \theta>\theta_{0} ; \forall t \geq t_{0}$:
i) $\Gamma(t, \theta)$ is invertible and satisfies :

$$
\begin{gathered}
\Gamma(t, \theta) \leq \alpha(\theta) \Psi(t, \theta) \text {, with } \lim _{\theta \rightarrow \infty} \frac{\alpha(\theta)}{\theta}=0 \\
\text { ii) } \exists \gamma>0,\left\|\Gamma_{i j}^{-1}(t, \theta)\right\|\left\|\Gamma_{i i}(t, \theta)\right\| \leq \gamma \text {, for } 1 \leq j \leq i
\end{gathered}
$$

Theorem : Observer design for a non U.O. system

Theorem

Assume that the nonlinear term $g(u, z)$ in (1) is a global Lipschitz function with respect to z, locally to u.
Then for every strongly persistent inputs u, the following system forms an exponential observer for system (1) :

$$
\left\{\begin{array}{l}
\dot{\hat{z}}=A(u) \hat{z}+g(u, \hat{z})-S^{-1} C^{T}(C \hat{z}-y) \tag{10}\\
\dot{S}=-\theta S-A^{T}(u) S-S A(u)+C^{T} C
\end{array}\right.
$$

Proof of convergence for the non U.O. system observer

- Set $e(t)=\widehat{z}(t)-z(t)$ and using (1)-(10):

$$
\left\{\begin{array}{l}
\dot{e}=\left(A(u)-S^{-1} C^{T} C\right) e+\delta(g) \tag{11}\\
\dot{S}=-\theta S-A^{T}(u) S-S A(u)+C^{T} C
\end{array}\right.
$$

where $\delta(g)=g(u, \widehat{z})-g(u, z)$

- Take equation 2 of (11)
- Apply the Cholesky decomposition : $S(t)=\Lambda(t) \Lambda^{T}(t)$, with $\Lambda(t)=$ lower triangular matrix with positive diagonal.
- Take the time variant linear change of coordinates $\epsilon(t)=\Lambda^{T}(t) e(t)$, with $\Lambda^{-T}=\left(\Lambda^{T}\right)^{-1}$
- Multiply both sides: to the left by Λ^{-1}, to the right by Λ^{-T}.
- Set $V(t)=\epsilon^{T}(t) \epsilon(t)$, then :

$$
\left\{\begin{array}{l}
\dot{V}=-\theta\|\epsilon\|^{2}+2 \epsilon^{T} \Lambda^{T} \delta(g)+(\delta(g))^{T} \Lambda \Lambda^{T} \delta(g)-\epsilon^{T} \Lambda^{-1} C^{T} C \Lambda^{-T} \epsilon \ldots \tag{12}\\
\ldots \leq-\theta\|\epsilon\|^{2}+2\|\epsilon\|\left\|\Lambda^{T} \delta(g)\right\|+(\delta(g))^{T} \Lambda \Lambda^{T} \delta(g)
\end{array}\right.
$$

Proof of convergence for the non U.O. system observer

- Since there exists $\tau_{0}>0$; there exists $a>0$, s.t. for

$$
\forall t \geq \tau_{0}: S(t)=\Lambda(t) \Lambda^{T}(t) \leq a \Psi(t, \theta)
$$

- then, $\forall t \geq t_{0}$:

$$
\begin{equation*}
\dot{V} \leq-\theta\|\epsilon\|^{2}+2 \sqrt{a}\|\epsilon\| \sqrt{(\delta(g))^{T} \Psi(t, \theta) \delta(g)}+a(\delta(g))^{T} \Psi(t, \theta) \delta(g) \tag{13}
\end{equation*}
$$

- $\Psi(t, \theta)$ being a diagonal matrix, we obtain $(\delta(g))^{T} \Psi(t, \theta) \delta(g)=\sum_{i=1}^{q}(\delta(g))_{i}^{T} \Psi_{i i}(t, \theta) \delta(g)_{i}$.

Proof of convergence for the non U.O. system observer

- Using the mean value theorem : $\delta(g)_{i}=\sum_{j=1}^{i} a_{j}(.) e_{j}$ where

$$
\begin{align*}
e_{j}= & \widehat{z}_{j}-z_{j}: \\
& (\delta(g))_{i}^{T} \Psi_{i i}(t, \theta) \delta(g)_{i} \\
& =\sum_{l, k=1}^{i} e_{k}^{T} a_{j}(.) \Psi_{i i}(t, \theta) a_{j}(.) e_{l} \\
& \leq \widetilde{a}\left\|\Psi_{i i}(t, \theta)\right\| \sum_{l=1}^{i} e_{l}^{T} e_{l}, \text { where } \widetilde{a}>0 \text { is a constant } \tag{14}
\end{align*}
$$

- Set $\Psi_{i i}(t, \theta)=\widetilde{\Psi}_{i i} \widetilde{\Psi}_{i i}^{T}$ where $\widetilde{\Psi}_{i i}$ is a lower triangular matrix given by the Cholesky decomposition.
- Set $\widetilde{\epsilon}_{i}=\widetilde{\Psi}_{i i} e_{i}$ and $\widetilde{\epsilon}=\left(\widetilde{\epsilon}_{1}^{T}, \ldots, \widetilde{\epsilon}_{q}^{T}\right)^{T}$, from (14) and inequality ii) of definition 2 (S.P. (u), it follows :

$$
\begin{align*}
& (\delta(g))_{i}^{T} \Psi_{i i}(t, \theta) \delta(g)_{i} \leq \widetilde{a}\left\|\Psi_{i i}(t, \theta)\right\| \sum_{l=1}^{i}\left\|\Psi_{\|}^{-1}(t, \theta)\right\| \widetilde{\epsilon}_{l}^{T} \widetilde{\epsilon}_{l} \\
& \leq b \sum_{l=1}^{i} \widetilde{\epsilon}_{l}^{T} \widetilde{\epsilon}_{l}, \text { where } b>0 \text { is a constant } \tag{15}
\end{align*}
$$

Proof of convergence for the non U.O. system observer

- Combining (13) and (15), we can find two constants $\alpha_{1}>0, \alpha_{2}>0$ which not depend on θ, such that for every $t \geq \tau_{0}$ we have :

$$
\begin{equation*}
\dot{V} \leq-\theta\|\epsilon\|^{2}+\alpha_{1}\|\epsilon\| \sqrt{\widetilde{\epsilon}^{\top} \widetilde{\epsilon}}+\alpha_{2} \widetilde{\epsilon}^{T} \widetilde{\epsilon} \tag{16}
\end{equation*}
$$

- By definition of $\widetilde{\epsilon}, \widetilde{\epsilon}^{\top} \widetilde{\epsilon}=e^{T} \Gamma(t, \theta) e$, where $\Gamma(t, \theta)$ is the diagonal matrix given by (9). From i) of definition 2, we have :

$$
\begin{gather*}
\exists \theta_{0}>0 ; \exists t_{0} \geq 0 ; \forall \theta>\theta_{0} ; \forall t \geq t_{0}, \\
\Gamma(t, \theta) \leq \alpha(\theta) \Psi(t, \theta), \text { with } \lim _{\theta \rightarrow \infty} \frac{\alpha(\theta)}{\theta}=0 \tag{17}
\end{gather*}
$$

Proof of convergence for the non U.O. system observer

- Now, using the facts that $\epsilon^{T} \epsilon=e^{T} S(t) e$, and that $\Psi(t, \theta)$ behaves like $S(t)$, then there exist constants $\widetilde{\alpha}_{1}>0$, $\widetilde{\alpha}_{2}>0$ which not depend on θ such that :

$$
\begin{equation*}
\dot{V} \leq-\theta\|\epsilon\|^{2}+\widetilde{\alpha}_{1} \sqrt{\alpha(\theta)}\|\epsilon\|^{2}+\widetilde{\alpha}_{2} \alpha(\theta)\|\epsilon\|^{2} \tag{18}
\end{equation*}
$$

- Finally, since $\lim _{\theta \rightarrow \infty} \frac{\alpha(\theta)}{\theta}=0$ (see i) of definition 2), terms 2 and 3 in (18) are negligible.
- Hence, the estimation error $\|e(t)\|$ between the state of the system (1) and the state of the observer (10) converges to 0 .

Contacts and discussion

Hassan Hammouri (resume, links to open archives/journal papers ...) : tinyurl.com/hassanhammouri

Pascal Dufour (resume, links to open archives/journal papers ...) : tinyurl.com/pascaldufour

Our research team (members, activities, links to publications,
...) : tinyurl.com/SNLEP
Our research team 1 page resume in chinese : tinyurl.com/SNLEP-CV-CH-v1

Our research team 1 page resume in english : tinyurl.com/SNLEP-CV-EN-v1

Time for discussion !!!

